Spatial and Temporal Ray Differentials
Sporring, Jon; Schjøth, Lars; Erleben, Kenny

Publication date:
2009

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Spatial and Temporal Ray Differentials

Jon Sporring
Lars Schjøth
Kenny Erleben

2nd edition

December 13, 2012
Spatial and Temporal Ray Differentials

Jon Sporring, Lars Schjøth, and Kenny Erleben
eScience Center, Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen, Denmark
Contact email: sporring@diku.dk

December 13, 2012

Abstract

We consider ray bundles emanating from a source such as a camera or light source. We derive the complete spatial and temporal structure to first order of the intersection of ray bundles with scene geometry where scene geometry is given as any implicit function. Further, we present the complete details of two often used geometrical representations. The first order structure may be used as the linear approximation of the change of photon shape as the camera, objects, and light source change as function of space and time. Our work generalizes previous work on ray differentials [Igehy, 1999] and photon differentials [Schjøth et al., 2007].

1 Ray differential

In this work we consider reflection and refraction of light rays off and through surfaces as illustrated in Figure 1. We will derive the spatial-temporal first order structure of these processes without any simplifying assumptions. Consider two points in 3-space, \(P, x \in \mathbb{R}^3 \). We define the line \(Q(s) \) parametrized by \(s \in \mathbb{R} \) passing through \(x \) and \(V \) as,

\[
Q = P + sV
\]

where

\[
V = \frac{v}{\|v\|_2}, \tag{2a}
\]

\[
v = x - P. \tag{2b}
\]

The line is henceforth called the ray, and we use column vectors, such that \(\|v\|_2 = \sqrt{v^Tv} \). This work extends [Igehy, 1999, Schjøth et al., 2007]: We develop the complete first order structure of \(Q \) in terms of its intersection with scene geometry and the following directions of reflection and refraction.

We use the notation of differential matrix calculus [Magnus and Neudecker, 1988]. Differentials are rooted in Taylor series, i.e., consider an analytical function \(f : \mathbb{R} \to \mathbb{R} \), and write its Taylor series as, \(f(y + \Delta y) = f(y) + f'(y) \Delta y + O(\Delta y^2) \), where \(O \) is the remainder in Landau notation, and \(f' \) is the first order derivative of \(f \). We define the differential of \(f \) as the limit, \(f(y + \Delta y) - f(y) \to df \) as \(\Delta y \to dy \), and write

\[
df = f'(y) dy. \tag{3}
\]

The extension to vector and matrix equations is straightforward, since their Taylor series are element-wise Taylor series. We use the same notation and note that derivative are now Jacobian matrix, e.g., for vector equations such as \(V \in \mathbb{R}^n \to \mathbb{R}^m \) and \(x \in \mathbb{R}^n \), the Jacobian of \(V \) w.r.t. the variable \(x \) is the matrix \(\frac{\partial V}{\partial x} \) who’s \(ij \)'th entry is the partial derivative \(\frac{\partial V_{ij}}{\partial x} \). Hence, the \(j \)'th column is the change vector of \(V \) when only considering the coordinate direction \(x_j \). The Jacobian w.r.t. the complete space of parameters is often just written as \(\frac{\partial V}{\partial x} \) for convenience. The differential embodies the complete first order structure of a function, and a first order estimate of the change of, e.g., \(\Delta Q \) is obtained by replacing the infinitesimals with finite values, i.e., \(dx \) with \(\Delta x \) in the expression of the differential of \(dQ \).
The differentials are useful, since by the usual rules of differentiation, such as the chain rule and the derivative of inverse functions, they allow for a step-by-step derivation of the Jacobian of a function w.r.t. its parameters much like the peels of an onion. As an example, consider \(V \), which is a composition of functions \(v, x, \) and \(P \). To find the Jacobian of \(V(v(x, P)) \) we first find the Jacobian of \(V(v) \) by evaluating the differential of (2a) to \(dv \) as follows.

\[
dV = \frac{(dv) (v^T v)^{1/2} - v (v^T v)^{-1/2} v^T dv}{v^T v}
\]

\[
dV = \frac{v^T v I_3 - vv^T}{(v^T v)^{3/2}} \ dv
\]

where \(I_3 \) is the \(3 \times 3 \) identity matrix. Thus, if \(v \) is the free parameter, then the above expression is the final form of the Jacobian. However, as in our case, when \(v \) is a function of other variables, we repeat the exercise until we have an expression solely in terms of the differentials of the free parameters. I.e., the Jacobian of \(v \) w.r.t. parameters \(x \) and \(P \) is found to be,

\[
dv = (dx - dP),
\]

and hence, we conclude that the Jacobian of \(V \) w.r.t. parameters \(x \) and \(P \) is

\[
dV = \frac{v^T v I_3 - vv^T}{(v^T v)^{3/2}} \ (dx - dP),
\]

where it is to be understood that all variables that are not differentials, are evaluated at the particular point of interest as terms in Taylor series usually are. This is the complete first order structure of \(V \) in terms of \(x \) and \(P \), and we identify the Jacobians as

\[
\frac{\partial V}{\partial x} = \frac{v^T v I_3 - vv^T}{(v^T v)^{3/2}}, \quad \frac{\partial V}{\partial P} = -\frac{\partial V}{\partial x}.
\]

By replacing \(dx \) and \(dP \) with finite steps \(\Delta x \) and \(\Delta P \) we may evaluate the linear approximation to the changes of \(V \). Geometrically speaking, this approximation is a point in the tangent space at \(V \) w.r.t. \(x \) and \(P \) and parametrized by \(\frac{\partial V}{\partial x} \Delta x \) and \(\frac{\partial V}{\partial P} \Delta P \) where \(\Delta x \) and \(\Delta P \) are the free vector parameters of the approximation. Finally, note that if
one parameter is constant, then its differential is evaluated to be zero, e.g., consider that \(P = \text{const.} \), in which case \(dP = 0 \), and the differential of \(V \) reduces to \(dV = \frac{\partial V}{\partial x} dx \).

