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a b s t r a c t

Wepropose an improvedmethod for calculating the cumulative first-passage time distribution inWiener

diffusion models with two absorbing barriers. This distribution function is frequently used to describe

responses and error probabilities in choice reaction time tasks. The present work extends related work

on the density of first-passage times [Navarro, D.J., Fuss, I.G. (2009). Fast and accurate calculations for

first-passage times in Wiener diffusion models. Journal of Mathematical Psychology, 53, 222–230]. Two

representations exist for the distribution, both including infinite series. We derive upper bounds for

the approximation error resulting from finite truncation of the series, and we determine the number of

iterations required to limit the error below a pre-specified tolerance. For a given set of parameters, the

representation can then be chosen which requires the least computational effort.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the presence of two mutually exclusive competing risks,

event times can often be described by a stochastic process

drifting between two absorbing barriers. Typical examples include

sequential sampling models of human decision making (e. g.,

Busemeyer & Townsend, 1993; Diederich, 1997; Ratcliff, 1978;

Ratcliff & McKoon, 2008), or length of stay in hospital (with

the two outcomes death and healthy discharge, e. g., Horrocks

& Thompson, 2004). The central assumption of these models is

that a hidden underlying state randomly moves between two

alternatives until eventually one of two criteria is reached (so-

called absorbing barriers). The appeal in those models lies in the

possibility to derive predictions not only for the probabilities for

the two outcomes, but also for the time it takes until the barrier is

hit. Often, this process is assumed to be continuous, resulting in the

well-known diffusion models for which the time-homogeneous

Brownian motion process (Wiener process, Fig. 1) is most popular.

TheWiener processX(t | v, σ 2) is described by two parameters

v andσ 2 > 0 representing the drift and variance (noise) of the pro-

cess. The process is temporally and spatially homogeneous, that is,
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Mark W. Greenlee and Matthias Gondan). Scripts written in R statistical language

(R Core Team, 2012) and Matlab are provided as online supplementary material.
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drift and variance neither depend on the current state nor the time
elapsed (e. g., Smith, 2000). In the two-alternative choice model,
the process is assumed to start at X(0) = z, and two absorbing
barriers are assumed at zero and a, representing the two outcomes,
0 < z < a. Despite the relative simplicity of the process, it is hard
to derive expressions for the density and distribution of the first-
passage times in the two-barrier situation. One must rather rely
on infinite series (Wald, 1947). Of course, the evaluation of infi-
nite series can only involve a finite number of terms. The series,
however, are known to converge, and it is possible to estimate the
error that results when calculation is stopped at a certain number
of steps. The usual approach is to terminate the calculation when a
desired level of accuracy is met, for example, if the absolute error
is lower than some tolerance ε > 0. This limit can be reached af-
ter evaluation of very few terms when convergence is good at the
point where the function is evaluated. On the other side, at crit-
ical points, sufficient accuracy requires the calculation of several
hundred terms or even more.

Two representations exist for the first-passage time density
of a Wiener process between two absorbing barriers. These
representations show different convergence behavior: While one
representation converges quickly for small values of t , the other
representation converges quickly for large values of t . Navarro and
Fuss (2009) exploited these properties and provided a decision
rule when to use the one or the other representation. The decision
rule depends on the number of terms needed to achieve a
predefined level of accuracy. Based on this idea, we propose a
computationally efficient way to compute the cumulative first-
passage time distribution of a Wiener process between two
absorbing barriers.

0022-2496/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
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Fig. 1. Realizations of a Wiener process with variance σ 2 = 3.0 and drift v =
−0.05 (dashed line) starting at z = 80 between two absorbing barriers at a = 110

and zero. The black curves indicate the cumulative first-passage time distributions

F(t | v/σ , a/σ , w), w = z/a, at the lower barrier and at the upper barrier [the

latter is determined via Fupper(t | v/σ , a/σ , w) = F(t | −v/σ , a/σ , 1 − w)]. The

gray lines show the approximation error resulting from early truncation at K = 2.

