Search for high-mass resonances in final states with a -lepton and missing transverse momentum with the ATLAS detector

Aad, G.; Abbott, B.; Abbott, DC; Abud, AA; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Abusleme Hoffman, A. C.; Dam, Mogens; Camplani, Alessandra; Hansen, Peter Henrik; Hansen, Jørn Dines; Hansen, Jørgen Beck; Ignazzi, Rosanna; Petersen, Troels Christian; Wiglesworth, Graig; Xella, Stefania; ATLAS Collaboration

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.109.112008

Publication date:
2024

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Search for high-mass resonances in final states with a τ-lepton and missing transverse momentum with the ATLAS detector

G. Aad et al.*

(ATLAS Collaboration)

(Received 27 February 2024; accepted 18 April 2024; published 10 June 2024)

A search for high-mass resonances decaying into a τ-lepton and a neutrino using proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV is presented. The full run 2 data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment in the years 2015–2018 is analyzed. The τ-lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between the τ-lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on the W' production cross section. Heavy W' vector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard Model W boson. For nonuniversal couplings, W' bosons are excluded for masses less than 3.5–5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross section times branching ratio are determined as a function of the lower threshold on the transverse mass of the τ-lepton and missing transverse momentum.

DOI: 10.1103/PhysRevD.109.112008

I. INTRODUCTION

Multiple theories beyond the Standard Model (SM) predict the existence of additional charged or neutral heavy vector gauge bosons, W' or Z', that may be observable at the Large Hadron Collider (LHC). The sequential Standard Model (SSM) [1] is a flavor-universal benchmark model that assumes the couplings of the W' and Z' bosons to fermions are identical to those of the W and Z bosons in the SM. Other models that are investigated in this paper are referred to as nonuniversal gauge interaction models (NUGIM) [2–5], which can exhibit different couplings for the three lepton generations.

Searches for new heavy gauge bosons decaying into τ-lepton final states are mainly motivated by models that violate lepton universality, such as the NUGIM. An example is the extension of the electroweak gauge group by an additional SU(2) symmetry group. The first and second generation of fermions can transform under one SU(2) symmetry group, while the third generation of fermions can transform under the additional one. At some energy scale, the extended symmetry is spontaneously broken to the SM electroweak gauge symmetry and the W' and Z' bosons appear as massive particles. The non-universality of the W' couplings to the SM fermions is parametrized by an angle parameter, θ_{NU}, which is used to scale the couplings to the first and second generations of fermions by $\tan\theta_{\text{NU}}$ and the couplings to the third generation by $\cot\theta_{\text{NU}}$. For $\cot\theta_{\text{NU}} = 1$, the model’s couplings are identical to those of the SSM, while values of $\cot\theta_{\text{NU}} > 1$ enhance the couplings to the third generation. The total decay width relative to the W' boson mass in the NUGIM depends on its mass and the value of $\cot\theta_{\text{NU}}$, and it spans from approximately 3% in the SSM limit to 31%–36%, depending on the W' mass, for larger $\cot\theta_{\text{NU}}$.

Alternative models associate the two SU(2) groups with a left-right symmetry [6–8]. The left-symmetry exhibits itself in the electroweak theory and is associated with the parity violation observed in the weak interaction. The right-symmetry has not been observed at the energies probed to date; thus it must be broken at some energy scale and through spontaneous symmetry breaking the new, right-handed W' and Z' bosons become massive.

The ATLAS experiment has searched for W' bosons in the light-lepton, $W' \to \ell\nu(\ell = e, \mu)$ [9], and τ-lepton, $W' \to \tau\nu$ [10], channels. The light-lepton searches generally have a better sensitivity than $W' \to \tau\nu$ for models with universal couplings to fermions because they suffer from less SM background and are enhanced by better lepton reconstruction and identification efficiency. With data collected in the years 2015–2018, corresponding to an

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
The ATLAS detector [15–17] at the LHC is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic (EM) and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range |η| < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide EM energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range (|η| < 1.7). The end cap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to |η| = 4.9. The muon spectrometer surrounds the calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level trigger system is used to select events [18,19]. The first-level trigger is implemented in hardware and uses a subset of the detector information to accept events at a rate below 100 kHz. This is followed by a software-based high-level trigger (HLT) that reduces the accepted event rate to 1 kHz on average depending on the data-taking conditions.

An extensive software suite [20] is used in data simulation, in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

II. ATLAS DETECTOR

The ATLAS detector [15–17] at the LHC is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic (EM) and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range |η| < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide EM energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range (|η| < 1.7). The end cap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to |η| = 4.9. The muon spectrometer surrounds the calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level trigger system is used to select events [18,19]. The first-level trigger is implemented in hardware and uses a subset of the detector information to accept events at a rate below 100 kHz. This is followed by a software-based high-level trigger (HLT) that reduces the accepted event rate to 1 kHz on average depending on the data-taking conditions.

An extensive software suite [20] is used in data simulation, in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

III. SIGNAL AND BACKGROUND SAMPLES

Signal events of \(W^+ \rightarrow \tau^+ \nu \) decays were generated at leading order with the PYTHIA 8.212 [21] event generator and the NNPDF2.3LO parton distribution function (PDF) set [22]. The A14 set of tuned parameters (tune) [23] was used to simulate the parton shower and the hadronization process. The TAUOLA v2.9 package [24] was used for the simulation of the τ-lepton decays.

