Fast and accurate calculations for cumulative first-passage time distributions in Wiener diffusion models
Blurton, Steven Paul; Kesselmeier, M.; Gondan, Matthias

Published in:
Journal of Mathematical Psychology

DOI:
10.1016/j.jmp.2012.09.002

Publication date:
2012

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Online supplementary material

This online supplementary material contains scripts written in R statistical language (R core team, 2012) and Matlab which contain seven helper functions and a main function:

- `exp_pnorm(a, b):` In $F^S(t)$, large positive a coincide with large negative b in $\exp(a) \cdot \Phi(b)$. This raises numerical issues because values near infinity are multiplied with values near zero. In such cases, we approximated the normal distribution by an exponential (Kiani, Panaretos, Psarakis & Saleem, 2008) such that the product is determined via $\exp(a + b)$ which is numerically feasible.

- `K_large(t, v, a, w, epsilon):` number of summands needed for the large-time representation of the upper subdistribution $F^\ell(t \mid v, a, w)$. The parameters denote the time, the drift v of the process, the upper barrier a, the relative start point w and the tolerance bound epsilon, respectively. Time t can be a vector.

- `K_small(t, v, a, w, epsilon):` same for small-time representation $F^S(t \mid v, a, w)$.

- `Pu(v, a, w):` calculates the probability of absorption at the lower barrier.

- `Fl_lower(t, v, a, w, K):` calculates the lower subdistribution using the large-time representation $F^\ell(t \mid v, a, w)$. The number of summands is given by K.

- `Fs_lower(t, v, a, w, K):` same for small-time representation $F^S(t \mid v, a, w)$.

- `Fs0_lower(t, a, w, K):` same for small-time representation $F^S(t \mid v = 0, a, w)$.

- `F_lower(t, v, a, w, sigma2, epsilon):` This is the main function for determining the cumulative first-passage time distribution at the lower barrier for a Wiener process with drift mu and variance sigma2 between two absorbing barriers at 0 and a > 0. The function invokes `K_small` and `K_large` to determine the number of summands required to attain precision epsilon > 0. The time points t and parameters can be given as vectors. For each element of the vectors t and the parameters, the function automatically selects the representation which requires less terms. Negative drifts and non-unit variances sigma2 are handled.

- `F_upper(t, v, a, w, sigma2, epsilon):` First-passage time distribution at the upper barrier a.

Example usage

The cumulative first-passage time distributions shown in Figure 1 of the main article have been determined by $F_{\text{lower}}(t=1:1000, v=-0.05, a=110, w=80/110, \text{sigma2}=3, \text{epsilon}=1.5e-8)$ and $F_{\text{upper}}(...)$ with the same arguments.
Calculates \(\exp(a) \times \text{pnorm}(b) \) using an approximation by Kiani et al. (2008)

```r
exp_pnorm = function(a, b) {
  r = exp(a) * pnorm(b)
  d = is.na(r) & b < -5.5
  r[d] = 1/sqrt(2) * exp(a - b[d]*b[d]/2) * (0.5641882/b[d]/b[d]/b[d] - 1/b[d]/sqrt(pi))
  r
}
```

Number of terms required for large time representation

```
K_large = function(t, v, a, w, epsilon) {
  sqrtL1 = sqrt(1/t) * a/pi
  sqrtL2 = sqrt(pmax(1, -2/t*a*a/pi/pi) * (log(epsilon*pi*t/2 + v*v + pi*pi/a/a)) + v*a*w + v*v*t/2))
  ceiling(pmax(sqrtL1, sqrtL2))
}
```

Number of terms required for small time representation

```
K_small = function(t, v, a, w, epsilon) {
  if(abs(v) < sqrt(.Machine$double.eps)) # zero drift case
    return(ceiling(pmax(0, w/2 - sqrt(t)/2*a * qnorm(pmax(0, pmin(1, epsilon/(2-2*w)))))))
  if(v > 0) # positive drift
    return(K_small(t, -v, a, w, exp(-2*a*w*v)*epsilon))
  S2 = w - 1 + 1/2/v/a * log(epsilon/2 * (1-exp(2*v*a)))
  S3 = (0.535 * sqrt(2*t) + v*v + a*a)/2/a
  S4 = w/2 - sqrt(t)/2/a * qnorm(pmax(0, pmin(1, epsilon * a / 0.3 / sqrt(2*pi*t) * exp(v*v*t/2 + v*a*w))))
  ceiling(pmax(S2, S3, S4, 0))
}
```

Probability for absorption at upper barrier

```
Pu = function(v, a, w) {
  e = exp(-2 * v * a * (1-w))
  if(e == Inf)
    return(1)
  if(abs(e - 1) < sqrt(.Machine$double.eps)) # drift near zero or w near 1
    return(1 - w)
  (1 - e) / (exp(2*v*a*w) - e) # standard case
}
```