2. First-passage time density and distribution

We consider aWiener Process with drift v, starting at X(0) = z.
Without loss of generality, the variability can be fixed at σ 2 = 1,
since it only scales the other parameters. A lower and an upper
absorbing barrier is fixed at zero and a, with 0 < z < a. Setting,
for convenience, w = z/a, the density f (t) of first absorption at
the lower barrier is described by the two series (e.g., Feller, 1968,
p. 359 and p. 370),

f ℓ(t | v, a, w) =
π

a2
exp

(

−vaw −
v2t

2

)

×
∞
∑

k=1

k sin(πkw) exp

[

−
1

2

(

kπ

a

)2

t

]

,

f s(t | v, a, w) =
a
√
t3

exp

(

−vaw −
v2t

2

)

×
∞
∑

k=−∞
(2k+ w) ϕ

(

2k+ w
√
t

a

)

,

with ϕ(x) denoting the standard normal density. Because absorp-
tion can occur at both the upper and the lower barrier, f ℓ and f s

are, in fact, subdensities and do not fully integrate to one. Whereas
f ℓ converges quickly for large t , f s converges quickly for small
t (Horrocks & Thompson, 2004; Van Zandt, Colonius, & Proctor,
2000). First absorption at the upper barrier is described by f (t |
−v, a, 1− w); the lower density is given by f (t | v/σ , a/σ , w).

Navarro and Fuss (2009) investigated the numerical properties
of the two representations truncated at some K . In particular, they
provide upper bounds for the error which results when the se-
ries f ℓ, f s are evaluated for k = 1, . . . , K and k = −K , . . . , K ,
respectively. They derived expressions for the required number
of summands K which limit the truncation error |f (t)− fK (t)|
below a certain criterion ε > 0 for each representation. For a pre-
specified set of parameters, the representation which is computa-
tionally least demanding can then be chosen.

In the present note we consider the cumulative first-passage
time distribution, that is, the probability of absorption between

time zero and some t , which is given by the integral of the
density between zero and t . This distribution is again described
by two alternative series with different convergence properties.
Similar to Navarro and Fuss (2009) we derive upper bounds for
the number of iterations K required to limit the truncation error
below a certain tolerance ε > 0 for both representations. For a
given set of parameters, the distribution is then determined using
the representation which requires least computational effort. The
decision is, thus, based on the number of iterations K , multiplied
by the time it takes for each iteration.

3. Large-time representation

The large-time representation of the subdistribution of first-
passage times (e. g., Ratcliff and Tuerlinckx (2002), Eq. B1; Ratcliff
(1978), Eq. A12) is obtained by integration of the large-timedensity
f ℓ(t) over [0, t]. Equivalently, the integral of f ℓ(t) over [t,∞] is
subtracted from the total probability P of absorption at the lower
barrier

F ℓ(t) = P −
2π

a2
exp

(

−vaw −
v2t

2

)

×
∞
∑

k=1

k sin(πkw)

v2 + (kπ/a)2
exp

[

−
1

2

(

kπ

a

)2

t

]

, (1)

with

P =







1− exp [−2va(1− w)]

exp(2vaw)− exp [−2va(1− w)]
, for v 6= 0,

1− w, for v = 0.

This workaround is necessary because term-wise integration of
the infinite series f ℓ(t) over [0, t] requires uniform convergence of
f ℓ(t) within the range of integration, which can be demonstrated
for positive t only (Appendix A).

When determining F ℓ(t), the series must be truncated at some
K ≥ 1. The number of summands K should be chosen such that
the truncation error

∣

∣F ℓ(t)− F ℓ
K (t)

∣

∣ is below some tolerance ε > 0,
that is,
∣

∣

∣

∣

2π

a2
exp

(

−vaw −
v2t

2

)

×
∞
∑

k=K+1

k sin(πkw)

v2 + (kπ/a)2
exp

[

−
1

2

(

kπ

a

)2

t

]
∣

∣

∣

∣

∣

≤ ε. (2)

To this end, two conditions for K must be satisfied,

K 2 ≥
1

t

( a

π

)2

, and

K 2 ≥ −
2

t

( a

π

)2
{

log

[

επ t

2

(

v2 +
π2

a2

)]

+ vaw +
v2t

2

}

. (3)

A detailed derivation is found inAppendixA. Briefly, the expression
in (2) is simplified by omitting the sine and limiting k at 1 in the
denominator of the fraction behind the

∑

. The exponential series
is then replaced by an integral representing its upper bound and
solved for K . As expected, the number of required terms increases
monotonically with ε and decreases with t—hence the name of (1),
‘‘large-time representation’’. For small t , K tends to infinity (Fig. 2).