The \(W^+ \) signal events were generated with invariant mass of the \(\tau^+ \nu \) system above 25 GeV. The event generation used an artificially biased phase space sampling to generate more events at high invariant masses. Signal events for various resonance masses in the range of 500 GeV to 6000 GeV were modeled by reweighting this sample using a leading-order matrix-element (ME) calculation. For the NUWIM signals, depending on the values of cot \(\theta^\text{NU} \) and resonance mass, the total decay width of the \(W^+ \) bosons increased up to 36%, which affects the signal acceptance. \(W^+ \) decays into boson pairs (WZ, Wh) were neglected in the calculation of the total decay width. This impacts the total decay width by less than 7%. Very large values of cot \(\theta^\text{NU} \) (>5.5) are not studied as the model becomes nonperturbative in this region. The signal cross section is corrected for account for next-to-next-to-leading-order (NNLO) quantum chromodynamics (QCD) effects by mass-dependent \(k \)-factors. The NNLO QCD effects in the \(k \)-factors were calculated using VRAP v0.9 [25] and the CT14NNLO PDF set [26]. Electroweak corrections as well as interference...
between W and W' bosons are expected to be model-dependent and are not considered.

The SM background to this search is divided into events where the selected τ-lepton candidate originates from a quark- or gluon-initiated jet (jet background) and those where it does not (nonjet background). The jet background is primarily due to $W/Z + j$, mainly $Z(\rightarrow \nu \nu) + j$, and multijet production and is estimated from data. The nonjet background is estimated by using simulation and mainly originates from $W \rightarrow \tau \nu$ production. Additionally, smaller contributions come from $W/Z/\gamma^* \rightarrow$ leptonic final states, top-quark ($t\bar{t}$ and single top-quark) production, and diboson (WW, WZ, and ZZ) production, collectively referred to as other background. The generators and software packages used for the simulation of the background samples are summarized in Table I. In addition, quantum electrodynamics (QED) final-state radiation in $W=Z=\gamma$ processes is included in the simulated and response using the GEANT4 framework.

IV. ANALYSIS STRATEGY AND EVENT SELECTION

The efficient selection of high-mass $W' \rightarrow \tau \nu$ decays and the suppression of backgrounds requires an accurate identification of hadronic τ-lepton decays, the reconstruction of their transverse momentum and the reconstruction of the missing transverse momentum, which are used to build the final discriminating variable for this search.

The interaction vertices from pp collisions are reconstructed from inner detector tracks with transverse momenta $p_T^{\text{track}} > 0.5$ GeV that originate from the beam collision region in the transverse plane. In presence of several primary vertices, the hard-scatter primary vertex is chosen as the interaction vertex with the highest sum of squared p_T^{track}. Events with no hard-scatter primary vertex are rejected. Additionally, the candidate events are required to satisfy standard data-quality criteria.

The τ-lepton is reconstructed from its hadronic decay products. Hadronic τ-lepton decays are composed of a neutrino and a set of visible decay products ($\tau_{\text{had-vis}}$), typically one or three charged pions and up to two neutral pions. The reconstruction of the visible decay products is seeded by jets reconstructed from topological clusters of energy depositions in the calorimeter. The reconstruction of $\tau_{\text{had-vis}}$ candidates is detailed in Refs. 57,58.

The $\tau_{\text{had-vis}}$ candidates are required to have transverse momentum $p_T^{\tau_{\text{had-vis}}} > 30$ GeV and $|\eta| < 2.4$ (excluding the region $1.37 < |\eta| < 1.52$). They are required to have one (1-prong) or three (3-prong) associated tracks within the core region of $\Delta R < 0.2$ around the $\tau_{\text{had-vis}}$ axis and an electric charge of $|Q| = 1$. The prompt charged-particle tracks within the core region are classified using boosted decision trees (BDT) against other tracks that can originate from other sources (such as tracks from photon conversions, underlying events or pileup), which increases the reconstruction efficiency of the high-p_T $\tau_{\text{had-vis}}$ relative to the previous analysis.
Only the candidate with the highest transverse momentum in the event is selected.

Hadronic τ-lepton decays are identified with a recurrent neural network (RNN) algorithm [59] based on calorimetric shower shape and tracking information to suppress backgrounds from quark- or gluon-initiated jets that are reconstructed as τ-lepton candidates. Since the jet background for high W' masses is small, loose criteria are used for the τ-lepton identification to maintain a high signal efficiency. The chosen loose working point of the τ-lepton identification has an efficiency of 85% for 1-prong candidates and 75% for 3-prong candidates. At the same time, the loose working point provides a jet background rejection factor of at least 21 for 1-prong candidates and 90 for 3-prong candidates. For the separation of 1-prong τ-lepton candidates from misidentified electrons, a dedicated discriminant based on a BDT [58] is used with an efficiency of 95% and an electron background rejection factor of 50–100, depending on the pseudorapidity.

Events with a reconstructed electron [60] or muon [61] are rejected. This lepton veto makes use of loose electron and muon identification criteria and considers lepton candidates with transverse momenta above 20 GeV. The electrons are required to be reconstructed with |η| < 2.47 (excluding 1.37 < |η| < 1.52) while muons are required to be reconstructed with |η| < 2.5. Electrons and muons are required to have tracks associated with the primary vertex with longitudinal impact parameter |z_0| sin θ < 0.5 mm and transverse impact parameter significance |d_0/σ(d_0)| < 5 for electrons and |d_0/σ(d_0)| < 3 for muons, where σ(d_0) is the measured uncertainty in d_0.

Jet candidates are reconstructed from topological clusters of energy deposition in the calorimeter [56] using the anti-k_t algorithm [62,63] with a radius parameter R = 0.4. They are calibrated using simulation with corrections obtained from in situ techniques in data [64]. Jets are required to have a transverse momentum above 20 GeV and a pseudorapidity in the range of |η| < 4.5. To reduce the effect of pileup on jets with transverse momenta less than 60 GeV, the jet vertex tagging (JVT) and forward jet vertex tagging (fJVT) algorithms [65,66] are used for jets with |η| < 2.5 and 2.5 < |η| < 4.5, respectively, to determine the likelihood of the jet originating from the hard-scattering vertex. Jets enter indirectly in the analysis through the calculation of the missing transverse momentum of the event.

The events are required to satisfy criteria designed to reduce noncollision backgrounds from cosmic rays, single-beam-induced events and calorimeter noise [67]. To further suppress single-beam-induced background, the τ_had-vis candidate must have at least one associated track with transverse momentum greater than 10 GeV.

