Measurement of the fraction of jet longitudinal momentum carried by c^+ baryons in pp collisions

Acharya, S.; Adamova, D.; Adler, A.; Rinella, G.A.; Agnello, Maria; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Ahuja, I.; Akindinov, A.; Al-Turany, M.; Bearden, Ian; rtc312, rtc312; bsm989, bsm989; Gaardhøje, Jens Jørgen; Moravcova, Zuzana; Nielsen, Børge Svane; Nielsen, Emil Gorm Dahlbæk; Vislavicius, Vytautas; Zhou, You; Alice Collaboration

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.109.072005

Publication date:
2024

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Measurement of the fraction of jet longitudinal momentum carried by Λ_c^+ baryons in pp collisions

S. Acharya et al.,* (ALICE Collaboration)

(Received 18 February 2023; revised 25 August 2023; accepted 16 February 2024; published 5 April 2024)

Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ_c^+ baryons, z_{ch}, in hadronic collisions. The results are obtained in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV at the LHC, with Λ_c^+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of $3 \leq p_T^{\Lambda_c} < 15$ GeV/c and $7 \leq p_T^{\text{ch}} < 15$ GeV/c, respectively. The z_{ch} distribution is compared to a measurement of D^0-tagged charged jets in pp collisions as well as to PYTHIA 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronization models which include color correlations beyond leading-color in the string formation.

DOI: 10.1103/PhysRevD.109.072005

Heavy-flavor hadrons are produced in high-energy particle collisions through the fragmentation of heavy (charm and beauty) quarks, which typically originate in hard scattering processes in the early stages of the collisions. The most common theoretical approach to describe heavy-flavor production in hadronic collisions is based on the quantum chromodynamics (QCD) factorization approach [1], and consists of a convolution of three independent terms; the parton distribution functions of the incoming hadrons, the cross sections of the partonic scattering producing the heavy quarks, and the fragmentation functions that parametrize the evolution of a heavy quark into given species of heavy-flavor hadrons. As the transition of quarks to hadrons cannot be described in perturbation theory, the fragmentation functions cannot be calculated and must be extracted from data.

Fragmentation functions of charm quarks to charm baryons and mesons have been constrained in e^+e^- [2–4] and e^-p [5,6] collisions, using a variety of different observables, such as the hadron momentum as a fraction of its maximum possible momentum, as dictated by the center-of-mass energy of the collision. Another method to probe the fragmentation of quarks to hadrons is to parametrize the hadron momentum in relation to the momentum of jets, which are collimated bunches of hadrons giving experimental access to the properties of the scattered quark. Recently, the production of charm mesons in jets, probed via the fractional longitudinal momentum of the jet carried by the D meson, was measured in pp collisions at the Large Hadron Collider (LHC) [7–9] and appears consistent with Monte Carlo (MC) simulations tuned on e^+e^- data. These measurements support the assumption of fragmentation universality across collision systems in the charm-meson sector. This assumption underpins theoretical calculations describing the production of heavy-flavor hadrons in hadronic collisions, which make use of fragmentation functions tuned on e^+e^- and e^-p data.

Measurements of the production cross sections of baryons in pp collisions have questioned the hypothesis of fragmentation universality across collision systems [10]. In the charm sector, which provides a clean probe of hadronization phenomena due to the large mass of the charm quark, recent measurements performed by the ALICE Collaboration [11–19] in pp collisions have shown that the ratio of the Λ_c^+ (and other charm baryons) and D^0 production cross sections measured at low p_T ($\lesssim 12$ GeV/c) is significantly larger than the value expected from MC simulations in which the charm fragmentation is tuned on e^+e^- and e^-p measurements, such as PYTHIA 8 [20] with the Monash tune [21] or Herwig 7 [22]. A recent measurement of the Λ_c^+/D^0 ratio in pp collisions, performed by the ALICE Collaboration in intervals of charged-particle multiplicity, also points to a substantial increase of the Λ_c^+/D^0 ratio with increasing multiplicity, with respect to e^+e^- collisions, starting at very low multiplicities [15].