4. Small-time representation

The second representation of the cumulative first-passage
time distribution is obtained by integration of the small-time
density (e. g., Horrocks & Thompson, 2004):
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Fig. 2. Convergence of the two representations of the cumulative first-passage time

distribution for v = −0.06, a = 63.2, w = 0.5, and ε = 1.5 × 10−8 which is the

square root of floating point precision with doubles. L1 , L2: Criteria for the large-

time representation (3), with the subscripts denoting the square root of the criteria

given in Appendix A. The required number of iterations is given by the ceiling of

the maximum of L1 and L2 . S1 , S2 , S3 , S4: Criteria for the small-time representation

(5). The subscripts denote the respective expressions of Appendix B. The adjusted

computational effort is again given by the ceiling of the maximum of S1 , S2 , S3 and

S4 , multiplied by 10 to account for the increased computing demands of the small-

time representation.

F s(t) = P − sgn v ·
∞
∑

k=−∞

[

exp(−2vak− 2vaw)

×Φ

(

sgn v
2ak+ aw − vt

√
t

)

− exp(2vak) Φ

(

sgn v
−2ak− aw − vt

√
t

)]

, (4)

with P defined as in (1) andΦ(x) denoting the cumulative standard
normal distribution. As before, the series in (4) describes the
survivor function, that is, the probability for absorption between
t and infinity, such that the result is again subtracted from the
probability P of absorption at the lower barrier. Although this
representation is undefined for t = 0, limt→0 F

s(t) can be shown
to be zero, and the series shows good convergence for small t > 0.
Despite the name, convergence is acceptable for large t; the series
is computationally expensive, however, for drift rates near zero.

We first consider negative drift v < 0 (denoted by an additional
superscript), that is, we are interested in a process with drift
towards the lower barrier. Truncation of F s−(t) at some K ≥ 1
yields a truncation error

∣

∣F s−(t)− F s−
K (t)

∣

∣ which should again be
below ε > 0,
∣

∣

∣

∣

∣

∞
∑

|k|=K+1

[

exp(2vak) Φ

(

2ak+ aw + vt
√
t

)

− exp(−2vak− 2vaw) Φ

(

−2ak− aw + vt
√
t

)]

∣

∣

∣

∣

∣

≤ ε.

As shown in Appendix B, three conditions must be satisfied for K ,

K ≥ w − 1+
1

2va
log

{ε

2
[1− exp(2va)]

}

,

K ≥
0.535

√
2t + vt + aw

2a
, and

K ≥
w

2
−
√
t

2a
Φ−1

[

εa

0.3
√
2π t

exp

(

v2t

2
+ vaw

)]

. (5)

As illustrated in Fig. 2, the first requirement dominates the criteria

over a large range of t . Expression (4) is computationally more

complex than the large-time representation (2). For a fixed K ,

repeated evaluation with different parameters showed F s(t) to be

about ten times slower than F ℓ(t).

For positive drift,

F s+(t) = P −
∞
∑

k=−∞

[

exp(−2vaw − 2vak) Φ

(

2ak+ aw − vt
√
t

)

− exp(2vak) Φ

(

−2ak− aw − vt
√
t

)]

.

As shown in Appendix B, the number of required summands can be

determined using the criteria (5), with v′ = −v instead of v and a

modified tolerance criterion ε′ = ε exp(−2vaw).

In the zero drift case, the series simplifies to

F s0(t) = 2

∞
∑

k=0

[

Φ

(

−2ak− aw
√
t

)

− Φ

(

−2ak− 2a+ aw
√
t

)]

,

and evaluation ofK ≥ w
2
−
√
t

2a
Φ−1

(

ε
2−2w

)

terms guarantees a finite

truncation error below ε.

5. Discussion

The present paper provides finite approximations of the cumu-

lative first-passage times in the two-barrier diffusion model that

controls the approximation error below a pre-specified tolerance.

By comparing the required number of iterations in the two rep-

resentations (2) and (4), and adjusting for the time necessary to

evaluate a single summand of the series, the representation which

requires least computational effort can be chosen. The present ap-

proach is to be preferred over ad hoc methods in which evalu-

ation of the series is stopped when a single term is below the

tolerance: When truncation is based on the absolute value of a

single summand, the truncation error might be larger than ex-

pected because an infinite number of summands is dropped. To

overcome this limitation, current implementations of the method

sometimes evaluate amuch larger number of summands than nec-

essary. Here we propose to control the truncation error of the en-

tire set of truncated summands. Precision is, therefore, controlled

uniformly for all parameter combinations, which yields a smooth

surface for numerical likelihood maximization (e. g., Horrocks &

Thompson, 2004).