The missing transverse momentum with magnitude E_T^miss is calculated as the negative vectorial sum of the transverse momenta of all reconstructed objects in the event. In addition, a soft term [68] is added to account for the contribution from tracks that originate from the primary vertex but are not associated with the reconstructed objects.

Events were selected by triggers that required E_T^miss to be above a threshold of 70, 90 or 110 GeV, depending on the data-taking period [69]. The offline-reconstructed E_T^miss is required to be at least 150 GeV, motivated by the high W' masses (~0.5–6 TeV) considered in this search, to suppress multijet background and to minimize the uncertainty in the trigger efficiency. The trigger efficiency for this offline threshold is about 80% and increases to more than 99% for E_T^miss > 200 GeV. Single τ-lepton triggers were not used because they provide similar offline thresholds as the E_T^miss triggers, but also include a τ-lepton identification step at the HLT. The latter can result in a bias in the data selection and consequently the jet background estimation, which is described in Sec. V.

Correction factors are applied to simulation to account for differences observed in the detector response between data and MC. This includes corrections for the τ-lepton reconstruction and identification efficiencies, as well as the energy and momentum scales and resolutions of the reconstructed objects [58,64,70]. Additional corrections are derived for τ-lepton candidates with p_T^had-vis above 100 GeV that have a long flight length in the detector since the direct interaction of τ-leptons with the detector is not included in the simulation. More than 50% of the τ-leptons with p_T^had-vis > 100 GeV decay after a flight distance of 30 mm in the transverse plane, which corresponds to the innermost layer of the ATLAS detector. The corrections are determined by comparing the reconstruction and identification efficiencies for the selected W' → τν sample with a dedicated simulated sample that includes direct interactions of τ-leptons with the detector. The missing transverse momentum trigger efficiencies are measured with Z(→ μμ) + jets events, where the jet is reconstructed as a τ-lepton candidate, exploiting the fact that muons typically deposit only a small fraction of their energy in the calorimeter. The trigger efficiencies are measured in data and simulation after removing the muons from the E_T^miss calculation, which results in similar event topologies to those studied in this paper.

Additional kinematic selection criteria are applied to further reduce multijet background. As the W' bosons are typically produced with low transverse momenta, the τ-lepton and the neutrino from the W' decay are produced back-to-back in the transverse plane and have approximately balanced transverse momenta. Due to the large W mass and the resulting boost of the τ-lepton and its decay products, the direction of the neutrino from the τ-lepton decay is close to the original direction of the τ-lepton. The neutrino from the τ-lepton decay thus partially cancels the missing transverse momentum caused by the prompt neutrino from the W' decay. As a result, the τ_had-vis candidate and the missing transverse momentum are also preferentially balanced. Therefore, the azimuthal angle between the τ-lepton candidate and the missing transverse
momentum, $\Delta \phi_{\text{had-vis}, E_T^{\text{miss}}}$, is required to be larger than 2.4 radians and their transverse momentum ratio to be in the range of $0.7 < p_T^{\text{had-vis}}/E_T^{\text{miss}} < 1.3$.

The selection criteria discussed above define the signal region (SR) of the $W' \rightarrow \tau \nu$ search. The selection acceptance times efficiency, $\mathcal{A} \times \mathcal{E}$, is approximately 8% for a low-mass resonance with $m_{W_{SSM}^0} = 500$ GeV and is mainly affected by the trigger and E_T^{miss} requirements of the SR. For higher resonance masses near 2.5 TeV, the $\mathcal{A} \times \mathcal{E}$ increases to approximately 25%. Due to the event selection requirements and the increased production of off shell W' bosons at lower invariant mass, the selection $\mathcal{A} \times \mathcal{E}$ decreases for $m_{W_{SSM}^0}$ above 3 TeV and reaches approximately 16% for resonance masses at 6 TeV. An overview of the selected event yields is given in Table III. A summary of the event selection and the region requirements is given in Table II. In addition to the SR, three control regions (CR1, CR2, and CR3), as defined in Sec. V, are used to obtain a data-driven estimate of the jet background and a validation region (VR) is used to validate the SM background in the high-m_T region.

The transverse mass of the reconstructed $\tau_{\text{had-vis}}$ candidate and E_T^{miss}, m_T, defined as

$$m_T = \sqrt{2p_T^{\text{had-vis}}E_T^{\text{miss}}(1 - \cos \Delta \phi_{\text{had-vis}, E_T^{\text{miss}}})}$$ \hspace{1cm} (1)$$

is used to further separate the signal from backgrounds as a high-mass W' is expected to produce events at higher m_T values. Due to the presence of the additional neutrino from the τ-lepton decay, the distribution of the transverse mass for the signal process is not expected to show a Jacobian peak. The separation between signal and background uses a profile likelihood based on the m_T distribution, as described in Sec. VII.

V. JET BACKGROUND ESTIMATION

While all nonjet backgrounds in this analysis are estimated by using simulation, the jet background is estimated by using simulation, the jet background is estimated...
by using a data-driven approach since the misidentification of jets as τ-lepton candidates is not well modeled by the simulation. In this approach, the jet background is determined from data events that fail to satisfy the τ-lepton identification requirement of the signal region and is transferred to the signal region using dedicated transfer factors measured in independent control regions.

Three control regions are defined. The events in the first control region (CR1) are required to satisfy the same selection criteria as for the signal region but fail to satisfy loose and satisfy very loose τ-lepton identification. The very loose τ-lepton identification working point corresponds to a 95% signal efficiency and 9.9 and 16 background rejection factors for 1-prong and 3-prong τ-had-vis candidates, respectively. The other two control regions are enriched in dijet events. For the definition of these regions, the requirement on $p_{\tau\text{had-vis}}^T = E_{\text{miss}}^T$ is removed, and the missing transverse momentum must not exceed 100 GeV, while the other selection criteria remain the same as for the signal region. For one of these two control regions the τ-lepton candidate must satisfy loose τ-lepton identification (CR2), while for the other it must fail to satisfy loose but satisfy very loose τ-lepton identification (CR3). In all three control regions, the nonjet background is subtracted using simulation. The signal contamination in all three regions is small and is neglected.