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
The study of charm-baryon production in jets can provide more differential insights into hadronization mechanisms in \(pp \) collisions, compared to \(p_T \)-differential cross sections and yield ratios of heavy-flavor hadrons, allowing for a more accurate study of the dynamical properties of baryon production. In this paper, the first measurement of the longitudinal momentum fraction of the jet carried by \(\Lambda_c^+ \) baryons, \(z_{\|}^{ch} \), is presented. The measurement is performed in \(pp \) collisions at \(\sqrt{s} = 13 \) TeV in the interval \(0.4 \leq z_{\|}^{ch} \leq 1.0 \). The \(z_{\|}^{ch} \) distribution, fully corrected to particle level, is presented for prompt (charm-quark initiated) \(\Lambda_c^+ \)-tagged jets with \(7 \leq p_T^{jet, ch} < 15 \) GeV/c and \(3 \leq p_T^{\Lambda_c^+} < 15 \) GeV/c. The results are then compared to PYTHIA 8 simulations [20,23], including a version where mechanisms beyond the leading-color approximation are considered in string formation processes during hadronization [21], and to an analogous measurement of the \(z_{\|}^{ch} \) distribution of \(D^0 \) mesons, performed by the ALICE Collaboration [7].

A full description of the ALICE setup and apparatus can be found in Refs. [24,25]. The main detectors used in this analysis are the Inner Tracking System (ITS), which is used for vertex reconstruction and tracking; the Time Projection Chamber (TPC), which is used for tracking and particle identification (PID); and the Time-Of-Flight (TOF) detector, which is used for PID. These detectors cover a pseudorapidity interval of \(|\eta| < 0.9 \). The analysis was performed on \(pp \) collisions at \(\sqrt{s} = 13 \) TeV, collected using a minimum-bias (MB) trigger during the years 2016, 2017, and 2018. The trigger condition required coincident signals in the two scintillator arrays of the V0 detector, with background events originating from beam-gas interactions removed offline using timing information from the V0. To mitigate against pileup effects, events with multiple reconstructed primary vertices were rejected. To ensure uniform acceptance, only events with a primary-vertex position along the beam axis direction of \(10 \) cm around the nominal interaction point were accepted. After the selections described above, the data sample consisted of \(1.7 \times 10^9 \) events, corresponding to an integrated luminosity of \(L_{int} = 29 \) nb\(^{-1} \) [26].

The \(\Lambda_c^+ \) candidates and their charge conjugates were reconstructed via the hadronic \(\Lambda_c^+ \rightarrow pK_S^0 \rightarrow px_\pi^- \) decay channel with a total branching ratio of \((1.10 \pm 0.06)\% \) [27], in the \(\Lambda_c^+ \) transverse-momentum interval of \(3 \leq p_T^{\Lambda_c^+} < 15 \) GeV/c. Only tracks with \(|\eta| < 0.8 \) and \(p_T > 0.4 \) GeV/c, which fulfilled the track quality selections described in Ref. [14], were considered for the \(\Lambda_c^+ \) reconstruction. The \(\Lambda_c^+ \) candidates themselves were reconstructed in the \(|y^{\Lambda_c^+}| < 0.8 \) rapidity interval. The \(\Lambda_c^+ \)-candidate selection was performed using a multivariate technique based on the boosted decision tree (BDT) algorithm provided by the XGBoost package [28].

The features considered in the optimization include the PID signal for the proton track, the invariant mass of the \(K_S^0 \)-meson candidate, and topological variables that exploit the kinematic properties of the displaced \(K_S^0 \)-meson decay vertex. The training was performed in intervals of \(\Lambda_c^+ \)-candidate \(p_T \), considering prompt signal candidates from PYTHIA 8 events with the Monash tune [20,21], transported through a realistic description of the detector geometry and material budget using Geant 3 [29]. Background candidates were extracted from the sidebands of the invariant-mass distributions in data. The probability thresholds of the BDT selections were tuned, using MC simulations, to maximise the statistical significance for the signal. Further details on the \(\Lambda_c^+ \)-candidate reconstruction and machine learning procedure are provided in Ref. [15], where the same reconstruction and BDT model were employed.