In some applications, other parameter estimation procedures

might be more suitable. For example, for the well known diffusion

model (Ratcliff, 1978), an algorithm for calculation of the distri-

bution function has been proposed by Voss and colleagues (Voss,

Rothermund, & Voss, 2004; Voss & Voss, 2007, Eq. A9). The ap-

proach of Voss and colleagues is similar to ours, but they derive an

expression for the required number of steps using the large-time

representation (1) only. In the general case, this threshold is far too

conservative, especially for small error bounds. Alternatively, dis-

crete approximations (e. g., randomwalks) to continuous diffusion

processes offer more complex, yet more flexible implementations

of diffusion processes (Diederich & Busemeyer, 2003).

Applications of the proposed method arise in fitting Ratcliff’s

(1978) diffusion model to observed response times, for example,

from two-alternative choice tasks. Several methods have been

proposed for this purpose, none of which can be said to be

uniformly superior to the other methods (Ratcliff & Tuerlinckx,

2002, pp. 443f). The so-called chi-square fitting method and
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the weighted least squares fitting method make heavy use of

the cumulative first-passage time distribution F(t). In contrast,

likelihood maximization primarily uses the density f (t) of the

absorption times. In the latter approach, the distribution F(t) is still

needed in the presence of censored observations. Censoring occurs,

for example, when the observer is unable to decide between

two alternatives within a reasonable amount of time, or when

responses are registered during a short time window in fixed

stimulation protocols (e. g., in fMRI experiments). Then, absorption

might be known to have occurred at the upper barrier, but it

is only known to have occurred later than some t (‘‘misses’’).

A diffusion model with a deadline parameter could account for

this, making use of the distribution F(t), because the likelihood

contribution then corresponds to the upper subsurvivor function

at t . If absorption is only known to have occurred later than

some t , and the outcome is unknown because no response has

been given, the likelihood contribution corresponds to the sum

of the upper and the lower subsurvivor function at t . The present

method, thus, complements Navarro and Fuss’ (2009) work on the

density representation and will allow for the efficient parameter

adjustment of diffusion models of competing risks even in the

presence of censored observations.

Appendix A. Integral and convergence of the large-time repre-

sentation

By collapsing the two exponentials, the density f ℓ(t) is restated

as a series of exponentials of t ,

f ℓ(t) =
π

a2
exp(−vaw)

×
∞
∑

k=1

k sin(πkw) exp

{

−
1

2

[

v2 +
(

kπ

a

)2
]

t

}

.

Summand-wise integration of f ℓ(t) over the interval [τ ,∞], τ > 0

requires uniform convergence of f ℓ(t) within that interval. This

can be shown, for example, by the so-called majorant criterion

(WeierstrassM-test). To this end, we define an upper boundMτ for

f ℓ(t) with a small τ > 0, and drop the sine. Because sin x cannot

exceed 1 and exp(−ct), c > 0, monotonically decreases in t ,

∣

∣f ℓ(t)
∣

∣ ≤ Mτ =
π

a2
exp(−vaw)

×
∞
∑

k=1

k exp

{

−
1

2

[

v2 +
(

kπ

a

)2
]

τ

}

, for t ≥ τ .

The series f ℓ(t) then converges if Mτ converges. Convergence of

Mτ can be shown by the integral test because Mτ is positive-

valued and strictly monotonically decreasing in k. As the integral
∫∞
1

k exp

[

− τ
2

(

π
a

)2
k2

]

dk exists and is finite, Mτ converges, such

that f ℓ(t) is uniformly convergent within [τ ,∞]. Because all

summands are exponentials of t , the antiderivative of f ℓ(t), t ≥ 0,

is easily found:

∫ t

τ

f ℓ(s) ds = −
2π

a2
exp(−vaw)

×
∞
∑

k=1

k sin(πkw)

v2 +
(

kπ
a

)2
exp

{

−
1

2

[

v2 +
(

kπ

a

)2
]

t

}
∣

∣

∣

∣

∣

t

τ

.