The transfer factors, F_{ij}, correspond to the ratio of events in CR2 and CR3 and are shown in Fig. 1. They are measured in intervals of $p_{\tau\text{had-vis}}^T$ (denoted by index i), and separately for 1-prong and 3-prong τ-lepton candidates (denoted by index j). Further dependence on other observables, such as the τ-had-vis η or the event’s trigger, is found to give negligible effects and is not considered. The transfer factors measured in the $p_{\tau\text{had-vis}}^T$ interval of 350 to 500 GeV are also used for reweighting events with $p_{\tau\text{had-vis}}^T$ above 500 GeV. The number of jet background events in the signal region, $N_{\text{jet}}^{\text{SR}}$, is computed from the number of data events in CR1 using these transfer factors,

$$N_{\text{jet}}^{\text{SR}} = \sum_{i,j} \left(N_{\text{data}}^{\text{CR1,ij}} - N_{\text{nonjet}}^{\text{CR1,ij}} \right) F_{ij},$$

where $F_{ij} = \frac{N_{\text{data}}^{\text{CR2,ij}} - N_{\text{nonjet}}^{\text{CR2,ij}}}{N_{\text{data}}^{\text{CR3,ij}} - N_{\text{nonjet}}^{\text{CR3,ij}}}$.

The jet background estimate is validated in a VR with $p_{\tau\text{had-vis}}^T / E_{\text{miss}}^T < 0.7$ and $m_T > 240$ GeV. The data and estimated backgrounds are found to be compatible within the uncertainties, as shown in Fig. 2.
Due to the small number of events at high m_T in CR1, where the signal events are located, a function of the form $f(m_T) = A m_T^B$ with free parameters A and B is fitted to the m_T distribution in the range of $450 < m_T < 1200$ GeV. This function is used to parametrize the background shape for $m_T > 500$ GeV and is extrapolated for $m_T > 1200$ GeV. Effects arising from kinematic suppressions, such as from the parton distribution functions, are neglected in this simple extrapolation, as the jet background for $m_T > 1200$ GeV contributes to less than 15% of the total SM background and does not affect the analysis results. Figure 3 shows the m_T distribution of the jet background estimate before and after performing the functional fit. The statistical uncertainty in the fitted function is determined by pseudo-experiments from the jet background distribution and performing a fit with the same function.

The data and estimated backgrounds are found to be compatible within the uncertainties for all observables used for the event selection. Figure 4 shows the distributions of the $\tau_{\text{had-vis}}$ transverse momentum, the missing transverse momentum in the event, and the azimuthal angle between the $\tau_{\text{had-vis}}$ candidate and the missing transverse momentum, in the signal region.

The estimation of the jet background is based on the assumption that the derived transfer factors calculated from control regions are applicable for the signal region. Systematic uncertainties are assigned to account for any residual correlations between the transfer factor and the E_{miss}^T criteria in the control region definitions that would arise if the jet composition differs between CR1 and CR2/CR3. They are evaluated by repeating the jet background estimation using modified control region definitions. The lower E_{miss}^T thresholds are varied from 0 to 70 GeV and the upper threshold from 100 to 150 GeV, and the largest difference in each bin is taken as systematic uncertainty. The statistical uncertainty in the transfer factor measurement is propagated from the control regions into the signal regions by using pseudoexperiments. The uncertainty from the subtraction of nonjet contamination in the control regions is found to be small and corresponds to an uncertainty in the jet background yields in the m_T distribution of 2%–5%. The uncertainty due to differences between the quark/gluon fraction of CR1 and CR3 is found to impact the jet background yields in the m_T distribution by 3%–13%. It is determined by reweighting the data in CR1 before obtaining the jet background estimate.
The reweighting is performed such that the distribution of the τ-lepton candidate’s jet seed width2 has a similar shape for the two regions. The reweighting is also parametrized as a function of the τ-lepton candidate’s $p_T^{\text{had-vis}}$ and the number of associated tracks used to capture the transfer factor differences.

The uncertainty from applying a constant transfer factor for $p_T^{\text{had-vis}} > 350$ GeV is determined from a recalculation of the transfer factors for an extension of the measurement to transverse momenta of 1 TeV. The uncertainty due to the extrapolation of the jet background estimate for $m_T > 500$ GeV is evaluated by comparing the nominal estimate with the one obtained when modifying the functional form using an alternative fit function ($f(m_T) = A m_T^{B+C \log m_T}$, with free parameters A, B, and C), which also yields a good fit quality. Additional extrapolation uncertainties are considered by varying the lower and upper boundaries of the fit range of the functional form by ± 50 GeV and rebinning the m_T distribution of the jet background before performing the functional fit. The total uncertainty in the jet background estimate ranges from 4% at $m_T = 200$ GeV to 94% at $m_T = 2$ TeV, where, however, the jet background level is low. For low m_T the uncertainty is mainly due to the subtraction of nonjet background contamination, while for high m_T, above 800 GeV, is mainly due to the alternative fit function.

A summary of the systematic uncertainties in the jet background estimate for different m_T regions is given in Table IV.

VI. SYSTEMATIC UNCERTAINTIES

The uncertainties in the data-driven estimate of the jet background have already been discussed in Sec. V. In this section, the systematic uncertainties due to reconstruction effects and the uncertainties of simulated nonjet background modeling are discussed. Specifically, uncertainties in the detector simulation impact the reconstruction, identification and trigger efficiencies as well as the energy scales and resolutions of reconstructed objects.

