Facile synthesis of o-Nitrobenzyl carbamate and 1-(2-Nitrophenylethyl) carbamate Protected ,w-Diamines
Rasmussen, Brian; Christensen, Jørn Bolstad

Published in:
Open Organic Chemistry Journal

DOI:
10.2174/1874095220130529001

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Facile Synthesis of o-Nitrobenzylcarbamate and 1-(2-Nitrophenyl ethyl) Carbamate Protected α,ω-Diamines

Brian Rasmussen and Jørn B. Christensen*

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Abstract: A series of mono protected α,ω-diamines protected with photocleavable car bamates has been synthesized by reaction between the corresponding α,ω-diamines and either o-nitrobenzyl or 1-(2-nitrophenyl)ethyl phenyl carbonate.

Keywords: Photocleavable protective groups, 2-nitrobenzylcarbamates, α,ω-diamines, mono protected diamines, o-nitrobenzyl phenyl carbonate, 1-(2-nitrophenyl)ethyl phenyl carbonate.

INTRODUCTION

Monoprotected α,ω-diamines are a versatile class of compounds, that can be used for synthesis of polyamines [1,2] or in the synthesis of dendrimers [3-5]. We have previously developed a general methodology for the synthesis of mono protected α,ω-diamines protected with Boc-, Alloc- or Z-groups [6] by reaction with alkyl phenyl carbonates enabling the use of stoichiometric amounts of reagents and a simple work-up based on extractions [7-9], and the present paper expands this methodology and describes the synthesis of o-Nitrobenzyl- and 1-(2-Nitrophenyl)ethyl carbamate protected α,ω-diamines. The o-nitrobenzyl- and 1-(2-Nitrophenyl)ethyl carbamates are examples of protective groups, which can be cleaved photolytically [10, 11] (Fig. 1) and are as such orthogonal to Boc- and Alloc-groups.

RESULTS

The carbamate protected α,ω-diamines were prepared by reaction of o-nitrobenzyl phenyl carbonate or 1-(2-nitrophenyl)ethyl phenyl carbonate with the appropriate diamine in Ethanol at room temperature as shown in Scheme (1) giving the monoprotected diamines shown in Table 1 in good yields. Various amounts of the bisprotected diamines were also formed, but these side products precipitated during the reaction and were easily removed by filtration. The nitrobenzyl carbamates synthesized remain stable due to light under normal laboratory conditions, so no special measures were needed. The 2-nitrophenethyl carbamates (2a - 2d) all contained small amounts of CH2Cl2, which was impossible to remove completely even after extensive drying, but they were entirely pure by NMR otherwise.

Scheme (1). The synthesis of the monoprotected α,ω-diamines.

The required arylmethyl phenyl carbonates were synthesized as shown in Scheme 2 from the corresponding alcohols. 1-(2-Nitrophenyl)ethanol was synthesized in three steps from o-Nitrobenzoic acid via o-Nitroacetophenone[12] according to the published procedure [13].

Scheme (2). The synthesis of the nitrobenzyl carbonates 3a and 3b.

CONCLUSION

We have developed a simple procedure for the monoprotec- tion of α,ω-diamines with photocleavable nitrobenzyl carbamates that is easy to use and proceeds in good yields.
EXPERIMENTAL

Unless otherwise stated, all starting materials were obtained from commercial suppliers and used as received. Solvents were HPLC grade and used as received. Thin-layer chromatography was carried out using aluminum sheets pre-coated with silica gel 60F(Merk 5554). The plates were inspected under UV light and, if required, signals were induced by treatment with a 1 % solution of ninhydrin in EtOH. 1H-NMR and 13C-NMR spectra were recorded on a Varian (300/75 MHz) instrumentor or a Bruker 500/125 MHz apparatus. Chemical shifts are reported in ppm down-

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td></td>
<td>58 %</td>
</tr>
<tr>
<td>1b</td>
<td></td>
<td>64 %</td>
</tr>
<tr>
<td>1c</td>
<td></td>
<td>72 %</td>
</tr>
<tr>
<td>1d</td>
<td></td>
<td>65 %</td>
</tr>
<tr>
<td>1e</td>
<td></td>
<td>53 %</td>
</tr>
<tr>
<td>2a</td>
<td></td>
<td>55 %</td>
</tr>
<tr>
<td>2b</td>
<td></td>
<td>84 %</td>
</tr>
<tr>
<td>2c</td>
<td></td>
<td>64 %</td>
</tr>
<tr>
<td>2d</td>
<td></td>
<td>50 %</td>
</tr>
</tbody>
</table>
field of TMS using the resonance of residual solvent as internal standard and all coupling constants are reported in Hertz. Fast Atom Bombardment (FAB) spectra were obtained on a Jeol JMS-HX 110 Tandem Mass Spectrometer in the positive ion mode using 3-nitrobenzyl alcohol as the matrix. Elemental analyses were performed at the Microanalytical Laboratory at the Department of Chemistry, University of Copenhagen.