Often, \(x \) is restricted to be a point on a 2-dimensional surface such as an image plane or a sphere, and as a consequence we must further evaluate the Jacobian of the parametrization of \(x \). E.g., a plane may be parametrized as, \(x = x_1 e_1 + x_2 e_2 \) for some constant and orthogonal coordinate axes \(e_1 \) and \(e_2 \), and we evaluate \(dx = [e_1 \ e_2] [dx_1 \ dx_2]^T \) and \(\frac{\partial V}{\partial [x_1 \ x_2]^T} = \frac{\partial V}{\partial x} [e_1 \ e_2] \). Likewise, when \(x \) is restricted to the surface of a unite sphere, centered at \(P \), then we may use the spherical parametrization,

\[
\begin{align*}
x &= \begin{bmatrix} \cos \phi(t) \sin \theta(t) \\ \sin \phi(t) \sin \theta(t) \\ \cos \theta(t) \end{bmatrix}^T, \\
P &= [P_1(t) \ P_2(t) \ P_3(t)]^T,
\end{align*}
\]

such that

\[
\begin{align*}
dx &= \begin{bmatrix} -\sin \phi \sin \theta & \cos \phi \cos \theta & \frac{\partial x_1}{\partial \phi} \\ \cos \phi \sin \theta & \sin \phi \cos \theta & \frac{\partial x_2}{\partial \phi} \\ 0 & -\sin \theta & \frac{\partial x_3}{\partial \phi} \end{bmatrix} \begin{bmatrix} d\phi \\ d\theta \\ dt \end{bmatrix}, \\
dP &= \left[\frac{\partial P_1}{\partial \phi} \ \frac{\partial P_2}{\partial \phi} \ \frac{\partial P_3}{\partial \phi} \right]^T dt,
\end{align*}
\]

where \(\frac{\partial x}{\partial \phi} \) and \(\frac{\partial P}{\partial \phi} \) are the linear part of the time dependence of \(x \) and \(P \). Hence, the differential of \(V \) w.r.t. the \(\theta, \phi, \) and \(t \) parameters is,

\[
\begin{align*}
dV &= \frac{v^T v I_3 - vv^T}{(v^T v)^{3/2}} \left(\begin{bmatrix} -\sin \phi \sin \theta & \cos \phi \cos \theta & \frac{\partial x_1}{\partial \phi} \\ \cos \phi \sin \theta & \sin \phi \cos \theta & \frac{\partial x_2}{\partial \phi} \\ 0 & -\sin \theta & \frac{\partial x_3}{\partial \phi} \end{bmatrix} \begin{bmatrix} d\phi \\ d\theta \\ dt \end{bmatrix} - \begin{bmatrix} \frac{\partial P_1}{\partial \phi} \\ \frac{\partial P_2}{\partial \phi} \\ \frac{\partial P_3}{\partial \phi} \end{bmatrix} \right) dt, \\
\end{align*}
\]

Hence, we identify the Jacobian,

\[
\frac{\partial V}{\partial [\phi, \theta, t]^T} = \frac{v^T v I_3 - vv^T}{(v^T v)^{3/2}} \begin{bmatrix} -\sin \phi \sin \theta & \cos \phi \cos \theta & \frac{\partial x_1}{\partial \phi} - \frac{\partial P_1}{\partial \phi} \\ \cos \phi \sin \theta & \sin \phi \cos \theta & \frac{\partial x_2}{\partial \phi} - \frac{\partial P_2}{\partial \phi} \\ 0 & -\sin \theta & \frac{\partial x_3}{\partial \phi} - \frac{\partial P_3}{\partial \phi} \end{bmatrix},
\]

which is evaluated at a specific value of the parameters \(\theta_0, \phi_0, \) and \(t_0 \). For static scenes, all terms involving \(dt \) is zero, i.e., the right most column of the Jacobian is zero.

The above illustrates the advantage of matrix differential algebra: When the parametrization of \(v \) is changed, then \(dv \) changes, but \(\frac{\partial V}{\partial v} \) remains the same, all of which matrix differential algebra allows us to express in terms of matrices.

2 Transfer, Reflection, and Refraction

In the following we will investigate light’s interaction with dielectric material, i.e., reflection and refraction. We consider a ray from a source at point \(P \) with direction \(V \), which intersects a surface at position \(Q \) and is reflected and refracted in directions \(W_{\text{reflect}} \) and \(W_{\text{refract}} \) respectively. To avoid discussion on any particular parametrization of \(V \), we will in the following evaluate expressions no further than \(dV \). The normal at \(Q \) will be denoted \(N \), and the ratio of refraction at \(Q \) will be denoted \(\eta \). Our main goal will be to calculate the differentials, \(dQ \), \(dW_{\text{reflect}} \), and \(dW_{\text{refract}} \) as a function of relevant parametrizations, e.g.,

\[
\begin{align*}
dQ &= \frac{\partial Q}{\partial V} dV + \frac{\partial Q}{\partial P} dP + \frac{\partial Q}{\partial N} dN, \\
dW_{\text{reflect}} &= \frac{\partial W_{\text{reflect}}}{\partial V} dV + \frac{\partial W_{\text{reflect}}}{\partial N} dN, \\
dW_{\text{refract}} &= \frac{\partial W_{\text{refract}}}{\partial V} dV + \frac{\partial W_{\text{refract}}}{\partial N} dN + \frac{\partial W_{\text{refract}}}{\partial \eta} d\eta.
\end{align*}
\]
and subsequently identify the respective Jacobians.