The uncertainty in the E_{miss} energy scale is 3%–4% [58]. The impact of this uncertainty is found to vary with m_T, from 2% at $m_T = 200$ GeV to 10% at $m_T = 2$ TeV for a signal with $m_{\text{WSSM}} = 5$ TeV, from 10% to 40% for $W \rightarrow \tau \nu$ and from 15% to 45% for the other backgrounds. It is the overall largest systematic uncertainty for the simulated backgrounds. The uncertainty in the τ-lepton identification efficiency is 5%–6%, as determined from measurements of $Z \rightarrow \tau\tau$ events. For higher transverse momenta outside of the range that can be probed with $Z \rightarrow \tau\tau$ decays, an additional uncertainty that increases by 9% per TeV for 1-prong and 6% per TeV for 3-prong candidates is used, in accordance with studies of high transverse-momentum jets [71]. The uncertainty in the electron veto efficiency is found to be 2%, independent of m_T.

The uncertainty in the factors used to correct for the absence of direct interactions of τ-leptons with the detector material in the simulation is due to the limited number of the generated events and to small differences between the nominal correction factors and those obtained from an alternative simulated sample ($\gamma^* \rightarrow \tau\tau$). This impacts the m_T distribution of the simulated signal and SM backgrounds, with uncertainty that varies from 0.5% at $m_T = 200$ GeV to 2% at $m_T = 3$ TeV. The E_{miss}^τ trigger efficiency has an uncertainty of about 5% for offline-reconstructed E_{miss}^τ of 150 GeV that decreases to below 1% for larger E_{miss}^τ values. It is determined by the statistical uncertainties in the trigger correction factors measured in the $Z(\rightarrow \mu\mu) +$ jets events and from the difference between correction factors measured in $W(\rightarrow \mu\nu) +$ jets and $t\bar{t}$ events. The overall impact of the trigger scale factor uncertainties (statistical and systematic) on the signal and background yields is 10% at low m_T and becomes negligible above 1 TeV.

Although jets are not directly used in this analysis, their energy scale and resolution uncertainties affect the E_{miss}^τ reconstruction and lead to variations of the background yields of 1%–2% for signal and $W \rightarrow \tau\nu$ and 2%–10% for

Table IV. Summary of the uncertainties in the jet background estimate. The “…” symbol indicates that the uncertainty source is not applicable in the relevant m_T range.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>Relative uncertainty in the jet background [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$200 \text{ GeV} < m_T < 300 \text{ GeV}$</td>
</tr>
<tr>
<td>Nonjet background subtraction</td>
<td>$+2/-3$</td>
</tr>
<tr>
<td>Variation of E_{miss}^τ thresholds</td>
<td>± 2</td>
</tr>
<tr>
<td>Quark/gluon ratio differences</td>
<td>± 3</td>
</tr>
<tr>
<td>Extrapolation of transfer factor</td>
<td>± 2</td>
</tr>
<tr>
<td>Alternative fit function</td>
<td>...</td>
</tr>
<tr>
<td>Lower fit range ± 50 GeV</td>
<td>...</td>
</tr>
<tr>
<td>Higher fit range ± 50 GeV</td>
<td>...</td>
</tr>
<tr>
<td>m_T rebinning</td>
<td>...</td>
</tr>
</tbody>
</table>

2The τ-lepton candidate’s jet seed width corresponds to the width of the jet that seeded the τ-lepton reconstruction.
The other simulated backgrounds. In addition, uncertainties related to the scale and resolution of the missing transverse energy soft term are evaluated. They lead to variations of 0.5%–2% for signal and backgrounds, depending on \(m_T \). Uncertainties associated with the reconstruction of electrons and muons have a negligible impact.

The uncertainty of the combined integrated luminosity for the period 2015–2018 is 1.7% [72], obtained using the LUCID-2 detector [73] for the primary luminosity measurements. The impact of the uncertainties on the pileup contribution in simulation yields a systematic uncertainty of less than 1% for signal and simulated backgrounds.

Theoretical uncertainties in the \(W \) and \(Z/\gamma^* \) differential production cross sections arise from PDF uncertainties, the uncertainty in the value of the strong coupling constant, \(\alpha_s \), and higher-order corrections. The strong coupling constant is varied to 0.118 [74] from the nominal value of \(\alpha_s(m_Z) = 0.13 \) used in the CT14NNLO PDF set. Additional uncertainties are estimated by simultaneously varying up and down the renormalization (\(\mu_R \)) and factorization (\(\mu_F \)) scales of the CT14NNLO PDF set by a factor of 2. A single nuisance parameter is used to quantify the uncertainty due to the PDF. It is evaluated by the 90% CL eigenvector variations of the CT14NNLO PDF as described in Ref. [75]. An additional uncertainty is derived due to the choice of the nominal PDF set, by comparing the values of CT14NNLO to those of ATLAS-epWZ16 [76] and NNPDF3.0 PDFs, following standard prescriptions as in Ref. [75]. The maximum absolute deviation from the envelope of these comparisons is used as the PDF choice uncertainty, when it is larger than the CT14NNLO PDF eigenvector variation envelope. The uncertainty in the electroweak correction is assessed by comparing the multiplicative scheme \([(1 + \delta_{QCD}) \times (1 + \delta_{EW})]\) with the additive scheme \((\delta_{QCD} + \delta_{EW})\), where the NNLO QCD corrections, \(\delta_{QCD} \), and the NLO electroweak corrections, \(\delta_{EW} \), are determined as described in Ref. [9]. The additive approach is taken as the nominal value and its difference from the multiplicative approach is taken as a symmetric uncertainty. For the \(Z/\gamma^* \) processes, an uncertainty to the photon-induced correction is derived by the taking into account uncertainties of the photon PDF and quark masses. The total cross section uncertainty, once the theory uncertainties are combined in quadrature, varies with the transverse mass from 5% (at \(m_T = 200 \) GeV) to 20% (at \(m_T = 3 \) TeV) for \(W \to \tau \nu \) and from 2% to 20% for the other backgrounds, as they contain \(W \to \ell \nu \) and neutral-current Drell–Yan processes. For the \(W \to \tau \nu \) signal, the theory uncertainty increases from 4% to 50% with \(m_T \) and \(W \) mass. The theory uncertainty is not applied on the signal.