Melting points were measured on a Büchi melting point apparatus and are uncorrected.

GENERAL PROCEDURE FOR MONO PROTECTION OF DIAMINES

The diamine was dissolved in abs EtOH and cooled to 0 °C before a solution of an equimolar amount of the alkyl phenyl carbonate in abs EtOH was added dropwise. The mixture was stirred at room temperature overnight. Any precipitate was removed by filtration and the filtrate was concentrated in vacuo. Water was added, and the solution was acidified with 2 M HCl and extracted with CH₂Cl₂. The aqueous solution was made alkaline with conc. NaOH (10 M) and extracted with CH₂Cl₂. The organic phases were dried (Na₂SO₄), filtered and concentrated in vacuo to give the monoprotected diamines 1a - 1e&2a - 2e.

2-Nitrobenzyl (2-aminooctyl)carbamate (1a).

Yield: 58 %. Pale yellow solid. Mp. 73–74 °C. ¹H-NMR (300 MHz, CDCl₃): 8.15 – 8.01 (m, 1H), 7.67 – 7.56 (m, 2H), 7.50 – 7.42 (m, 1H), 5.50 (s, 2H), 5.38 (br s, 1H), 3.25 (q, J=5.9, 2.84 (t, J=5.9, 2H), 1.58 (s, 2H), 1.17 (s, 2H). ¹³C-NMR (75 MHz, CDCl₃): 156.31, 147.66, 133.89, 133.42, 129.05, 128.74, 125.12, 63.42, 44.00, 41.80. MS (FAB+) m/z: 240.07 [M+H]⁺. Elemental analysis (%) calculated for C₁₂H₁₇N₃O₄: C 53.92; H 6.41; N 15.72; Found: C 53.71; H 6.38; N 15.67.

2-Nitrobenzyl (5-aminopentyl)carbamate (1d).

Yield: 65 %. Yellow solid. Mp. 57–59 °C. ¹H-NMR (500 MHz, CDCl₃): 8.01 (d, J=8.2, 1H), 7.60 – 7.48 (2H), 7.40 (t, J=7.6, 1H), 5.43 (s, 2H), 4.91 (br s, 1H), 3.14 (q, J=7.0, 2H), 2.63 (t, J=7.0, 2H), 1.55 – 1.24 (m, 8H). ¹³C-NMR (125 MHz, CDCl₃): 155.82, 147.52, 133.64, 133.28, 128.87, 128.53, 124.93, 63.18, 42.00, 41.09, 33.25, 29.77, 23.98. MS (FAB+) m/z:282.23 [M+H]⁺.

Elemental analysis (%) calculated for C₁₃H₁₉N₃O₄: C 55.50; H 6.81; N 14.94; Found: C 54.98; H 7.02; N 15.00.

2-Nitrobenzyl (6-aminohexyl)carbamate (1e).

Yield: 53 %. Pale yellow solid. Mp. 83–86 °C. ¹H-NMR (500 MHz, CDCl₃): 8.01 (d, J=8.1, 1H), 7.64 – 7.48 (2H), 7.40 (t, J=7.5, 1H), 5.43 (s, 2H), 4.92 (br s, 1H), 3.13 (q, J=7.0, 2H), 2.61 (t, J=7.0, 2H), 1.49 – 1.42 (m, 2H), 1.41 – 1.34 (m, 2H), 1.33 – 1.24 (m, 6H). ¹³C-NMR (125 MHz, CDCl₃): 155.82, 147.51, 133.64, 133.28, 128.87, 128.53, 124.93, 63.16, 42.07, 41.08, 33.59, 29.88, 28.65, 26.48. MS (FAB+) m/z: 296.19 [M+H]⁺. Elemental analysis (%) calculated for C₁₄H₂₁N₅O₄: C 56.94; H 7.17; N 14.23; Found: C 56.82; H 7.59; N 14.47.