Following [Igehy, 1999] we sketch an iterative process, where in each iteration: 1) The ray is transferred to the point of intersecting geometry, \(Q \), 2) the directions of reflection and refraction, \(W_{\text{reflect}} \) and \(W_{\text{refract}} \), are calculated simultaneously. The pairs \((Q, W_{\text{reflect}})\) and \((Q, W_{\text{refract}})\) are used as two new source points and directions for following iterations.

2.1 Transfer

The transfer of a ray onto a surface at distance \(s \) is,

\[
Q = P + sV.
\]

(13)

We will assume that the smooth surface \(Q \in \Omega \) embedded in \(\mathbb{R}^3 \) is given implicitly as the zero level-set of a scalar function of \(M \) parameters, \(F : \mathbb{R}^M \times \mathbb{R}^3 \rightarrow \mathbb{R} \), as \(0 = F_\alpha(Q) \), where \(\alpha \in \mathbb{R}^M \) is a vector of parameters that specify the shape of \(F \), and we will assume that there exists a method for solving for the smallest \(s^* > 0 \), such that \(0 = F_\alpha(P + s^*V) \). Finally, we require that the surface unit normal, \(N \), exists at \(Q \).

The differential is found to be

\[
dQ = dP + s^*dV + Vds.
\]

(14)

Had \(P, V, \) and \(s \) been independent of each other, then this would be the final form and Jacobians w.r.t. the 3 variables. However, \(ds \) depends on \(P, V, \) and \(\alpha \) through \(F \), which is why we expand \(ds \) as, \(ds = \partial s^* \partial P dP + \partial s^* \partial V dV + \partial s^* \partial \alpha d\alpha \), and get

\[
dQ = dP + s^*dV + V \left(\frac{\partial s^*}{\partial P} dP + \frac{\partial s^*}{\partial V} dV + \frac{\partial s^*}{\partial \alpha} d\alpha \right)
\]

\[
= \left(I_3 + V \frac{\partial s^*}{\partial P} \right) dP + \left(s^*I_3 + V \frac{\partial s^*}{\partial V} \right) dV + V \frac{\partial s^*}{\partial \alpha} d\alpha.
\]

(15a)

(15b)

where \(I_3 \) is the \(3 \times 3 \) identity matrix. The Jacobians of \(Q \) are now identifiable as, \(\frac{\partial Q}{\partial P} = I_3 + V \frac{\partial s^*}{\partial P} \), \(\frac{\partial Q}{\partial V} = s^*I_3 + V \frac{\partial s^*}{\partial V} \), and \(\frac{\partial Q}{\partial \alpha} = V \frac{\partial s^*}{\partial \alpha} \). In the examples given later, we shall evaluate these terms for flat and pseudo-flat geometry \(F \). Finally note that when the differential \(ds \) depends on \(dN \), then \(ds \) will depend on the curvature of the surface at \(s^* \). For readability we will in the remainder of this article use the symbol \(s \) to denote \(s^* \).

2.2 Reflection

Given a ray transferred to a surface, specified by its normal vector \(N \), reflection is given by

\[
W_{\text{reflect}} = V - 2(V^TN)N.
\]

(16)

Hence,

\[
dW_{\text{reflect}} = dV - 2 \left((dV^TN + V^TdN)N + (V^TN)dN \right) \]

\[
= (I_3 - 2NN^T)dV - 2(V^TNI_3 + NV^T)dN.
\]

(17a)

(17b)

Hence, we identify the Jacobians as \(\frac{\partial W_{\text{reflect}}}{\partial V} = (I_3 - 2NN^T) \), and \(\frac{\partial W_{\text{reflect}}}{\partial N} = -2(V^TNI_3 + NV^T) \).

2.3 Refraction

Given a ray transferred to a surface, specified by its normal vector \(N \) and its ratio of refraction indices \(\eta \), refraction is given by Snell’s law [Watt and Watt, 1992, Igehy, 1999],

\[
W_{\text{refract}} = \eta V - \mu N.
\]

(18)
The refraction ratio between water and air is typically $\eta = 1.33$, and an often use approximation is $\eta \approx 1$ in which case $\xi \approx (V^T N)^2$, nevertheless, we will derive the complete structure to facilitate a greater range of η values as well as allow for η to vary. The differential is found to be,

$$
dW_{\text{refract}} = d\eta \mathbf{V} + \eta d\mathbf{V} - d\mu \mathbf{N} - \mu d\mathbf{N}
$$

(20a)

$$
= \eta d\mathbf{V} - \mu d\mathbf{N} + \mathbf{V} d\eta - \mathbf{N} \left(\frac{\partial \mu}{\partial \mathbf{V}} d\mathbf{V} + \frac{\partial \mu}{\partial \mathbf{N}} d\mathbf{N} + \frac{\partial \mu}{\partial \eta} d\eta \right)
$$

(20b)

$$
= \left(\eta I_3 - \mathbf{N} \frac{\partial \mu}{\partial \mathbf{V}} \right) d\mathbf{V} - \left(\mu I_3 + \mathbf{N} \frac{\partial \mu}{\partial \mathbf{N}} \right) d\mathbf{N} + \left(\mathbf{V} - \mathbf{N} \frac{\partial \mu}{\partial \eta} \right) d\eta.
$$

(20c)

Thus, in order to identify the Jacobians of W_{refract}, we must identify those of μ. Using $d\xi = -2\eta \left(1 - (V^T N)^2 \right) d\eta + 2\eta^2 (V^T N) (dV^T N + V^T d\mathbf{N})$, we see that

$$
d\mu = V^T N d\eta + \eta (dV^T N + V^T d\mathbf{N}) + \frac{d\xi}{2\sqrt{\xi}}
$$