Large time representation of lower subdistribution

```
fl_lower = function(t, v, a, w, K) {
  F = numeric(length(t))
  for(k in K:1)
    F = F - k / (v*v + k*k*pi*pi/a/a) * exp(-v*a*w - 1/2*v*v*t - 1/2*k*k*pi*pi/a/a*t) * sin(pi*k*w)
  Pu(v, a, w) + 2*pi/a/a * F
}
```
Small time representation of the upper subdistribution

```r
Fs_lower = function(t, v, a, w, K) 
{
    if(abs(v) < sqrt(Machine$double.eps)) # zero drift case 
        return(Fs0_lower(t, a, w, K))

    S1 = S2 = numeric(length(t))
    sqt = sqrt(t)
    for(k in K:1)
    {
        S1 = S1 + exp_pnorm(2*v*a*k, -sign(v)*(2*a*k+a*w+v*t)/sqt) -
            exp_pnorm(-2*v*a*k - 2*v*a*w, sign(v)*(2*a*k+a*w-v*t)/sqt)
        S2 = S2 + exp_pnorm(-2*v*a*k, sign(v)*(2*a*k-a*w-v*t)/sqt) -
            exp_pnorm(2*v*a*k - 2*v*a*w, -sign(v)*(2*a*k-a*w+v*t)/sqt)
    }

    Pu(v, a, w) + sign(v) * ((pnorm(-sign(v) * (a*w+v*t)/sqt) -
        exp_pnorm(-2*v*a*w, sign(v) * (a*w-v*t)/sqt)) + S1 + S2)
}
```

Zero drift version

```r
Fs0_lower = function(t, a, w, K)
{
    F = numeric(length(t))
    for(k in K:0)
    {
        F = F - pnorm((-2*k - 2 + w)*a/sqrt(t)) + pnorm((-2*k - w)*a/sqrt(t))
    }
}
```

Lower subdistribution

```r
F_lower = function(t, v, a, w, sigma2, epsilon)
{
    a = a / sqrt(sigma2)
    v = v / sqrt(sigma2)
    K_L = K_large(t, v, a, w, epsilon)
    K_s = K_small(t, v, a, w, epsilon)

    F = numeric(length(t))
    i = (K_L < 10*K_s)
    if(any(i)) F[i] = F_lower(t[i], v, a, w, max(K_L[i]))
    if(any(!i)) F[i] = Fs_lower(t[i], v, a, w, max(K_s[i]))
    F
}
```

Upper subdistribution

```r
F_upper = function(t, v, a, w, sigma2, epsilon)
{
    F_lower(t, -v, a, 1-w, sigma2, epsilon)
}
```
% Matlab script
% Calculates exp(a) * pnorm(b) using an approximation by Kiani et al. (2008)
function res = exp_pnorm(a, b)
 res = exp(a) .* erfc(-b/sqrt(2))/2;
 d = isnan(res) & b < -5.5;
 if(any(d))
 res(d) = 1 ./ sqrt(2) .* exp(a - b(d) .* b(d) ./ 2 .* (0.5641882 ./ b(d) ./ b(d) ./ b(d) - 1 ./ b(d) / sqrt(pi)));
 end
 return

% Number of terms required for large time representation
function K = K_large(t, v, a, w, epsilon)
 sqrtL1 = sqrt(1/t) * a / pi;
 sqrtL2 = sqrt(max(1, -2./t*a^2*pi/2) .* (log(epsilon*pi*t^2/2) .* (v^2 + pi^2*pi/a^2) + v*a*w + v*w*t/2)));
 K = ceil(max(sqrtL1, sqrtL2));
 return

% Number of terms required for small time representation
function K = K_small(t, v, a, w, epsilon)
 if(abs(v) < sqrt(eps)) % drift near zero
 K = ceil(max(0, w/2 + sqrt(t/2) / a * erfcinv(2*max(0, min(1,epsilon / (2-2*w))));
 return
 end
 if(v > 0) % positive drift
 K = K_small(t, -v, a, w, exp(-2*a*w*v)*epsilon);
 return
 end
 S2 = zeros(1, length(t)) + w - 1 + 1/2/v*a * log(epsilon/2 * (1-exp(2*v*a)));
 S3 = (0.535 + sqrt(2*t) + v^2 + a*w)/2/a;
 S4 = w/2 + sqrt(t/2)/a .* erfcinv(2*max(0, min(1, epsilon * a / 0.3 ./ sqrt(2*pi^2)) .* exp(v*v*t/2 + v*a*w)));
 K = ceil(max(0, max(vertcat(S2, S3, S4))));
 return

% Probability for absorption at upper barrier
function P = Pu(v, a, w)
 e = exp(-2*v*a*(1-w));
 if(e == Inf)
 P = 1;
 elseif(abs(e - 1) < sqrt(eps))
 P = 1 - w; % drift near zero or w near 1
 else
 P = (1 - e) / (exp(2*v*a*w) - e); % standard case
 end
 return

% Large time representation of lower subdistribution
function Fl = Fl_lower(t, v, a, w, K)
 Fl = zeros(1, length(t));
 for k = 1 : -1 : 1
 Fl = Fl - (k ./ (v^2 + pi^2*pi*k^2/a^2) * exp(-v*a*w - 1/2*v*v*t - 1/2*pi^2*pi*k^2/a^2)* sin(pi*k*w));
 end
 Fl = Pu(v, a, w) + 2*pi*a/a * Fl;
 return
% Small time representation of the upper subdistribution
function Fl = Fs_upper(t, v, a, w, sigma2, epsilon)
 Fu = F_lower(t, -v, a, 1-w, sigma2, epsilon);
 return

References
