Magnetic-Field Dependence of Tunnel Couplings in Carbon Nanotube Quantum Dots

Grove-Rasmussen, Kasper; Grap, S.; Paaske, Jens; Flensberg, Karsten; Andergassen, Sabine; Meden, Volker; Jørgensen, Henrik Ingerslev; Muraki, K.; Fujisawa, T.

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.108.176802

Publication date:
2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Magnetic-Field Dependence of Tunnel Couplings in Carbon Nanotube Quantum Dots

K. Grove-Rasmussen,1,2,* S. Grap,3 J. Paaske,2 K. Flensberg,2 S. Andergassen,3,4 V. Meden,3 H. I. Jørgensen,2 K. Muraki,1 and T. Fujisawa1,5

1NTT Basic Research Laboratories, NTT Corporation, 3-1, Morinosato-Wakamiya, Atsugi 243-0198, Japan
2Niels Bohr Institute and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
3Institut für Theorie der Statisstischen Physik and JARA-Fundamentals of Future Information Technology, RWTH Aachen University, 52056 Aachen, Germany
4Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
5Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro 152-8551, Japan

(Received 1 September 2011; published 26 April 2012)

By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.

DOI: 10.1103/PhysRevLett.108.176802 PACS numbers: 73.63.Kv, 71.10.−w, 73.63.Fg

Confined states and their tunnel couplings to the leads are the basis for a wealth of intriguing phenomena observed in quantum dot nanostructures. In carbon nanotubes, the states appear in a particularly simple arrangement of near fourfold degenerate shells stemming from spin and orbital degrees of freedom [1,2]. The splitting of each quartet into two doublets is well understood within a single particle model, including disorder-induced valley mixing and spin-orbit interaction [3,4]. Less is known about the tunnel couplings, but experiments show that they can be different for the two doublets within a shell [5]. In a clean nanotube, such behavior would be inconsistent with time-reversal symmetry.

In this Letter, we show that the relevant doublets indeed may have different lead couplings due to orbital disorder, and that this tunnel coupling asymmetry is tunable by a parallel magnetic field \(B_{\parallel} \). At \(B_{\parallel} = 0 \) T, strong and weak Kondo effects in the charge stability diagrams and gate-dependent inelastic cotunneling thresholds indicate different doublet couplings [5]. At finite \(B_{\parallel} \), Coulomb peaks exhibit \(B_{\parallel} \)-dependent level broadenings, indicating field-tunable tunnel couplings, which is further corroborated by the disappearance of gate-dependent inelastic cotunneling lines for equal couplings. A single-shell model including disorder, expressed as an intrashell coupling \(\Delta_{KK'} \) between the orbital states \(K \) and \(K' \), is shown to account well for the observed coupling behavior at low fields. At larger \(B_{\parallel} \), the coupling strengths of the doublets even interchange and show nonmonotonic behavior, which can be explained by a two-shell model including an intershell orbital coupling \(\Delta_{KK'{}'} \) [6]. By applying the functional renormalization group (fRG) to the inner four levels of the two-shell model, it is shown that the linear conductance versus gate voltage \(V_{\text{gate}} \) is in good agreement with the measurement for all \(B_{\parallel} \) [7], including correlation effects such as Kondo effect.

Figure 1(a) shows a bias spectroscopy plot obtained by measuring the differential conductance at temperature \(T = 140 \) mK of a 400 nm long AuPd contacted single-wall carbon nanotube device versus source-drain bias and backgate voltage [see inset in Fig. 1(a)] [4]. In the \(V_{\text{gate}} \) range shown, quantum states belonging to two near-fourfold degenerate shells in the valence band are filled. This leads to the characteristic pattern [1] of three smaller faintly visible diamonds followed by a big (truncated) diamond as \(V_{\text{gate}} \) is increased. Inside each diamond, the nanotube holds an integer number of electrons, \(N \), indicated by the additional electron number for filled shells. For odd occupancy of the shells, zero-bias conductance ridges are observed, which is a manifestation of the well-known spin-half Kondo effect [8,9]. Interestingly, the Kondo ridges are broad and narrow for \(N + 1 \) and \(N + 3 \) electrons in the shell, respectively. A gate-dependent step in conductance at small finite bias (especially pronounced for filling \(N + 2 \) and \(N + 3 \) in the small diamonds) reveals the splitting of the four states within a shell into two doublets via inelastic cotunneling; i.e., at bias voltages corresponding to the doublet energy difference, an electron may tunnel into the excited doublet provided that an electron tunnels out from the ground state doublet [10]. Both features can be understood by assuming that the two doublets have different couplings to the leads: a strongly (weakly) coupled ground (excited) state results in a strong (weak) Kondo resonance, while gate-dependent level renormalizations of the doublets are due to charge fluctuations between the dot and the leads [5,11]. Until now it has remained unclear how the two doublets could be differently coupled.