(21a)

$$
= V^T N d\eta + \eta (dV^T N + V^T d\mathbf{N}) + \frac{\eta (1 - (V^T N)^2) d\eta + \eta^2 V^T N (dV^T N + V^T d\mathbf{N})}{\sqrt{\xi}}
$$

(21b)

$$
= \left(V^T N - \frac{\eta (1 - (V^T N)^2)}{\sqrt{\xi}} \right) d\eta + \eta \left(N^T d\mathbf{V} + V^T d\mathbf{N} \right) + \frac{\eta^2 V^T N (N^T d\mathbf{V} + V^T d\mathbf{N})}{\sqrt{\xi}}
$$

(21c)

$$
= \left(V^T N - \frac{1 - \xi}{\eta \sqrt{\xi}} \right) d\eta + \eta \left(1 + \frac{\eta V^T N}{\sqrt{\xi}} \right) N^T d\mathbf{V} + \eta \left(1 + \frac{\eta V^T N}{\sqrt{\xi}} \right) V^T d\mathbf{N}.
$$

(21d)

Gathering terms we find that

$$
dW_{\text{refract}} = \left(\eta I_3 - \eta \left(1 + \frac{\eta V^T N}{\sqrt{\xi}} \right) N N^T \right) d\mathbf{V}
$$

$$
- \left(\mu I_3 + \eta \left(1 + \frac{\eta V^T N}{\sqrt{\xi}} \right) N V^T \right) d\mathbf{N}
$$

$$
+ \left(\mathbf{V} - \left(V^T N - \frac{1 - \xi}{\eta \sqrt{\xi}} \right) \mathbf{N} \right) d\eta,
$$

(22)

and we find the Jacobians as, $\frac{\partial W_{\text{refract}}}{\partial \mathbf{V}} = \left(\eta I_3 - \eta \left(1 + \frac{\eta V^T N}{\sqrt{\xi}} \right) N N^T \right)$, $\frac{\partial W_{\text{refract}}}{\partial \mathbf{N}} = - \left(\mu I_3 + \eta \left(1 + \frac{\eta V^T N}{\sqrt{\xi}} \right) N V^T \right)$, and $\frac{\partial W_{\text{refract}}}{\partial \eta} = \left(\mathbf{V} - \left(V^T N - \frac{1 - \xi}{\eta \sqrt{\xi}} \right) \mathbf{N} \right)$.

3 Examples: Triangular Surface Models

A number of differentials described above depend on the surface of intersection. We will now evaluate the differentials to complete depth for two popular and practical surface models based on triangles. The implicit function of the interior of a triangle is identical to that of a plane, and the implicit function of a plane with normal \mathbf{N}_{flat}, and where Q_o is a point in the plane, is given as

$$
F_{Q_o, \mathbf{N}_{\text{flat}}} (Q) = (Q_o - Q)^T \mathbf{N}_{\text{flat}}.
$$

(23)

The models we will investigate originates from flat and Phong shading. The cumbersome “flat” subscript is used to distinguish the geometry normal from the interpolated normal in Phong shading. Further, we will assume that the media is homogeneous, i.e., $d\eta = 0$.

3.1 Flat Surface

Assuming that we have identified a triangle intersected by the ray, where $N^T V \neq 0$, then we combine (13) and (23) and seek the zero point,

$$0 = (Q_0 - P - sV)^T N_{\text{flat}},$$

which implies that

$$s = \frac{(Q_0 - P)^T N_{\text{flat}}}{V^T N_{\text{flat}}}. \tag{25}$$

The complete differential of s is found as follows,

$$ds = \left(\frac{d \left((Q_0 - P)^T N_{\text{flat}} \right)}{V^T N_{\text{flat}}} \right) \left(V^T N_{\text{flat}} \right) - \left(\frac{d \left((Q_0 - P)^T N_{\text{flat}} \right)}{V^T N_{\text{flat}}} \right) d (V^T N_{\text{flat}})$$

\[
= \frac{(dQ_0 - dP)^T N_{\text{flat}} + (Q_0 - P)^T dN_{\text{flat}} - s (dV^T) N_{\text{flat}} + V^T dN_{\text{flat}})}{V^T N_{\text{flat}}} \tag{26b}
\]

and thus we identify

$$\left. \frac{\partial s}{\partial Q_0} \right|_{P} = \frac{N_{\text{flat}}^T}{V^T N_{\text{flat}}}, \quad \frac{\partial s}{\partial P} = -\frac{\partial s}{\partial Q_0} \frac{\partial s}{\partial N_{\text{flat}}} = \frac{(Q_0 - P)^T - sV^T}{V^T N_{\text{flat}}},$$

and $\frac{\partial s}{\partial V} = -s \frac{\partial s}{\partial Q_0}$. Combining (15a), (17), (22), and (26) we find,

$$dQ_{\text{flat}} = \left(I_3 + V \frac{\partial s}{\partial P} \right) dP + \left(sI_3 + V \frac{\partial s}{\partial V} \right) dV + V \frac{\partial s}{\partial N_{\text{flat}}} dQ_0 + V \frac{\partial s}{\partial N_{\text{flat}}} dN_{\text{flat}}, \tag{27a}$$

$$dW_{\text{reflect}} = \frac{\partial W_{\text{reflect}}}{\partial V} dV + \frac{\partial W_{\text{reflect}}}{\partial N_{\text{flat}}} dN_{\text{flat}} \tag{27b}$$

$$dW_{\text{refract}} = \frac{\partial W_{\text{refract}}}{\partial V} dV + \frac{\partial W_{\text{refract}}}{\partial N_{\text{flat}}} dN_{\text{flat}} + \frac{\partial W_{\text{refract}}}{\partial \eta} d\eta \tag{27c}$$

where superscript on the Jacobians of the W’s implies that the Jacobians have the same form as (17) and (22) but with use of N_{flat} as the normal, and where

$$K = I_3 + V \frac{\partial s}{\partial P} = I_3 - \frac{VN_{\text{flat}}^T}{V^T N_{\text{flat}}}, \tag{28a}$$

$$L = V \frac{\partial s}{\partial N_{\text{flat}}} = \frac{V (Q_0 - P)^T - sVV^T}{V^T N_{\text{flat}}} \tag{28b}$$

Although the surface is flat, and the spatial part of dN_{flat} is zero, we cannot disregard terms involving dN_{flat}, since the temporal part need not be zero.