The \(tt \) cross section has been calculated to NNLO and has an uncertainty of 5%–6% [77,78]. The single-top cross sections (\(s, t \) and \(Wt \) channels) have uncertainties of 3%–5% [79,80]. Uncertainties due to the modeling of hard scattering, fragmentation, interference and additional radiation for the top-quark processes are also considered. They are determined by comparing alternative MC samples with different settings. A cross section uncertainty of 10% is used for diboson production [81,82] and of 5% for \(Z(\to \nu \bar{\nu}) + \text{jets} \) production [83]. All these result in a total uncertainty in the other background of approximately 10%–15%.

The impact of these systematic uncertainties in the total background yields as a function of \(m_T \) is shown in Fig. 5.

VII. RESULTS

For the statistical analysis of the data, a profile-likelihood fit to the \(m_T \) distributions of signal and background is performed. For the signal, binned \(m_T \) distributions for a series of \(W \) masses in the range of 500 GeV < \(m_W \) < 6000 GeV are used. A profile-likelihood ratio is used as the test statistic. The likelihood functions in the ratio are products of Poisson probabilities over all bins in the \(m_T \) distribution. Systematic uncertainties are included in the fit as nuisance parameters constrained by Gaussian prior probability density functions. The theory uncertainties in the signal are not included as nuisance parameters but are shown as an uncertainty band on the predicted \(W \) cross section. In the numerator of the likelihood ratio, the likelihood function is maximized assuming the presence of a signal above the expected background, while in the denominator the background-only hypothesis is assumed. Upper 95% CL limits on the signal normalization are derived using a modified frequentist confidence level
The p-values for the signal-plus-background (p_{s+b}) and background-only (p_b) hypotheses are determined using asymptotic formulas [85].

The m_T distribution after the profile-likelihood fit to data under the background-only hypothesis is shown in Fig. 6. There is good agreement between the data and total background estimates. Since no significant deviation from the SM expectation is observed, upper limits on the cross sections for the different signal mass hypotheses are derived. The exclusion limits on the product of cross section and branching fraction for $W_0 \rightarrow \tau \nu$ as a function of the W_0 mass in the SSM are shown in Fig. 7(a). This search excludes the signal for W_0 masses up to 5.0 TeV at 95% CL. The expected limit is 4.9 TeV. For high signal masses (>4 TeV), the validity of the asymptotic formulas was tested against pseudoexperiments, resulting in an increase of the observed upper limits of less than 8%. The analysis for W_0 boson masses above 2 TeV remains statistically limited and would benefit from increased integrated luminosity and improved reconstruction of high-$p_T \tau$-had-vis.

Upper exclusion limits on the production cross section times branching ratio are also determined for NUGIM with $1 \leq \cot \theta_{NU} \leq 5$. W_0 bosons with masses in the range of 3.5 to 5.0 TeV, depending on $\cot \theta_{NU}$, are excluded at 95% CL as shown in Fig. 7(b).

The calculation of the upper limits for the SSM and NUGIM assume certain shapes of the m_T distributions for

\[
CL_s = \frac{p_{s+b}}{1 - p_b} \quad [84].
\]

FIG. 6. Distribution of the transverse mass, m_T, in the signal region after the likelihood fit to data (postfit) under the background-only hypothesis. The uncertainty band (hatched) shows the total statistical and systematic uncertainty. The m_T distributions of a W' signal with mass of 4 TeV within the SSM (red solid line) and NUGIM with $\cot \theta_{NU} = 5.5$ (dark green dotted line) are overlaid. The significance of the data given the SM expectation and its uncertainty is given in the lower panel. It is determined independently per bin and is computed as described in Ref. [86].

FIG. 7. (a) Observed (black markers) and expected (black dashed line) 95% CL upper limits on the cross section times branching ratio ($\sigma \times B$) as a function of the W' mass in the SSM. The inner and outer bands show the ±1 and ±2 standard deviations, respectively, of the expected limit. The solid red line represents the theoretical cross section and the dashed red lines represent its theoretical uncertainty for the SSM signal. The blue hatched line indicates the observed 95% CL upper limits on $\sigma \times B$ of the previous ATLAS $\tau\nu$ [10] search. (b) Observed 95% CL lower limit on the W' mass as a function of the parameter $\cot \theta_{NU}$ describing the coupling to the third generation. The blue shaded area represents the exclusion limits set by this analysis of the full run 2 data sample of ATLAS. For the same data sample, the exclusion limits set by the $W' \rightarrow \ell \nu$ search [9] are also shown as blue forward hatched line. The observed limits from the previous ATLAS $\tau\nu$ [10] (purple diagonal crosses) and $\tau\tau$ [71] (red backward hatched line) searches with 36.1 fb$^{-1}$ are overlaid for comparison. The W' and Z' bosons are assumed to be degenerate in mass. Indirect limits at 95% CL from fits to electroweak precision measurements (EWPT) [12], lepton flavor violation (LFV) [13], CKM unitarity [14] and the Z-pole data [2] are also overlaid.
the signal. However, alternative models that also result in a \(\tau + E_T^{\text{miss}} \) final state can have different signal shapes. For this reason, model-independent limits are provided, which are calculated as upper limits on the signal yields above certain transverse mass thresholds, \(m_T^{\text{thresh}} \), from 0.2 TeV to 2.95 TeV. For \(m_T^{\text{thresh}} \) above 1.5 TeV the limits are calculated using pseudo-experiments because the expected and observed numbers of events drop considerably. Figure 8 shows the 95% CL upper limits on the visible cross section, \(\sigma(p p \rightarrow \tau + E_T^{\text{miss}} + X) \times A \times \epsilon \), as a function of \(m_T^{\text{thresh}} \). Good agreement between the generated and reconstructed \(m_T^{\text{thresh}} \) distributions is observed; hence the \(m_T^{\text{thresh}} \) acceptance can be determined at generator level. General models resulting in larger visible cross sections for \(\tau + E_T^{\text{miss}} \) production than the determined upper limits are excluded by this analysis. Thus, this analysis excludes possible signals with visible cross sections larger than 17 fb for \(m_T^{\text{thresh}} = 0.2 \) TeV and 0.014 fb for \(m_T^{\text{thresh}} = 2.95 \) TeV. Compared to previous results, this improves the upper limits on the visible cross section for \(m_T^{\text{thresh}} > 1.5 \) TeV by a factor of 5.