For the events where at least one selected \(\Lambda_c^+ \) candidate was identified, a jet-finding procedure was performed, using the FastJet package [30]. Prior to jet clustering, the \(\Lambda_c^+ \)-candidate daughter tracks were replaced by the reconstructed \(\Lambda_c^+ \)-candidate four-momentum vector. Charged jet finding was carried out on charged tracks with \(|\eta| < 0.9 \) and \(p_T > 0.15 \) GeV/c, using the anti-\(k_T \) algorithm [31], with a resolution parameter of \(R = 0.4 \). Tracks were combined using the E-scheme recombination [32], with the jet transverse momentum limited to the interval of \(5 \leq p_T^{jet, ch} < 35 \) GeV/c. The full jet cone was required to be within the ALICE central barrel acceptance, limiting the jet axis to the interval \(|\eta^{jet}| < 0.5 \). Only jets tagged via the presence of a reconstructed \(\Lambda_c^+ \) candidate amongst their constituents were considered for the analysis. For events where more than one \(\Lambda_c^+ \) candidate was found, the jet finding and tagging pass was performed independently for each candidate, with only the daughters of that particular candidate replaced by the corresponding \(\Lambda_c^+ \) four-vector each time. In mechanisms of hadronization that include color correlations beyond the leading-color approximation [21], which have been shown to be relevant in hadronic collisions at LHC energies [10], hadrons can be formed in processes that combine quarks from the parton shower with those from the underlying event [33]. As such, the underlying event is not well defined with respect to the measured hadron distributions. Therefore, no underlying event correction is implemented in this work.

The fragmentation of charm quarks to \(\Lambda_c^+ \) baryons is probed by measuring the fraction of the jet momentum carried by the \(\Lambda_c^+ \) along the direction of the jet axis, \(z_{\|}^{ch} \). This is calculated for each jet using

\[
 z_{\|}^{ch} = \frac{p_{ch} \cdot p_{\Lambda_c^+}}{p_{jet} \cdot p_{jet}} \label{eq:zch}
\]

where \(p_{jet} \) and \(p_{\Lambda_c^+} \) are the jet and \(\Lambda_c^+ \) three-momentum vectors, respectively.
The z_{ch}^{\parallel} distributions of true Λ_+^{\pm}-tagged charged jets were extracted in intervals of Λ_+^{\pm} p_T and $p_T^{jet, ch}$ using a sideband subtraction procedure. To enacting this subtraction, the invariant-mass (m_{inv}) distributions of Λ_+^{\pm} candidates, obtained for each Λ_+^{\pm} p_T and $p_T^{jet, ch}$ interval, were fitted with a function comprising a Gaussian for the signal and an exponential for the background. The fit parameters were then used to define signal (containing the majority of true signal candidates) and sideband (entirely composed of background candidates) regions, defined by $|m_{inv} - \mu_{fit}| < 2\sigma_{fit}$ and $4\sigma_{fit} < |m_{inv} - \mu_{fit}| < 9\sigma_{fit}$, respectively, where μ_{fit} and σ_{fit} represent the mean and sigma of the fitted Gaussian distributions. The $z_{ch}^{\parallel}(p_T^{\Lambda_+^{\pm}}, p_T^{jet, ch})$ distributions were extracted in the signal and sideband regions, with the sideband distribution scaled by the ratio of the background function integrals in the signal and sideband regions. The sideband distribution was then subtracted from the signal one, with the resulting distribution scaled to account for the fact that the 20% width of the signal region only encompasses approximately 95% of the total signal, to obtain the sideband subtracted z_{ch}^{\parallel} yield in each $p_T^{\Lambda_+^{\pm}}$ and $p_T^{jet, ch}$ interval.