For static geometry, only terms of dP and dV are non-zero. Their Jacobians, K and sK, describe the change in shape of the ray by interaction with the geometry. Their column vectors lie in the plane of the intersecting triangle, which can be proven as follows: First we show that K column vectors lie in the intersecting geometry, i.e., $0 = N_{\text{flat}}^T K$. By transpose and expansion we find,

$$\left(N_{\text{flat}}^T K \right)^T = K^T N_{\text{flat}}$$

$$= \left(I_3 - \frac{N_{\text{flat}} V^T}{V^T N_{\text{flat}}} \right) N_{\text{flat}}$$

$$= N_{\text{flat}} - \frac{N_{\text{flat}} V^T N_{\text{flat}}}{V^T N_{\text{flat}}}$$

$$= 0. \tag{29}$$

Since $\frac{\partial Q_{\text{flat}}}{\partial P}$ and $\frac{\partial Q_{\text{flat}}}{\partial V}$ depends linearly on K we conclude that the column vectors of both lie in the plane of the triangle regardless of whatever parameterization is chosen for P and V. Further, in the limiting case, where $V^T N \to 0$, the
shape of the intersecting ray bundles diverges in the direction of \mathbf{V}. To show this, consider the limit of the in plane coordinate system, $e_1 = \mathbf{V} - (\mathbf{N}^T \mathbf{V}) \mathbf{N} \to \mathbf{V}$ and $e_2 = e_1 \times \mathbf{N} \to \mathbf{V} \times \mathbf{N}$. In this coordinate system we find the following limits,

$$e_1^T \mathbf{K} \to \mathbf{V}^T \mathbf{K} = \mathbf{V}^T - \frac{\mathbf{V}^T \mathbf{V} \mathbf{N}_{\text{flat}}^T}{\mathbf{V}^T \mathbf{N}_{\text{flat}}} = \mathbf{V}^T - \frac{\mathbf{N}_{\text{flat}}^T}{\mathbf{V}^T \mathbf{N}_{\text{flat}}} = \infty$$

$$e_2^T \mathbf{K} \to (\mathbf{V} \times \mathbf{N})^T \mathbf{K} = (\mathbf{V} \times \mathbf{N})^T - \frac{(\mathbf{V} \times \mathbf{N})^T \mathbf{V} \mathbf{N}_{\text{flat}}^T}{\mathbf{V}^T \mathbf{N}_{\text{flat}}} = (\mathbf{V} \times \mathbf{N})^T$$

(30)

Thus, as should be expected, the shape of intersecting ray bundles becomes infinitely long in the ray direction, while constant in perpendicular direction. This is a consequence of modeling rays as lines, not an error in the first order approximation. But in practice, almost all triangles are finite, hence care must be taken in actual implementations.

Typically, a triangle will be parametrized by its vertices, Q_0, Q_1, and Q_2, and a more natural parametrization of changes is in terms of the vertices. Such a parametrization allows us to further develop $d\mathbf{N}_{\text{flat}}$. Assume that,

$$n_{\text{flat}} = (Q_2 - Q_0) \times (Q_1 - Q_0) ,$$

(31)

To be consistent w.r.t. models for reflection and refraction, we will assume that $n_{\text{flat}}^T \mathbf{V} < 0$, otherwise we will interchange Q_1 and Q_2. Evaluating the differentials, we find that

$$N_{\text{flat}} = \frac{n_{\text{flat}}}{\|n_{\text{flat}}\|_2},$$

(32a)

$$dN_{\text{flat}} = n_{\text{flat}}^T n_{\text{flat}} I_3 - n_{\text{flat}}^T n_{\text{flat}}^T d n_{\text{flat}},$$

(32b)

$$d n_{\text{flat}} = (Q_2 - Q_0) \times (dQ_1 - dQ_0) - (Q_1 - Q_0) \times (dQ_2 - dQ_0)$$

(32c)

$$= (Q_2 - Q_2) \times dQ_0 + (Q_2 - Q_0) \times dQ_1 + (Q_0 - Q_1) \times dQ_2.$$

(32d)

However, in order to isolate the differentials on the right hand side of each term, we instead used the matrix form of the cross product. Consider two vectors $a, b \in \mathbb{R}^3$. Their cross-product may be written as, $a \times b = a_x b = b_x a = -b_x a$, where

$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \Rightarrow a_x = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix},$$

(33)

and likewise for b_x. Thus, we write, $d n_{\text{flat}} = (Q_{1\times} - Q_{2\times}) dQ_0 + (Q_{2\times} - Q_{0\times}) dQ_1 + (Q_{0\times} - Q_{1\times}) dQ_2$. Further, Using

$$J = \frac{n_{\text{flat}}^T n_{\text{flat}} I_3 - n_{\text{flat}}^T n_{\text{flat}}^T}{(n_{\text{flat}}^T n_{\text{flat}})^{3/2}},$$

