MAP kinase cascades in Arabidopsis innate immunity

Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten; Mundy, John

Published in:
Frontiers in Plant Science

DOI:
10.3389/fpls.2012.00169

Publication date:
2012

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
A few PRRs have been documented to stimulate MAPK signaling
mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate, and salicylate. In a few cases, cascade components have been directly linked to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely gauges of resistance proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity. This mini-review discusses recent progress in this field with a focus on the Arabidopsis MAPKs MPK3, MPK4, MPK6, and MPK11 in their apparent pathways.

Keywords: calcium signaling, hypersensitive response, MAP kinase cascade, MAP kinase substrates, pathogen effectors, pattern recognition receptors, reactive oxygen species, resistance proteins
MAPK signaling cascades are attractive targets for bacterial effectors. The *P. syringae* HopAI1 effector irreversibly inactivates MPK4 to prevent immune responses. The R protein SUMM2 may guard processes downstream of MPK4 independent from MKS1, and triggers a hypersensitive response in the event of loss or inactivation of MPK4.

PAMP perception by PRRs instigates a signaling cascade, often via co-receptors, which causes activation of MAP3K MEKK1 and two MAP2Ks MKK1 and MKK2. These phosphorylate and activate MPK4 which then phosphorylates its substrate MKS1, releasing MKS1 in complex with WRKY33. MKP2/MKP6 sequentially phosphorylate WRKY33 allowing it to promote PAD3 transcription, thus activating plant defense.

MEKK1 kinase activity was dispensable for MPK3/MPK6 activation, although *mekk1* plants were impaired in MPK4 activation (Rodriguez et al., 2007). Interestingly, expressing a kinase dead version of MEKK1 in *mekk1* plants completely restored the activation of MPK4 upon treatment with flg22, suggesting that MEKK1 may "simply" act as a scaffold protein (Rodriguez et al., 2007). Biochemical and genetic studies further revealed that the two MAP2Ks MKK1 and MKK2 interact with both MEKK1 and with MPK4, and that flg22-induced MPK4 activation is impaired in the double *mkk1 mkk2* mutant. This indicates that MKK1 and MKK2 are partially redundant in MPK4 mediated downstream signaling (Gao et al., 2008; Qiu et al., 2008b).

MPK4 was originally reported as a negative regulator of plant immunity because the *mpk4* mutant accumulates high levels of salicylic acid, constitutively expresses pathogenesis-related (PR) genes, and has a severely dwarfed growth phenotype (Petersen et al., 2000). This phenotype is very similar to that of the *mekk1* and *mkk1 mkk2* double mutants, further supporting their functional relationships (Rodriguez et al., 2007; Gao et al., 2008; Qiu et al., 2008b).

MAPK CASCADES IN EFFECTOR-TRIGGERED IMMUNITY

In addition to PRRs, plants also employ resistance (R) proteins as cytoplasmic receptors to directly or indirectly recognize specific pathogenic effectors proteins injected into host cells as virulence factors. Effector-triggered immunity (ETI) and PTI share a number of responses, although ETI also includes varying levels of rapid, localized cell death in what is called the hypersensitive response. R protein-dependent recognition initiates immune responses in ETI. R proteins may recognize effector proteins either directly or indirectly by monitoring changes in the effector’s host target(s). This latter case gave rise to the guard hypothesis in which R proteins guard host guardees that are manipulated by pathogen effectors (Van Der Biezen and Jones, 1998). The genetic characterization of the MEKK1/MKK1–MKK2/MPK4 cascade as a negative regulatory pathway of defense responses was at odds with the activation of the pathway by PAMPs. Instead, it was possible that the severe phenotypes of the kinase knockout mutants were caused by activation of one or more R protein(s) guarding this kinase pathway. Indeed, in an elegant screen for suppressors of the *mkk1 mkk2* double mutant, Zhang et al. (2012) identified the R protein SUMM2 (suppressor of *mkk1 mkk2*). The T-DNA insertion line *summ2-8* completely suppressed the severe *mkk1 mkk2* phenotype in respect to morphology, cell death, ROS levels and PR gene expression (Zhang et al., 2012). The analogous knockout phenotype of the upstream MAP3K *mekk1* is also completely suppressed in the *summ2-8* background. Interestingly, although the *mpk4* mutant shares a similar phenotype with the knockouts of its upstream kinase partners, the *mpk4* phenotype is not fully suppressed by the *summ2-8*.
To delineate the link between MPK3/MPK6 activation and camalexin accumulation, Mao et al. (2011) elegantly introduced the phospho-mimic mutant NAMERK2DD, an MKK4 and/or MKK5 ortholog from Nicotiana tabacum, into an array of different wrky mutants in a search for essential transcription factors involved in MPK3/MPK6 mediated camalexin induction. Interestingly, NAMERK2DD was able to induce camalexin accumulation in all tested mutant lines except wrky33. In addition, WRKY33 proved to be a substrate of MKP3/MKP6 activity, and overexpression of non-phosphorylatable forms of WRKY33 could not fully complement the inability of wrky33 mutants to express PAD3 and accumulate camalexin (Mao et al., 2011; Figure 1B, right).