The distribution function F ℓ(t) is then obtained by subtracting

the integral of f ℓ(t) for [τ ,∞] from the total proportion P of

absorptions at the upper barrier,

F ℓ(t) = P −
2π

a2
exp

(

−vaw −
v2t

2

)

×
∞
∑

k=1

k sin(πkw)

v2 +
(

kπ
a

)2
exp

[

−
1

2

(

kπ

a

)2

t

]

. (A.1)

What happens if the series in (A.1) is truncated after evaluations
of K terms? In order to guarantee that the approximation error is
below a certain tolerance ε > 0, the absolute difference between
the full series F ℓ(t) and the truncated series F ℓ

K (t) must be kept
below the tolerance,

∣

∣F ℓ(t)− F ℓ
K (t)

∣

∣ =

∣

∣

∣

∣

∣

2π

a2
exp

(

−vaw −
v2t

2

)

×
∞
∑

k=K+1

k sin(πkw)

v2 +
(

kπ
a

)2
exp

[

−
1

2

(

kπ

a

)2

t

]
∣

∣

∣

∣

∣

≤ ε.

To determine the conditions for K some estimations have to be
carried out. A first upper bound for

∣

∣F ℓ(t)− F ℓ
K (t)

∣

∣ is obtained by
noting that 0 ≤ |sin x| ≤ 1 and by setting k = 1 in the denomina-
tor as a lower bound for the fraction before the exponential. Thus,
∣

∣F ℓ(t)− F ℓ
K (t)

∣

∣ ≤ ε if

2π

a2
exp

(

−vaw −
v2t

2

)

×
∞
∑

k=K+1

k

v2 +
(

1·π
a

)2
exp

[

−
1

2

(

kπ

a

)2

t

]

≤ ε.

The factor before the sum is positive. Truncation of the series
should, thus, be limited to those K for which the elements decrease

in k. The first derivative of the function h(k) = k exp

[

− 1
2

(

kπ
a

)2
t

]

must, therefore, be negative, which is guaranteed if K 2 is greater
than

L1 =
1

t

( a

π

)2

. (A.2)

Since the elements decrease, an upper bound for the error series
∑∞

k=K+1 h(k) is given by the integral of h(k) within K and infinity,
so that

∣

∣F ℓ(t)− F ℓ
K (t)

∣

∣ ≤
2π

a2
exp

(

−vaw −
v2t

2

)

×
1

v2 + (π/a)2

∫ ∞

K

h(k) dk,

which is below ε if K 2 ≥ L2 with

L2 = −
2

t

( a

π

)2
{

log

[

επ t

2

(

v2 +
π2

a2

)]

+ vaw +
v2t

2

}

. (A.3)

For large t , the condition silently holds. In the other cases, K is set
to the ceiling of max

(√
L1,
√
L2

)

.
In the zero drift case v = 0, Expression (A.1) simplifies to

F ℓ0(t) = P −
2

π

∞
∑

k=1

sin(πkw)

k
exp

[

−
1

2

(

kπ

a

)2

t

]

.

The truncation error is controlled if the series is evaluated until K 2

is above L01 = L1 and

L02 = −
2

t

( a

π

)2

log

(

επ3t

2a2

)

.
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Appendix B. Convergence of the small-time representation

We first consider negative drift (v < 0), denoted by an addi-

tional superscript. The truncation error of the small-time version

of the subdistribution is most easily controlled by decomposing

F s−(t) (which is known to be finite) into three distinct series:

F s−(t) = P −
∞
∑

k=0

[

exp(2vak) Φ

(

2ak+ aw + vt
√
t

)

− exp(−2vak− 2vaw) Φ

(

−2ak− aw + vt
√
t

)]

−
∞
∑

k=1

exp(−2vak) Φ

(

−2ak+ aw + vt
√
t

)

+
∞
∑

k=1

exp(2vak− 2vaw) Φ

(

2ak− aw + vt
√
t

)

. (B.1)

All series are positive, the truncation error of the sum is, thus, guar-

anteed to be below the error tolerance ε if the approximation error

of each summand is controlled at ε/2.