(34)

we identify $\frac{\partial N_{\text{flat}}}{\partial Q_0} = J (Q_{1\times} - Q_{2\times})$, $\frac{\partial N_{\text{flat}}}{\partial Q_1} = J (Q_{2\times} - Q_{0\times})$, and $\frac{\partial N_{\text{flat}}}{\partial Q_2} = J (Q_{0\times} - Q_{1\times})$. Hence, we enter dN_{flat} into dQ from (27) and find that

$$dQ_{\text{flat}} = \left(I_3 + V \frac{\partial s}{\partial \mathbf{P}}\right) dP + \left(s I_3 + V \frac{\partial s}{\partial \mathbf{V}}\right) d\mathbf{V}$$

$$+ V \left(\frac{\partial s}{\partial Q_0} + \frac{\partial s}{\partial N_{\text{flat}}} \frac{\partial N_{\text{flat}}}{\partial Q_0}\right) dQ_0 + V \frac{\partial s}{\partial N_{\text{flat}}} \frac{\partial N_{\text{flat}}}{\partial Q_1} dQ_1 + V \frac{\partial s}{\partial N_{\text{flat}}} \frac{\partial N_{\text{flat}}}{\partial Q_2} dQ_2,$$

$$= K dP + s K dV + (I_3 - K + LJ (Q_{1\times} - Q_{2\times})) dQ_0 + LJ (Q_{2\times} - Q_{0\times}) dQ_1 + LJ (Q_{0\times} - Q_{1\times}) dQ_2.$$

(35)

We have now identified $\frac{\partial Q_{\text{flat}}}{\partial \mathbf{P}} = K$, $\frac{\partial Q_{\text{flat}}}{\partial \mathbf{V}} = s K$, $\frac{\partial Q_{\text{flat}}}{\partial Q_0} = I_3 - K + LJ (Q_{1\times} - Q_{2\times})$, $\frac{\partial Q_{\text{flat}}}{\partial Q_1} = LJ (Q_{2\times} - Q_{0\times})$, and $\frac{\partial Q_{\text{flat}}}{\partial Q_2} = LJ (Q_{0\times} - Q_{1\times})$.

The rays and spatial differentials are illustrated in Figure 2. In Figure 3 are examples of time differentials shown.

The yellow arrows denote velocity vectors, and in Figures 3(a)-(c) it should be noted that a velocity of \mathbf{P} in different directions implies a velocity of Q_{flat} in the plane of the triangle. In Figures 3(d)-(e) we see that a rotational velocity of \mathbf{V} implies both a velocity of Q_{flat} in the plane of the triangle as well as a rotation of $W_{\text{ref}}^\text{flat}$ and $W_{\text{ref}}^\text{flat}$. Finally but not shown, motion of the triangle tangent to the triangle does not imply any velocity on any parameters, and a rotation of the triangle normal implies a velocity on $Q_{\text{flat}}^\text{flat}$ along the ray.
Figure 2: Transfer, Reflection, and Refraction for Flat surfaces. Black arrows are ray directions, green is triangle normal, blue and red arrow illustrate the row vectors of $\frac{\partial P}{\partial \phi, \theta}$, $\frac{\partial Q}{\partial \phi, \theta}$, $\frac{\partial V}{\partial \phi, \theta}$, and $\frac{\partial W}{\partial \phi, \theta}$ as relevant. Subfigures (a)-(c) show orthographic projections of (d).
Figure 3: Time differentials for Flat surfaces. Yellow arrows denote imposed and resulting time derivatives. Subfigures (a)-(c) shows imposed velocities in three orthogonal directions on the origin, \(P \), (d)-(e) shows imposed rotational velocities in viewing direction \(V \), and (f)-(h) shows imposed velocities in three orthogonal directions on one of the vertices.
Figure 4: Phong shading assumes fish scale geometry. A triangle, 4(a), shaded with Phong’s model, 4(b), expresses a complexity not supported by the real geometry. One way of conceptualizing this model is to think of the triangle as consisting of fish scales, 4(c); in this mindset every point on the surface of the triangle is associated with an independent local plane or fish scale whose normal is interpolated from the corners of the triangle.

3.2 Phong Shaded Surface

Phong shading uses a triangle as a base geometry, but imposes varying normals across it. Since the flatness of the triangle contradicts the changing normals, we prefer to think of this as a fish scale model as illustrated in Figure 4.

Phong shading assumes a plane represented by the 3 vertices of a triangle, Q_0, Q_1, and Q_2, and corresponding vertex normals N_0, N_1, and N_2. To calculate the intersection of the view ray with the triangle we use the Flat surface model (23), calculate the flat normal, N_{flat}, by (31), and we find the point of intersection by solving (25). For reflection and refraction we construct a linearly interpolated normal from the three vertex normals. The flat normal and interpolated vertex normal most often will not coincide, and, as a consequence, $\frac{\partial Q_{phong}}{\partial V}$ will not span the triangle. Therefore, we calculate $dQ_{phong}=dQ_{flat}$ by (35) and simply write Q and dQ in the remaining text.

To interpolate the vertex normals at the point of intersection, Q, we calculate the Barycentric coordinates,

$$Q = \lambda_0 Q_0 + \lambda_1 Q_1 + \lambda_2 Q_2,$$

where $\lambda_i \geq 0$ are homogeneous Barycentric coordinates such that $\lambda_0 + \lambda_1 + \lambda_2 = 1$. The Barycentric coordinates are then used to interpolate the vertex normals as,

$$n = \lambda_0 N_0 + \lambda_1 N_1 + \lambda_2 N_2,$$

$$N = \frac{n}{\|n\|_2}.$$ (37b)

Note that the Barycentric coordinates are local to the triangle, and their differentials $d\lambda_i$ may be used to estimate the change in Q in terms of the triangle. However, this requires algorithmic care near the border of the triangle, where $\lambda_i + \Delta \lambda_i$ may fall outside the triangle.

