Effects of stimulus energy on the attentional blink
Lunau, Rasmus; Bundesen, Claus

Publication date: 2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Effects of stimulus energy on the attentional blink
Rasmus Lunau & Claus Bundesen
Center for Visual Cognition, University of Copenhagen, Copenhagen, Denmark

Background
- The attentional blink effect is commonly attributed to high level visual processes.
- Newer evidence suggests that low level processes contribute to the blink.\(^1,2\)

Background equation:
- \(\text{Stimulus energy} = |\text{contrast} \times \text{exposure duration}| \)

- How does changes in stimulus energy of all elements in the RSVP affect the AB?

Question: Does stimulus energy modulate the blink?

Experiment 1
Task: Standard attentional blink task.
Stimuli: Digit-targets amongst letter-distractors in high contrast RSVP.
Timing: SOA of 100 ms in all trials.

Two conditions
1. **No ISI condition:** Exposure duration is 100 ms.
2. **ISI condition:** Exposure duration is 30 ms and ISI is 70 ms.

Experiment 2
Task: Standard attentional blink task.
Stimuli: Digit-targets amongst letter-distractors in RSVP.
Timing: Exposure duration and SOA is 100 ms in all trials.

Two conditions
1. **High contrast condition:** Black on white (\(C_\text{w} = 0.99\)).
2. **Low contrast condition:** Dark grey on light grey (\(C_\text{w} = 0.27\)).

Results

1. Blink magnitude increases with decreased exposure duration.
2. Blink magnitude increases with decreased contrast.

\(\therefore \) Blink magnitude increases with decreased stimulus energy.

Analysis
- Blink magnitude (\(AB_{\text{mag}}\)) was calculated by dividing the area above mean p(T2|T1) with the maximum possible blink area.
- Repeated measures ANOVAs of arcsin(p(T2|T1)) revealed a significant main effect of lag in both experiments (\(p < 0.001\)).
- Main effects of condition were also significant in both experiments:
 - Experiment 1 (ISI): \(p = 0.029\)
 - Experiment 2 (Contrast): \(p = 0.038\)

Conclusion
1. Blink magnitude increases with decreased exposure duration.
2. Blink magnitude increases with decreased contrast.
3. Blink magnitude increases with decreased stimulus energy.

Answer: Stimulus energy modulates the blink.

References