To account for the reconstruction and selection efficiency of the Λ_+^{\pm}-tagged jet signal, the sideband subtracted z_{ch}^{\parallel} distributions in each $p_T^{\Lambda_+^{\pm}}$ and $p_T^{jet, ch}$ interval, $N(z_{ch}^{\parallel}, p_T^{\Lambda_+^{\pm}}, p_T^{jet, ch})$, were scaled by the reconstruction efficiency of prompt Λ_+^{\pm}-tagged jets, ϵ_{prompt}, and summed over the entire $p_T^{\Lambda_+^{\pm}}$ interval to obtain the efficiency-corrected z_{ch}^{\parallel} yield of Λ_+^{\pm}-tagged jets, $N^{corr}(z_{ch}^{\parallel}, p_T^{jet, ch})$, given by

$$N^{corr}(z_{ch}^{\parallel}, p_T^{jet, ch}) = \sum_{p_T^{\Lambda_+^{\pm}}} N(z_{ch}^{\parallel}, p_T^{\Lambda_+^{\pm}}, p_T^{jet, ch}) \epsilon_{\text{prompt}}(p_T^{\Lambda_+^{\pm}}). \quad (2)$$

The $\epsilon_{\text{prompt}}(p_T^{\Lambda_+^{\pm}})$ efficiency is strongly dependent on $p_T^{\Lambda_+^{\pm}}$, ranging from about 20% at $3 < p_T^{\Lambda_+^{\pm}} < 4$ GeV/c to 40% at $12 < p_T^{\Lambda_+^{\pm}} < 24$ GeV/c, and was calculated using PYTHIA 8 simulations with the Monash tune containing prompt Λ_+^{\pm}-tagged jets, transported through the detector using Geant 3. This efficiency does not exhibit a $p_T^{jet, ch}$ dependence.

In order to isolate the $N^{corr}(z_{ch}^{\parallel}, p_T^{jet, ch})$ distribution of prompt Λ_+^{\pm}-tagged jets, a feed-down subtraction was employed to remove the nonprompt (beauty-quark initiated) contribution. The nonprompt cross section was obtained from particle level POWHEG [34] + PYTHIA 8 [35] + EvtGen [36] simulations, as a function of $p_T^{jet, ch}$, $p_T^{\Lambda_+^{\pm}}$, and z_{ch}^{\parallel}, and was scaled according to the integrated luminosity of the analyzed data sample and the branching ratio of the $\Lambda_+^{\pm} \to pK_S^0 \to p\pi^+\pi^-$ decay channel. The resulting particle-level yield was multiplied by the ratio of the nonprompt to prompt Λ_+^{\pm}-tagged jet reconstruction and selection efficiency in intervals of $p_T^{\Lambda_+^{\pm}}$ and integrated over the $p_T^{\Lambda_+^{\pm}}$ range. The simulated nonprompt results were then folded to reconstructed level, using a four-dimensional response matrix generated using nonprompt Λ_+^{\pm}-tagged jets in PYTHIA 8 with the Monash tune, transported through a simulation of the ALICE detector using Geant 3. The response matrix was constructed as a function of $p_T^{jet, ch}$ and z_{ch}^{\parallel} at generator and reconstruction levels. The folded results were then subtracted from the measured $N^{corr}(z_{ch}^{\parallel}, p_T^{jet, ch})$ distribution in data, removing the nonprompt contribution. The estimated fraction of Λ_+^{\pm}-tagged jets coming from b-quark fragmentation is found to be about 5%, with no significant z_{ch}^{\parallel} dependence.

