Influence of osmoprotectants on survival of Salmonella Typhimurium strains during desiccation

Christensen, Nanna; van der Berg, Franciscus Winfried J; Risbo, Jens; Knøchel, Susanne

Publication date: 2012

Document version
Peer reviewed version

Citation for published version (APA):
Influence of osmoprotectants on survival of Salmonella Typhimurium strains during desiccation

Nanna Christensen*, Frans v.d. Berg*, Jens Risbo* and Susanne Knochel*
*Department of Food Science, University of Copenhagen, Rolighedvej 30, 1958 Frederiksberg C, Denmark

Background
Outbreaks caused by Salmonella associated with low moisture products are commonly reported, and Salmonella is known to survive desiccation well. The environment incl. food contains naturally occurring osmoprotectants, which may increase the survival of Salmonella cells in low moisture environments.

Method
- 20µl of 10^8 CFU/ml cell solution pr. well were desiccated in 0.9% NaCl, saline added 0.1% Tg, and 1%, 10% sucrose in PSP-G in 48 well plates in closed chambers at 22°C, 43% RH (Figure 1).
- Sampling was performed after resuscitation for 30 min in PSP and plating of appropriate dilutions on BHI (incubated at 37 °C, 23 ± 1 h).
- Reduction was calculated using Equation 1 and plotted against time for modeling starting from day 1.
- Testing with osmoprotectants was performed with 1mM betaine, 50mM betaine, proline and carnitine, and 10% sucrose in PSP-G.

Equation 1: Reduction ([CFU/ml] - log \(\frac{N_t}{N_0} \))

Equation 2: % Reduction = \(\frac{\text{mean (Reduction day 14)} \times \text{standard deviation (Reduction day 14)}}{\text{mean (Reduction day 13) \times 100}} \)

Results

Table 1: Reduction of seven S. Typhimurium strains after desiccation for 14 days at 22°C and 43%RH calculated using equation 1. The reduction on day 14 is shown as mean of five technical replicates ± standard deviation. One way ANOVA-test was performed to identify strains with significant higher reduction on day 14 compared with S. Typhimurium 364/87, as this strain was chosen as the one with the lowest reduction. S. Typhimurium C5 was chosen as the strain with the highest reduction based on the reduction and p-value from the one way ANOVA test (both strains are marked with red boxes).

Table 2: % reduction in relation to the control on day 13 as calculated using equation 2, are shown for S. Typhimurium 364/87 and S. Typhimurium C5 desiccated at 22°C, 43%RH. The cells were desiccated in PSP-G alone or added 1mM betaine, 50mM betaine, proline, carnitine or 10% sucrose, respectively. Significant positive impact on reduction was seen with carnitine and sucrose when performing One way ANOVA test (marked with red box) compared to the control.

Discussion

- S. Typhimurium strains tested varied in desiccation tolerance based on reduction (Table 1). S. Typhimurium 364/87 and S. Typhimurium C5 (marked with red) represented highest and lowest desiccation tolerance.

- Previous studies have demonstrated a positive effect of betaine, proline and carnitine on survival of Salmonella subjected to NaCl stress (Cairney et al. 1985a; Cairney et al. 1985b; Gutierrez & Csonka 1995). Here, desiccation tolerance increased for both strains investigated (364/87 and C5) with carnitine and, in particular, with sucrose (Figure 2A-B) while limited effect was seen for proline and betaine.

- Hardly any reduction was seen within the period with sucrose (Figure 2A-B).

- Sucrose and carnitine had a significant (p<0.05) positive effect on desiccation tolerance based on reduction on day 13 (Table 2).

Conclusion

- Desiccation tolerance differs within the same serovar.

- The presence of 10% sucrose and 50mM carnitine, respectively, increased the desiccation tolerance in that order for S. Typhimurium 364/87 and S. Typhimurium C5, with a very marked effect of sucrose.