The improvements in the limits compared to the previous analysis are mainly due to the increased size of the data sample, an improved track association to \(\tau \)-lepton candidates and the multibin search approach.

VIII. CONCLUSION

A search for \(W' \rightarrow \tau \nu \) decays in 139 fb\(^{-1}\) of \(pp \) collisions at a center-of-mass energy of \(\sqrt{s} = 13 \) TeV recorded with the ATLAS detector at the Large Hadron Collider is presented. The analysis is performed with hadronic \(\tau \)-lepton decays. The signal is searched for in the transverse mass spectrum and no excess above the Standard Model expectation is observed. Exclusion limits are set on the cross section for \(W' \) production in the sequential Standard Model as a function of the \(W' \) mass. \(W' \) masses up to 5.0 TeV are excluded at 95% confidence level. This result improves upon the limits obtained in the previous \(W' \rightarrow \tau \nu \) analysis from ATLAS, based on a data sample of 36.1 fb\(^{-1}\), by 1.3 TeV. \(W' \) bosons in models with nonuniversal couplings are excluded for masses less than 3.5–5.0 TeV, depending on the model parameters. Additionally, model-independent upper limits on the visible production cross section for \(\tau + E_T^{\text{miss}} \) are derived and range from 17 fb for a lower transverse mass threshold of \(m_T^{\text{thresh}} = 200 \) GeV to 0.014 fb for \(m_T^{\text{thresh}} = 2.95 \) TeV.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC and its injectors, as well as the support staff at CERN and at our institutions worldwide without whom ATLAS could not be operated efficiently. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF/SFU (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [87]. We gratefully acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MINE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; STFC, United Kingdom; DOE and NSF, United States of America. Individual groups and members have received support from BCKDF, CANARIE, CRC and DRAC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece;
In addition, individual members wish to acknowledge support from CERN: CERN & Society Foundation (ATLAS PhD Grant); Chile: Agencia Nacional de Investigación y Desarrollo (Grants No. FONDECYT 1190886, No. FONDECYT 1210400); China: National Natural Science Foundation of China (Grant No. NSFC-12075060), EU: H2020 European Research Council (Grant No. H2020-MSCA-IF-2020: HPOFHIC—10103); European Union: European Research Council (Grant No. ERC—948254), Horizon 2020 Framework Programme (MUCCA—CHIST-ERA-19-XAI-00); France: Agence Nationale de la Recherche (Grant No. ANR-19-CE31-0022); Germany: Deutsche Forschungsgemeinschaft (Grant No. DFG—CR 312/5-1); Italy: Istituto Nazionale di Fisica Nucleare (FELLINI G.A. Grant No., 754496); Poland: Polish National Agency for Academic Exchange (Grant No. PPN/PO/2020/1/00002/U/00001), Polish National Science Centre (Grants No. NCB UM0-2019/34/E/ST2/00393, No. UMO-2020/37/B/ST2/01043); South Africa: South Africa National Research Foundation (Grant No. CPRR118515); Spain: Generalitat Valenciana (Grants No. APOSTD/2019/165, No. PGC2018-094856-BI00, Artemisa, FEDER, IDIFEDER/2018/048), La Caixa Banking Foundation (La Caixa Foundation, Grants No. LCF/BQ/P11/11690014, No. LCF/BQ/P120/11760025), PROMETEO and GenT Programmes Generalitat Valenciana (Grants No. CIDEGEN/2019/023, No. CIDEGEN/2019/027, No. CIDEGEN/2019/029, No. GVA-SEJI/2020/037); Sweden: Swedish Research Council (Grant No. SRC—2017-05160, VR 2017-05092), Knut and Alice Wallenberg Foundation (Grants No. KAFA2017.0100, No. KAFA2018.0157, No. KAFA2019.0447); Switzerland: Swiss National Science Foundation (Grant No. SNSF—PCEFP2_194658); United Kingdom: Leverhulme Trust (Leverhulme Trust Grant No. RPG-2020-004).

SEARCH FOR HIGH-MASS RESONANCES IN FINAL STATES …

PHYS. REV. D 109, 112008 (2024)
SEARCH FOR HIGH-MASS RESONANCES IN FINAL STATES ... PHYS. REV. D 109, 112008 (2024)

1Department of Physics, University of Adelaide, Adelaide, Australia
2Department of Physics, University of Alberta, Edmonton AB, Canada
3Department of Physics, Ankara University, Ankara, Türkiye
4Istanbul Aydın University, Application and Research Center for Advanced Studies, Istanbul, Türkiye
5Division of Physics, TOBB University of Economics and Technology, Ankara, Türkiye
6LAPP, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
7High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
8Department of Physics, University of Arizona, Tucson AZ, United States of America
9Department of Physics, University of Texas at Arlington, Arlington TX, United States of America
10Physics Department, National and Kapodistrian University of Athens, Athens, Greece
11Physics Department, National Technical University of Athens, Zografou, Greece

SEARCH FOR HIGH-MASS RESONANCES IN FINAL STATES … PHYS. REV. D 109, 112008 (2024)