To understand the doublet states in more detail, the zero-bias conductance of a single shell is measured as a function of \(B_{\parallel} \), and results are shown in Fig. 1(b) [gate range in...
The tunnel couplings to the leads are thus observed to increase (diamonds), while a broadening is ob-
ing from the broad Kondo ridge become narrower as the Coulomb peaks (increasing with tunnel coupling) emerg-

cy. (d) Level energies and level-lead couplings of a simple spinless model. Because of $\Delta_{KK'}$ (with orbital phase $\phi_0 = \pi$), the eigenstates are now differently coupled to the leads at $B_\parallel = 0$, while becoming more equally coupled as B_\parallel is increased. (f),(g) Simple picture showing that the electron probability distributions for the two eigenstates are different (similar) at zero (large) field.

Fig. 1(a) marked by horizontal dashed line]. The upward and downward energy shifts of pairs of Coulomb peaks with increasing field are consistent with expectations from a simple nanotube shell model including intrashell orbital coupling $\Delta_{KK'}$ [12] with energies as shown in Fig. 1(c) [4,6,11]. The lower (red and orange) and upper (blue and cyan) lines are the resulting eigenstates corresponding to a finite intrashell coupling. Moreover, the widths of the Coulomb peaks (increasing with tunnel coupling) emerging from the broad Kondo ridge become narrower as the field is increased (diamonds), while a broadening is observed in the case of the narrow Kondo ridge (squares) [13]. The tunnel couplings to the leads are thus observed to be B_\parallel dependent.

The observed strong and weak tunnel coupling behavior of the doublets is a consequence of the intrashell orbital coupling as can readily be understood from a simple spinless model with level energies shown in Fig. 1(d). Time-reversal symmetry demands that $|t_\kappa|^2 = |t_{K'}|^2 = t$, but in the presence of a finite intrashell orbital coupling, $\Delta_{KK'} = |\Delta_{KK'}| e^{i\phi_0}$, so that the new eigenstates $|b/a\rangle \sim \frac{1}{2} e^{i\phi_0} (|K\rangle + |K'\rangle)$ at $B_\parallel = 0$ are tunnel coupled by $t (1 + e^{i\phi_0})$, respectively [5,11]. For $\phi_0 = \pi$ and $B_\parallel = 0$, one of these states completely decouples from the leads, while the original eigenstates are restored and couplings become equal for $B_\parallel \gg |\Delta_{KK'}|$ [see Fig. 1(e)]. With this picture in mind, the decrease (increase) in coupling versus field of the strongly (weakly) coupled doublets is readily understood. The model gives a microscopic picture of why the tunnel couplings of the two doublets can be different. It does not, however, address the issue of conserved quantum numbers required for the SU(4) or orbital Kondo effect [6,14,15]. Figure 1(f) shows that the electron density (and therefore tunneling amplitude) of the two doublets may be different depending on the exact tunneling site θ on the circumference. As the field is increased, the respective electron densities become similar (pattern changes from standing waves to plane waves), consistent with equal tunnel couplings of the doublets [see Fig. 1(g)].

A striking consequence is the tunability of the level renormalization by B_\parallel. Figure 2(a) shows a zoom in the stability diagram of the left shell in Fig. 1(a) at $B_\parallel = 0$ where the onset of inelastic cotunneling processes is clearly observed (see the arrow). The gate dependence of the onset has been explained by tunneling renormalization due to a strongly and a weakly coupled doublet [5,16]. Knowing that the intrashell orbital coupling may induce differently coupled doublets, we can now further test both this simple model and the many-body origin of the gate dependence. As B_\parallel is increased, the couplings to the doublets become equal, and as a result the inelastic cotunnel-

ing threshold is expected to gradually become gate
versus B invoked [18]. Figure 3(c) shows the linear conductance between levels stemming from different shells must be fields, a two-shell model taking into account couplings the experimental behavior of the tunnel couplings at large predicts equal coupling [see Fig. 1(e)]. To fully understand weakly coupled doublet becomes (even) stronger than that B conductance trace at doublet asymmetries [13]. Furthermore, at larger fields, to the two shells is seen, indicating similar tunnel coupling [see Fig. 1(a)]. The thin black lines in Figs. 3(b), 3(c), and 3(f) representing cotunneling excitation, which were obtained from the level spectrum of Fig. 3(a), well reproduce the observed features [19]. The cotunneling data also reveal the presence of an intershell orbital interaction $\Delta_{KK'}$, which couples orbital states with same spin from different shells, and appears as anticrossings at finite field [e.g., the arrows in Figs. 3(b) and 3(f)]. On the other hand, crossings for states of different spins [e.g., the arrow in 3(f)] indicate that spin-flip scattering is suppressed [20].