WRKY33 expression therefore appears to involve both MPK4- and MPK3/MPK6-mediated signaling (Andreasson et al., 2005; Qiu et al., 2008a; Mao et al., 2011). Mao et al. (2011) proposed a model in which PAD3-mediated camalexin induction occurs differentially depending on the type of pathogen causing the immune response. In this model, bacterial pathogens induce an MPK4 mediated response while fungal pathogens initiate an MPK3/MPK6 mediated response. This hypothesis is based on overexpression of the constitutively active MKK4/MKK5 ortholog NAMERK2DD, rendering MPK3/MPK6 hyperactive and able to induce PAD3 expression (Mao et al., 2011). In support of this hypothesis, the mpk3 mpk6 double mutant is impaired in R. cinerea-induced PAD3 induction (Ren et al., 2008). Nonetheless, and as noted above, some care should be taken with experiments based on mpk3 mpk6 double mutants given their developmental lethality (Wang et al., 2007).

An alternative model may therefore be proposed which combines the MPK4 and MPK3/MPK6 pathways into a dual control of PAD3 regulation in response to pathogen perception (Figure 1B). In such a model, WRKY33 is sequestered in a nuclear complex

www.frontiernl.org
July 2012 | Volume 3 | Article 103 | 3

“flps-03-00169” — 2012/7/22 — 17:06 — page 3 — #3
comprising at least MPK4 and MKS1 in unchallenged plants, and is released following PAMP perception (Qiu et al., 2008a). Phosphorylation is dispensable for WRKY33 to bind its cognate W-box cis-elements, although it does promote transcriptional activation (Mao et al., 2011). This is illustrated by the fact that PfD3 expression is induced in mpk4 plants (Qiu et al., 2008a), perhaps due to the basal activity of free, non-phosphorylated WRKY33 or by free WRKY33 activated by basal MPK3 and/or MPK6 activity. In this scenario, once WRKY33 is released from its nuclear complex with MPK4 and MKS1, it is phosphorylated and hence activated by MPK3/MPK6, thereby inducing camalexin levels through PAD3 expression. The elevated PAD3 expression induced from NIMEXK233 hyper-activated MPK5/MPK6 (Mao et al., 2011) is not in conflict with this model, as it is likely that hyperactive MPK3/MPK6 are able to phosphorylate residual free WRKY33, thus bypassing other possible feedback mechanisms in PAD3 expression.

In this model, MPK4 and MPK3/MPK6 function together as a binary switch conferring dual level regulation. Clarification of the mode of action in which MPK4 and MPK3/MPK6 function clearly needs further elucidation and should include experiments using catalytically inactive and/or inactivatable PAD3 transcription factors involved in stress responses. Notably, MPK6 phosphorylated 32% of the identified targets, of which 40% overlapped with MPK3 targets (Popescu et al., 2009). This is in agreement with earlier data, similarly obtained from a protein microarray study (Feilner et al., 2005). Equally noteworthy is the finding that MPK3 also shared 30% of its targets with MPK4, revealing intrinsic synergy in MAPK signaling (Popescu et al., 2009).

In addition to MAPK cascades, ROS also play a pivotal role in stress signaling (Rodriguez et al., 2010). Ox1, a serine/threonine kinase induced by general ROS-generating stimuli, is required for full activation of MPK3/MPK6 after treatment with H2O2 (Rentel et al., 2004). Although Ox1 is characterized as an upstream regulator of MPK3/MPK6 activation, MPK3/MPK6 have been shown to phosphorylate Ox1 in vitro. This suggests that there is a feedback loop, but in vivo data supporting such a loop has not been shown (Forzani et al., 2011).

In addition to MAPK cascade signaling, PAMP perception also induces Ca2+ dependent kinases (CDPKs) by regulating Ca2+ influx channels (Ma et al., 2009; Kwak et al., 2011). Recent findings indicate that Ca2+ activation of CDPKs regulates MPK4 and MPK6 (Lee et al., 2008). The associations between CDPKs and MAPK cascades have recently been reviewed elsewhere (Wurzinger et al., 2011).

Much progress has been made in understanding how MAPK signaling functions in plant immunity. In Arabidopsis, 3 of the 60 identified MAP3Ks are involved in defense, namely MEKK1 (Asai et al., 2002), EDR1 (Frye et al., 2001), and MEKKα (del Pozo et al., 2004; Ren et al., 2008). In addition, at least 6 of the 10 identified MAP2Ks (MKK1, MKK2, MKK4, MKK5, MKK7, and MKK9) are involved in defense signaling (Asai et al., 2002; Damié et al., 2005; Döczi et al., 2007; Zhang et al., 2007b; Yoo et al., 2008). This situation requires tight regulation of the spatial and temporal kinase activities in order to impose specificity upon downstream signaling. To shed light on this regulation, high-throughput methods such as those used by Popescu et al. (2009) are particularly valuable and help to outline MAPK signaling cascades. While this progress may be lauded, further work needs to focus on identifying direct, in vivo kinase substrates and their respective phosphorylation sites. This may bring us closer to bridging the apparent gap between PRRs and MAPK cascades, and to understanding how specificity is achieved among MAPK pathways both spatially and temporally.

ACKNOWLEDGMENTS
This work was supported by grants to John Mundy from the Danish Research Council for Technology and Production (23-03-0076) and the Strategic Research Council (09-067148) and to Mílean Roux from the Natural Science Council (11-1163868).

REFERENCES

Rasmussen et al. MAP kinase cascades in immunity. Nature 427, 858.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 02 May 2012; paper pending published: 24 May 2012; accepted: 09 July 2012; published online: 24 July 2012.

This article was submitted to Frontiers in Plant Proteomics, a Specialty of Frontiers in Plant Science.

Copyright © 2012 Rasmussen, Roux, Petersen and Mundy. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.