Assuming a ray passing through P with direction V, which intersects a triangle within vertices Q_0, Q_1, and Q_2, then $0 \leq \lambda_i \leq 1$, and we may find the Barycentric coordinates as follows:

$$E_1 = Q_1 - Q_0,$$ (38a)

$$E_2 = Q_2 - Q_0,$$ (38b)

$$T = P - Q_0,$$ (38c)

$$A = \begin{bmatrix} E_1 & E_2 & -V \end{bmatrix},$$ (38d)

in which case we may write the point of intersection as the system of linear equations, $T = A[\lambda_1, \lambda_2, s]^T$. We solve for the unknown in this system of equations using Cramer’s rule: consider the matrices A_i, $i = 1, 2$ where the i’the column of matrix A has been replaced by T such that $A_1 = \begin{bmatrix} T & E_2 & -V \end{bmatrix}$, and $A_2 = \begin{bmatrix} E_1 & T & -V \end{bmatrix}$, in that case the solutions are,

$$\lambda_0 = 1 - \lambda_1 - \lambda_2,$$ (39a)

$$\lambda_i = \frac{|A_i|}{|A|}, \ i = 1, 2.$$ (39b)
The differential, dN, is now found to be,

$$dN = \frac{n^TnI_3 - nn^T}{(n^Tn)^{3/2}}dn,$$ \hspace{1cm} (40a)

$$dn = N_0d\lambda_0 + \lambda_0dN_0 + N_1d\lambda_1 + \lambda_1dN_1 + N_2d\lambda_2 + \lambda_2dN_2,$$ \hspace{1cm} (40b)

and the differentials of the Barycentric coordinates are found as follows:

$$d\lambda_0 = -d\lambda_1 - d\lambda_2,$$ \hspace{1cm} (41a)

$$d\lambda_i = \frac{|A|d|A_i| - |A_i|d|A|}{|A|^2}, \quad i = 1 \ldots 2.$$ \hspace{1cm} (41b)

Using the triple product form of the determinant, $|\begin{bmatrix} a & b & c \end{bmatrix}| = (a \times b) \cdot c$, that any interchange in columns of a matrix flips the sign of its determinant, and linearity of the cross and dot products, we may write,

$$d|A| = d|\begin{bmatrix} E_1 & E_2 & -V \end{bmatrix}|$$ \hspace{1cm} (42a)

$$= (E_2 \times E_1)^T dV + (V \times E_2)^T dE_1 - (V \times E_1)^T dE_2,$$ \hspace{1cm} (42b)

$$= \psi^T dV + \zeta^T dE_1 + \eta^T dE_2,$$ \hspace{1cm} (42c)

$$d|A_1| = d|\begin{bmatrix} T & E_2 & -V \end{bmatrix}|,$$ \hspace{1cm} (42d)

$$= (E_2 \times T)^T dV + (V \times E_2)^T dT - (V \times T)^T dE_2,$$ \hspace{1cm} (42e)

$$= \kappa^T dV + \zeta^T dT + \tau^T dE_2,$$ \hspace{1cm} (42f)

$$d|A_2| = d|\begin{bmatrix} E_1 & T & -V \end{bmatrix}|,$$ \hspace{1cm} (42g)

$$= (T \times E_1)^T dV + (V \times T)^T dE_1 - (V \times E_1)^T dT,$$ \hspace{1cm} (42h)

$$= \omega^T dV - \tau^T dE_1 + \gamma^T dT,$$ \hspace{1cm} (42i)

where $\psi = E_2 \times E_1$, $\tau = -V \times T$, $\gamma = -V \times E_1$, $\zeta = V \times E_2$, $\kappa = E_2 \times T$, and $\omega = T \times E_1$. Thus,

$$d\lambda_1 = \frac{|A| (\kappa^T dV + \zeta^T dT + \tau^T dE_2) - |A_1| (\psi^T dV + \zeta^T dE_1 + \gamma^T dE_2)}{|A|^2}$$ \hspace{1cm} (43a)

$$= (|A| \kappa^T - |A_1| \psi^T) dV + |A| \zeta^T dT - |A_1| \zeta^T dE_1 + (|A| \tau^T - |A_1| \gamma^T) dE_2,$$ \hspace{1cm} (43b)

$$d\lambda_2 = \frac{|A| (\omega^T dV - \tau^T dE_1 + \gamma^T dT) - |A_2| (\psi^T dV + \zeta^T dE_1 + \gamma^T dE_2)}{|A|^2}$$ \hspace{1cm} (43c)

$$= (|A| \omega^T - |A_2| \psi^T) dV + |A| \gamma^T dT - (|A| \tau^T + |A_2| \zeta^T) dE_1 - |A_2| \gamma^T dE_2.$$ \hspace{1cm} (43d)
Gathering terms we get,

\[
\begin{align*}
\frac{dN}{d\tau} &=
\lambda_0 dN_0 + \lambda_1 dN_1 + \lambda_2 dN_2 \\
\mathbf{J} \left(\lambda_0 dN_0 + \lambda_1 dN_1 + \lambda_2 dN_2 \\
+ \frac{(N_1 - N_0)}{|A|^2} (|A|\kappa^T - |A_1|\psi^T) dV + |A|\zeta^T dT - |A_1|\zeta^T dE_1 + (|A|\tau^T - |A_1|\gamma^T) dE_2 \\
+ \frac{(N_2 - N_0)}{|A|^2} (|A|\omega^T - |A_2|\psi^T) dV + |A|\gamma^T dT - (|A|\tau^T + |A_2|\zeta^T) dE_1 - |A_2|\gamma^T dE_2 \right) \\
= \mathbf{J} \left(\lambda_0 dN_0 + \lambda_1 dN_1 + \lambda_2 dN_2 \\
+ \frac{(N_1 - N_0)}{|A|^2} (|A|\kappa^T - |A_1|\psi^T) + (N_2 - N_0) (|A|\omega^T - |A_2|\psi^T) dV \\
+ \frac{(N_1 - N_0)}{|A|^2} |A|\zeta^T + (N_2 - N_0) |A|\gamma^T dT \\
+ \frac{(N_1 - N_0)}{|A|^2} |A|\zeta^T - (N_2 - N_0) (|A|\tau^T + |A_2|\zeta^T) dE_1 \\
+ \frac{(N_1 - N_0)}{|A|^2} (|A|\tau^T - |A_1|\gamma^T) - (N_2 - N_0) |A_2|\gamma^T dE_2 \right), \\
\end{align*}
\]