1-(2-Nitrophenylethyl) (2-aminooctyl)carbamate (2a).

Yield: 55 %. Yellow oil. ¹H-NMR (500 MHz, CDCl₃): 7.65 (t, J=8.0, 1H), 7.59 – 7.50 (m, 2H), 7.39 – 7.30 (m, 1H), 6.17 (q, J=6.5, 1H), 5.17 (br s, 1H), 3.17 – 3.04 (m, 2H), 2.72 (t, J=5.8, 2H), 1.55 (d, J=6.5, 3H), 1.35 (s, 2H). ¹³C-NMR (125 MHz, CDCl₃): 155.58, 147.68, 138.70, 133.44, 128.16, 127.12, 124.38, 68.58, 43.51, 41.56, 22.24. MS(FAB+) m/z: 254.15 [M+H]⁺. Elemental analysis (%) calculated for C₁₃H₁₅N₅O₄: C 52.17; H 5.97; N 16.59; Found: C 51.63; H 5.85; N 16.04.

1-(2-Nitrophenylethyl) (3-aminopropyl)carbamate (2b).

Yield: 84 %. Yellow oil. ¹H-NMR (500 MHz, CDCl₃): 7.65 (d, J=8.0, 1H), 7.60 – 7.50 (m, 2H), 7.36 – 7.32 (m, 1H), 6.16 (q, J=6.4, 1H), 5.34 (br s, 1H), 3.22 – 3.10 (m, 2H), 2.69 (t, J=6.4, 2H), 1.62 – 1.50 (m, 5H), 1.43 (s, 2H). ¹³C-NMR (125 MHz, CDCl₃): 155.45, 147.67, 138.83, 133.42, 128.12, 127.07, 124.40, 68.49, 39.83, 39.26, 32.70, 22.24. MS(FAB+) m/z: 268.20 [M+H]⁺. Elemental analysis (%) calculated for C₁₄H₁₇N₅O₄: C 53.92, H 6.41; N 15.72; Found: C 52.63; H 6.28; N 14.98.

1-(2-Nitrophenylethyl) (4-aminobutyl)carbamate (2c).

Yield: 64 %. Yellow oil. ¹H-NMR (500 MHz, CDCl₃): 7.92 (d, J=8.1, 1H), 7.53 – 7.65 (m, 2H), 7.44 (t, J=7.5, 1H), 5.36 – 5.58 (m, 3H), 3.19 (q, J=6.4, 2H), 2.67 (t, J=6.8, 2H), 1.61 (d, J=6.4, 3H), 1.56 – 1.48 (m, 2H), 1.48 – 1.40 (m, 2H), 1.17 (s, 2H). ¹³C-NMR (125 MHz, CDCl₃): 155.34, 147.67, 138.81, 133.40, 128.12, 127.06, 124.39, 68.47, 41.75, 40.85, 30.76, 27.38, 22.25. MS (FAB+) m/z: 260.20 [M+H]⁺. Elemental analysis (%) calculated for C₁₅H₂₁N₅O₄: C 55.50; H 6.81; N 14.94; Found: C 54.02; H6.92; N 14.57.
1-(2-Nitrophenyl)ethyl (5-aminopentyl)carbamate (2d)

Yield: 50%. Yellow oil. 1H-NMR (500 MHz, CDCl$_3$): 7.85 (d, J=8.1, 1H), 7.54 (d, J=3.7, 2H), 7.40 – 7.29 (m, 1H), 6.16 (q, J=6.5, 1H), 4.77 (s, 1H), 3.16 – 3.00 (m, 2H), 2.60 (t, J=6.92H), 1.54 (d, J=6.5, 3H), 1.50 – 1.18 (m, 8H). 13C-NMR (125 MHz, CDCl$_3$): 155.31, 147.68, 138.79, 133.39, 128.13, 127.05, 124.40, 68.51, 42.01, 40.90, 33.26, 29.78, 23.96, 22.24. MS (FAB+) m/z: [M+H]+. Elemental analysis (% calculated for C$_{14}$H$_{11}$NO$_5$: C 61.54; H 4.06; N 5.13; Found: C 61.75; H 4.47; N 4.81.

CONFLICT OF INTERESTS

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENT

We would like to thank University of Copenhagen for a PhD-scholarship for Brian Rasmussen.

REFERENCES