Denoting the inverse Gaussian distribution by W (t | c, µ) =
Φ

(

µt−c√
t

)

+ exp(2cµ) Φ

(

−µt−c√
t

)

, the first series in Expression

(B.1) can be rewritten as
∑∞

k=0 exp(2vak)[1 − W (t | 2ak +
aw,−v)]. Again, we truncate after K summands have been

evaluated. Because W (t) is bounded between 0 and 1, and v is

negative, exp(2vak) is recognized as a decreasing geometric series:

∞
∑

k=K+1

exp(2vak) [1−W (t | 2ak+ aw,−v)]

≤
∞
∑

k=K+1

exp(2vak) =
exp[2va(K + 1)]
1− exp(2va)

.

The result is below the tolerance ε/2 for K greater than

S1 = −1+
1

2va
log

{ε

2
[1− exp(2va)]

}

,

independent of t . Similarly, the last series in (B.1) has converged

for K above

S2 = w + S1,

which, of course, includes S1.

In the second series in (B.1), large exponentials are multiplied

with tiny Φ(−x), such that the product is finite. An upper bound

for Φ(−x) is given by Ermolova and Haggman (2004),

Φ(−x) =
1

2
erfc

(

x
√
2

)

≤ 0.3 exp

(

−1.01
x2

2

)

≤ 0.3 exp

(

−
x2

2

)

.

The Ermolowa–Haggman bound requires the argument of erfc(·)
to be greater than 0.535, which is satisfied if K is greater than

S3 =
0.535

√
2t + vt + aw

2a
.

Application of the bound to the second series in (B.1) yields

exponentials decreasing in k, for which an upper bound is given

by their integral. This integral is then recognized as a normal

distribution:

∞
∑

k=K+1

exp(−2vak) Φ

(

−2ak+ aw + vt
√
t

)

≤ 0.3 exp

(

−vaw −
v2t

2

) ∞
∑

k=K+1

exp

[

−
(2ak− aw)2

2t

]

≤ 0.3 exp

(

−vaw −
v2t

2

)∫ ∞

K

exp

[

−
(2ak− aw)2

2t

]

dk

=
0.3

2a

√
2π t exp

(

−vaw −
v2t

2

)

Φ

(

aw − 2aK
√
t

)

.

The result is below ε/2 if

Φ

(

aw − 2aK
√
t

)

≤
εa

0.3
√
2π t

exp

(

v2t

2
+ vaw

)

.

If the right hand side is larger than one, the condition silently
holds. In the other cases, standard approximations for the quantile
function of the normal distribution can be used to solve forK which
must be greater than

S4 =
w

2
−
√
t

2a
Φ−1

[

εa

0.3
√
2π t

exp

(

v2t

2
+ vaw

)]

.

For positive drift v > 0,

F s+(t) = P −
∞
∑

k=−∞

[

exp(−2vak− 2vaw)

×Φ

(

2ak+ aw − vt
√
t

)

− exp(2vak) Φ

(

−2ak− aw − vt
√
t

)]

,

with truncation error

∣

∣F s+(t)− F s+
K (t)

∣

∣ =
∞
∑

k=K+1

[

exp(−2vak− 2vaw)

×Φ

(

2ak+ aw − vt
√
t

)

− exp(2vak) Φ

(

−2ak− aw − vt
√
t

)]

.

The truncation error for positive drift, thus, corresponds to
exp(2vaw) times the error for negative drift, exp(2vaw)|F s+(t | v,
a, w)−F s+

K (t | v, a, w)| = |F s−(t | −v, a, w)−F s−
K (t | −v, a, w)|.

The required number of iterations for v > 0 can, therefore, be
determined using the expressions for v′ = −v with a stricter
criterion ε′ = ε exp(−2vaw).

In the special case of zero drift, the series reduces to

F s0(t) = 2

∞
∑

k=0

{

Φ

[

−2ak− a+ a(1− w)
√
t

]

−Φ

[

−2ak− a− a(1− w)
√
t

]}

.

The expression can be illustrated as series of bands of width
2(1− w) along the negative tail of a normal distribution (e. g., Fig
2.2 in Horrocks, 1999) with mean zero and variance t/a2,

F s0(t) = 2

∞
∑

k=0

∫ −2k−1+(1−w)

−2k−1−(1−w)

ϕ

(

x | 0,
t

a2

)

dx,

such that the truncation error
∣

∣F s0(t)− F s0
K (t)

∣

∣ is below 2(1−w)×
Φ(−2K + w | 0, t/a2). The latter expression fulfills the tolerance

criterion ε if K ≥ w
2
−

√
t

2a
· Φ−1

(

ε
2−2w

)

.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jmp.2012.09.002.
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