(44a)

where \(\mathbf{J} = \frac{n_{\text{ref}} - n_{\text{ref}}}{(n_{\text{ref}})^{3/2}} \). Since \(dE_1 = dQ_1 - dQ_0 \), \(dE_2 = dQ_2 - dQ_0 \), \(dT = dP - dQ_0 \), we find that

\[
\begin{align*}
\frac{dN}{d\tau} &= \mathbf{J} \left(\lambda_0 dN_0 + \lambda_1 dN_1 + \lambda_2 dN_2 \\
+ \frac{(N_1 - N_0)}{|A|^2} (|A|\kappa^T - |A_1|\psi^T) + (N_2 - N_0) (|A|\omega^T - |A_2|\psi^T) dV \\
+ \frac{(N_1 - N_0)}{|A|^2} |A|\zeta^T + (N_2 - N_0) |A|\gamma^T dT \\
+ \frac{(N_1 - N_0)}{|A|^2} |A|\zeta^T - (N_2 - N_0) (|A|\tau^T + |A_2|\zeta^T) dE_1 \\
+ \frac{(N_1 - N_0)}{|A|^2} (|A|\tau^T - |A_1|\gamma^T) - (N_2 - N_0) |A_2|\gamma^T dE_2 \right) \\
\end{align*}
\]

(44b)

(45a)

(45b)
where $\Delta_i = (N_i - N_0) / |A|$. Hence, we identify the Jacobians $\frac{\partial N}{\partial V} = J (\Delta_1 (\kappa^T - \lambda_1 \psi^T) + \Delta_2 (\omega^T - \lambda_2 \psi^T))$, $\frac{\partial N}{\partial P} = J (\Delta_1 \zeta^T + \Delta_2 \gamma^T)$, $\frac{\partial N}{\partial Q_i} = J (\Delta_1 (\lambda_1 (\zeta^T + \gamma^T) - \zeta^T - \tau^T) + \Delta_2 (\lambda_2 (\gamma^T + \zeta^T) - \gamma^T + \tau^T))$, $\frac{\partial N}{\partial Q_i} = J (-\Delta_1 \lambda_1 \zeta^T - \Delta_2 (\zeta^T + \lambda_2 \gamma^T))$, and $\frac{\partial N}{\partial Q_i} = J (\Delta_1 (\tau^T - \lambda_1 \gamma^T) - \Delta_2 \lambda_2 \gamma^T)$.

Expanding $d\mathbf{N}$ in (17) we find that

$$dW_{\text{reflect}}^{\text{phong}} = \left(\frac{\partial W_{\text{reflect}}^{\text{phong}}}{\partial V} + \frac{\partial W_{\text{reflect}}^{\text{phong}}}{\partial N} \frac{\partial N}{\partial V} \right) dV + \frac{\partial W_{\text{reflect}}^{\text{phong}}}{\partial N} \frac{\partial N}{\partial P} dP + \frac{\partial W_{\text{reflect}}^{\text{phong}}}{\partial N} \frac{\partial N}{\partial Q_i} dQ_i + \sum_{i=0}^{2} \left(\frac{\partial N}{\partial N_i} dN_i + \frac{\partial N}{\partial Q_i} dQ_i \right)$$

(46a)

where superscript on the Jacobians implies the same form as (17) but with use of the Phong normal, and where the all remaining terms have been have been evaluated in (17) and (45b). Likewise, expanding $d\mathbf{N}$ in (22) we find that

$$dW_{\text{refract}}^{\text{phong}} = \left(\frac{\partial W_{\text{refract}}^{\text{phong}}}{\partial V} + \frac{\partial W_{\text{refract}}^{\text{phong}}}{\partial N} \frac{\partial N}{\partial V} \right) dV + \frac{\partial W_{\text{refract}}^{\text{phong}}}{\partial N} \frac{\partial N}{\partial P} dP + \frac{\partial W_{\text{refract}}^{\text{phong}}}{\partial N} \frac{\partial N}{\partial Q_i} dQ_i + \sum_{i=0}^{2} \left(\frac{\partial N}{\partial N_i} dN_i + \frac{\partial N}{\partial Q_i} dQ_i \right)$$

(47a)

where superscript on the Jacobians implies the same form as (22) but with use of the Phong normal, and where the all remaining terms have been have been evaluated in (22) and (45b).

4 Conclusion

In this work, we have evaluated the complete first order spatiotemporal structure of light’s interaction with dielectric materials as reflection and refraction. In contrast to earlier work, [Igehy, 1999, Schjøth et al., 2007], we only assume that the geometry is given as a piecewise smooth surface. The derivation allows for easy extension to other parameters than viewing directions, and parallel rays are briefly treated as a special case as well as velocities on both the view point, direction and surfaces. Finally, we give two examples in complete detail of common shading models, flat and Phong.

Conceptually, we model ray bundles instead of rays and obvious applications are ray tracing and photon splatting, but the methodology is naturally and easily extended to all phenomena well approximated by first order Taylor series. Our generalization offer more accurate and faithful reconstruction of ray bundles in space and time.

References