112008-23
10 Department of Physics, University of Texas at Austin, Austin TX, United States of America
11a Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Türkiye
11b Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Türkiye
11c Department of Physics, Bogazici University, Istanbul, Türkiye
11d Department of Physics Engineering, Gaziantep University, Gaziantep, Türkiye
12 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
12a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
12b Physics Department, Tsinghua University, Beijing, China
12c Department of Physics, Nanjing University, Nanjing, China
12d University of Chinese Academy of Science (UCAS), Beijing, China
12e Institute of Physics, University of Belgrade, Belgrade, Serbia
13 Department for Physics and Technology, University of Bergen, Bergen, Norway
13a Physics Division, Lawrence Berkeley National Laboratory, Berkeley CA, United States of America
13b University of California, Berkeley CA, United States of America
14 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
15 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
16 Department of Physics, Boston University, Boston MA, United States of America
16a Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
16b Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
16c National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
16d National University of Science and Technology Politechnica, Bucharest, Romania
16e West University in Timisoara, Timisoara, Romania
16f Physics Department, University of Johannesburg, Johannesburg, South Africa
16g Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
16h Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
17a Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
17b Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
17c California State University, CA, United States of America
17d Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
17e Department of Physics, University of Cape Town, Cape Town, South Africa
17f iThemba Labs, Western Cape, South Africa
17g Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
17h National Institute of Physics, University of the Philippines Diliman (Philippines), Philippines
17i University of South Africa, Department of Physics, Pretoria, South Africa
17j School of Physics, University of the Witwatersrand, Johannesburg, South Africa
18 Department of Physics, Carleton University, Ottawa ON, Canada
18a Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
18b Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco
18c Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
18d LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda, Morocco
18e Faculté des sciences, Université Mohammed V, Rabat, Morocco
18f CERN, Geneva, Switzerland
19 Affiliated with an institute covered by a cooperation agreement with CERN
20 Affiliated with an international laboratory covered by a cooperation agreement with CERN
21 a Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
21b LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
INFIN-TIFPA, Italy

Università degli Studi di Trento, Trento, Italy

University of Iowa, Iowa City IA, United States of America

Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil

Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil

Universidad Federal de São João del Rei (UFSJ), São João del Rei, Brazil

Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

Graduate School of Science, Kobe University, Kobe, Japan

AGH University of Krakow, Faculty of Physics and Applied Computer Science, Krakow, Poland

Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, United Kingdom

Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

Department of Physics, Royal Holloway University of London, Egham, United Kingdom

Department of Physics and Astronomy, University College London, London, United Kingdom

Louisiana Tech University, Ruston LA, United States of America

Fysiska institutionen, Lunds universitet, Lund, Sweden

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst MA, United States of America

Department of Physics, McGill University, Montreal QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, University of Michigan, Ann Arbor MI, United States of America

Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

Group of Particle Physics, University of Montreal, Montreal QC, Canada

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb IL, United States of America

Department of Physics, New York University, New York NY, United States of America

Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan

Ohio State University, Columbus OH, United States of America

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America

Department of Physics, Oklahoma State University, Stillwater OK, United States of America

Palacký University, Joint Laboratory of Optics, Olomouc, Czech Republic

Institute for Fundamental Science, University of Oregon, Eugene, OR, United States of America

Graduate School of Science, Osaka University, Osaka, Japan
SEARCH FOR HIGH-MASS RESONANCES IN FINAL STATES ... PHYS. REV. D 109, 112008 (2024)

122 Department of Physics, University of Oslo, Oslo, Norway
123 Department of Physics, Oxford University, Oxford, United Kingdom
124 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
125 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
126 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
127 Laboratório de Instrumentação e Física Experimental de Partículas—LIP, Lisboa, Portugal
128 Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
129 Departamento de Física, Universidade de Coimbra, Coimbra, Portugal
127 Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
130 Department of Physics, Universidade do Minho, Braga, Portugal
127 Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain), Spain
127 Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
127 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
133 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
134 Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
134 Millennium Institute for Subatomic physics at high energy frontier (SAPHIR), Santiago, Chile
134 Universidad Andres Bello, Department of Physics, Santiago, Chile
134 Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
134 Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
135 Department of Physics, University of Washington, Seattle WA, United States of America
136 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
137 Department of Physics, Shinshu University, Nagano, Japan
138 Department of Physics, Simon Fraser University, Burnaby BC, Canada
139 SLAC National Accelerator Laboratory, Stanford CA, United States of America
140 Department of Physics, Royal Institute of Technology, Stockholm, Sweden
141 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY, United States of America
142 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
143 Institute of Physics, Academia Sinica, Taipei, Taiwan
144 School of Physics, University of Sydney, Sydney, Australia
144 E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
143 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
144 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
145 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
146 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
147 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
145 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
148 Department of Physics, University of Toronto, Toronto ON, Canada
149 TRIUMF, Vancouver BC, Canada
145 Department of Physics and Astronomy, York University, Toronto ON, Canada
144 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
150 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
151 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
152 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
153 Department of Physics, University of Illinois, Urbana IL, United States of America
154 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
155 Department of Physics, University of British Columbia, Vancouver BC, Canada
156 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Deceased.

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Istanbul University, Dept. of Physics, Istanbul, Türkiye.

Also at Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at TRIUMF, Vancouver BC, Canada.

Also at Physics Department, An-Najah National University, Nablus, Palestine.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, United States of America.

Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain.

Also at Affiliated with an institute covered by a cooperation agreement with CERN.

Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.

Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.

Also at Yeditepe University, Physics Department, Istanbul, Türkiye.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.

Also at Hellenic Open University, Patras, Greece.

Also at Center for High Energy Physics, Peking University, China.

Also at The City College of New York, New York NY, United States of America.

Also at Department of Physics, California State University, Sacramento, United States of America.

Also at Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.

Also at Yeditepe University, Physics Department, Istanbul, Türkiye.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.

Also at Hellenic Open University, Patras, Greece.

Also at Center for High Energy Physics, Peking University, China.

Also at The City College of New York, New York NY, United States of America.

Also at Department of Physics, California State University, Sacramento, United States of America.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.

Also at Yeditepe University, Physics Department, Istanbul, Türkiye.