A two-dimensional Bayesian unfolding procedure [37] was performed to correct for detector effects and obtain the z_{ch}^{\parallel} distribution for prompt Λ_+^{\pm}-tagged jets at particle level. A four-dimensional response matrix as a function of $p_T^{jet, ch}$ and z_{ch}^{\parallel}, at generator and reconstruction levels, was populated with prompt Λ_+^{\pm}-tagged jets, obtained with PYTHIA 8 simulations with the Monash tune, passed through a simulation of the ALICE detector using Geant 3. The measured data and response matrix were provided in the intervals of $5 \leq p_T^{jet, ch} < 35$ GeV/c and $0.4 \leq z_{ch}^{\parallel} \leq 1.0$, with the final unfolded results reported in the intervals $7 \leq p_T^{jet, ch} < 15$ GeV/c and $0.4 \leq z_{ch}^{\parallel} \leq 1.0$. The extended $p_T^{jet, ch}$ range includes two padding intervals for the unfolding from $5 \leq p_T^{jet, ch} < 7$ GeV/c and $15 \leq p_T^{jet, ch} < 35$ GeV/c, which allow the unfolding to account for migrations in and out of the reported $7 \leq p_T^{jet, ch} < 15$ GeV/c interval. Corrections accounting for migrating entries in and out of the response matrix ranges, as modeled by the same MC simulation, were also applied. The corrected z_{ch}^{\parallel} distribution is normalized to the total number of Λ_+^{\pm}-tagged jets in the reported z_{ch}^{\parallel} and $p_T^{jet, ch}$ interval.

The systematic uncertainties affecting the measurement were evaluated, in each z_{ch}^{\parallel} interval, by modifying the strategy adopted at various steps of the analysis procedure and assessing the impact on the unfolded z_{ch}^{\parallel} distribution. The total systematic uncertainty includes contributions from multiple sources. The first considered source is the sideband subtraction procedure, whose contribution (ranging from 3.7% to 7.6% depending on the z_{ch}^{\parallel} interval) was estimated by varying the invariant-mass fit parameters as well as the invariant-mass intervals of the signal and sideband regions. The contribution from the BDT selection of Λ_+^{\pm} candidates (from 7.3% to 19%) was estimated by
varying the BDT probability thresholds to induce a 25% variation in the \(\Lambda_c^+ \)-tagged jet reconstruction and selection efficiency. The uncertainty from the jet energy resolution (from 4.5% to 19%) was estimated by recalculating the response matrix used for unfolding with a 4% reduced tracking efficiency. The reduction in the tracking efficiency was evaluated by varying the track-selection criteria and tracking efficiency. The reduction in the tracking efficiency response matrix used for unfolding with a 4% reduced (from 4.5% to 19%) was estimated by recalculating the efficiency. The uncertainty from the jet energy resolution tunes [20,21,23] (red-dotted and green-dashed lines). The ratios of the MC simulations to the data are shown in the bottom panel. Right: FIG. 1. Left: fully corrected normalized \(z_{ch}^{ch} \) distribution of prompt \(\Lambda_c^+ \)-tagged charged jets (black open circles) measured in the 7 \(\leq p_T^{jet,ch} \leq 15 \) GeV/c and 3 \(\leq p_T^\Lambda_c \leq 15 \) GeV/c intervals in \(pp \) collisions at \(\sqrt{s} = 13 \) TeV, compared with predictions from different PYTHIA 8 tunes [20,21,23] (red-dotted and green-dashed lines). The ratios of the MC simulations to the data are shown in the bottom panel. Right: comparison of the measured \(z_{ch}^{ch} \) distribution of \(\Lambda_c^+ \)-tagged jets and the previously measured \(z_{ch}^{ch} \) distribution of \(D^0 \)-tagged jets [7], obtained in the same kinematic interval. The ratio of the \(z_{ch}^{ch} \) distribution of \(\Lambda_c^+ \)-tagged and \(D^0 \)-tagged jets is shown in the bottom panel for both the data and the different PYTHIA tunes.
leading-color approximation, allowing for the formation of “baryonic” configurations where for example two colors can combine coherently to form an anticolor. The same \(\chi^2/\text{ndf} \) approach results in a 78% probability that the model describes the data. The simulation with \textsc{pythia} 8 with the CR-BLC Mode 2 tune also provides a much more accurate description of the \(\Lambda_c^+ / D^0 \) cross section ratio, previously measured in \(pp \) collisions at the LHC [11–15,39].