The orbital couplings not only modify the internal level structure, but they also induce B_{\parallel}-dependent tunnel couplings, as shown in Fig. 3(d). These effective Γ’s are calculated from the eigenstates of the two-shell model using the bare tunnel amplitudes. At zero field, the doubletss arrange in strongly and weakly coupled doublets, but as the field is increased, the couplings nonmonotonically approach the original couplings of the shells. (See the horizontal arrows—The valence band shell at larger negative V_{gate} is more strongly coupled, as often seen in nanotubes.) The nonmonotonic coupling behavior is also observed in the data of Fig. 3(c). For instance, the leftmost Coulomb peak in the red square initially broadens and then becomes very narrow at high fields, in agreement with Fig. 3(d) (solid blue line). It is also seen that the tunnel couplings of the inner two doublets in Fig. 3(a) interchange at low fields [see the dotted vertical arrows in Fig. 3(d)], qualitatively consistent with Fig. 3(c), where the widths of the narrowest Coulomb peaks (two leftmost in the red square) become the broadest as the field is increased. Whereas the quantitative details of Fig. 3(d) depend on the phases of the orbital couplings [11], the agreement with the experiment is better assessed by comparing the overall features to an fRG calculation based on the level structure and tunnel couplings.

The fRG calculated linear conductance [7,11] including inter and intrashell orbital couplings, spin-orbit couplings, and the charging energy U_c is shown in Fig. 3(g) [compare to the square in Fig. 3(c)]. Only the relevant and correctly modeled inner four levels are kept. After we choose appropriate intrashell coupling phases, the calculation reproduces the weak and strong Kondo resonances, the non-monotonic magnetic-field dependent Coulomb peak widths, as well as Kondo ridges in Coulomb blockade at finite fields. Interestingly, the finite field Kondo ridges are

FIG. 2 (color online). (a)–(c) Charge stability diagrams at $B_{\parallel} = 0, 1, 2$ T showing that the gate dependence (originating from differently coupled doublets) of the inelastic cotunneling threshold vanishes as the parallel field is increased in accordance with the field dependence of the doublet coupling asymmetry [see (d)]. (d) Extracted lead couplings from Coulomb peak widths. (Γ_{ave} at $B_{\parallel} = 0$ for the lower doublet is a rough estimate, since the fitting formula is not valid in the Kondo regime [11]).

TABLE: Coulomb peak widths at finite B_{\parallel}

<table>
<thead>
<tr>
<th>B_{\parallel} (T)</th>
<th>Γ_{ave} (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

FIG. 1: (a) Charge stability diagrams at $B_{\parallel} = 0, 1, 2$ T showing the gate dependence (originating from doublet couplings of the shell) of the inelastic cotunneling threshold vanishes as the parallel field is increased in accordance with the field dependence of the doublet coupling asymmetry [see (d)]. (d) Extracted lead couplings from Coulomb peak widths. (Γ_{ave} at $B_{\parallel} = 0$ for the lower doublet is a rough estimate, since the fitting formula is not valid in the Kondo regime [11]).
seen to be gate dependent, thus giving rise to a V_{gate} controlled spin ground state transition \[21,22\] consistent with different tunnel couplings of the states involved \[11,23\]. Note that, in the $T = 0$ calculation, left-right asymmetric level-lead couplings (corresponding to a higher linear conductance than in the experiment) were chosen to anticipate a suppression at finite T \[24\].

In conclusion, we have shown that the doubllets formed in a nanotube shell in presence of disorder-induced valley mixing may have different tunnel couplings to the leads. Furthermore, this difference is modified by applying a parallel magnetic field. The linear conductance fRG results for a two-shell model show good agreement with experiments.

We are grateful to P.E. Lindelof and acknowledge help from N. Kumada, Y. Tokura, J.R. Hauptmann, and T.S. Jespersen. This work was supported by FOR 912 of the DFG (S.G., S.A., and V.M.).

The narrow Kondo ridges were suppressed in B_{\parallel} sweeps due to a slightly increased T and insufficient resolution.

[18] A four-shell model is needed to account for the crossing behavior [11], but the effect on tunnel couplings in a multishell system is best illustrated in the simpler case of a two-shell model.

[19] The excitations are calculated from the energy difference between the ground and excited states in Fig. 3(a).

[20] In the model, the recently understood spin-orbit coupling identified by the low field and bias behavior [4] is also included, however, only slightly modifying the energy spectra.

[24] The narrow $B_\parallel = 0$ Kondo ridge has a small Kondo temperature and is suppressed in the experiment.

[25] Shell parameters are fixed by the fitting $\{\Delta E, |\Delta_{KK^1}|, |\Delta_{KK^2}|, |\Delta_{KK^1K^2}|, |\Delta_{SO}| = \{3.05, 0.55, 0.7, 0.15, 0.075\}$ meV and $g_{orb} = 5.1$. Right and left bare couplings $\{\Gamma_1^R, \Gamma_2^R, \Gamma_1^L, \Gamma_2^L\} = \{0.56, 0.17, 0.17, 0.05\}$ meV, orbital coupling phases $\{\phi_1, \phi_2, \phi_{12}\} = \{0.85\pi, 0.85\pi, 0\}$, and $U_c = 4$ meV are used in the fRG calculation.