In the right-hand panel of Fig. 1, a comparison of the \(z_{ch}^{\Lambda_c^+} \) distribution of \(\Lambda_c^+ \)-tagged jets and the \(z_{ch}^{\Lambda_c^-} \) distribution previously measured for \(D^0 \)-tagged jets [7] is presented. The latter is consistent with \textsc{pythia} 8 simulations using both the Monash and CR-BLC Mode 2 tunes. The ratio of the two distributions is also presented in the bottom panel. The uncertainty from the jet-energy resolution was considered to be correlated between the \(\Lambda_c^+ \)-tagged jet and \(D^0 \)-tagged jet measurements and was evaluated directly on the ratio of the distributions. The remaining uncertainties were considered uncorrelated when taking the ratio and were then combined in quadrature with the uncertainty of the jet-energy resolution. The uncertainties were considered uncorrelated across the \(z_{ch}^{\Lambda_c^+} \) intervals. The same \(\chi^2/\text{ndf} \) exercise described above determines that there is a 12% probability that the measured ratio is described by a flat distribution at unity, hinting at a softer fragmentation of charm quarks into charm baryons than charm mesons. The ratio is better described by the \textsc{pythia} 8 simulations with the CR-BLC Mode 2 compared to the ones with the Monash tune, with the former describing the data with 88% probability compared to a 0.03% probability for the latter.

In summary the first measurement in hadronic collisions of the longitudinal momentum fraction of the charged jet carried by \(\Lambda_c^+ \) baryons was presented for \(pp \) collisions at \(\sqrt{s} = 13 \text{ TeV} \). The result is fully corrected to particle level and obtained in the jet and \(\Lambda_c^+ \) transverse momentum intervals of \(7 \leq p_T^{\text{jet ch}} \leq 15 \text{ GeV/c} \) and \(3 \leq p_T^{\Lambda_c^+} \leq 15 \text{ GeV/c} \), respectively. The measurement presented in this paper hints that charm quarks have a softer fragmentation into \(\Lambda_c^+ \) baryons compared to \(D^0 \) mesons, in the measured kinematic interval. One possible explanation is that charm-baryon production is favored in the presence of higher particle multiplicity originating from both the jet fragmentation and the underlying event, which could be tested with future measurements of the in-jet multiplicity of \(\Lambda_c^+ \)-tagged jets. The fragmentation of charm quarks into \(\Lambda_c^+ \) baryons in hadronic collisions exhibits tension with simulations tuned on \(e^+ e^- \) data that employ a leading-color formalism of hadronization, such as in the Monash tune of \textsc{pythia} 8. This occurs despite their successful description of the fragmentation of charm quarks into \(D^0 \) mesons. However, the inclusion of mechanisms sensitive to the surrounding partonic density that feature color reconnection beyond the leading-color approximation results in a better agreement with data. This result also partially explains the \(p_T \) shape of the prompt \(\Lambda_c^- / D^0 \) cross section ratio [11–15,39], which shows a peak at low \(p_T \) (≈3 GeV/c) and is also described within uncertainties by \textsc{pythia} 8 with the CR-BLC Mode 2 tune. The \(p_T \) trend of this ratio is driven by the fact that the \(\Lambda_c^+ \) baryons produced from the fragmenting charm quark carry a significantly lower fraction of the charm-quark transverse momentum than the \(D^0 \) mesons produced in a similar way.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF); [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education and Science, within the National Roadmap for Research Infrastructures 2020-2027 (object CERN), Bulgaria; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary;
Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency—BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University of the 데 Nal National de Stiinta si Tehnologie Politehnica Bucuresti, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA) and National Science, Research and Innovation Fund (NSRF via PMU-B B05F650021), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. In addition, individual groups or members have received support from: European Research Council, Strong 2020—Horizon 2020, Marie Skłodowska Curie (Grants No. 950692, No. 824093, No. 896850), European Union; Academy of Finland (Center of Excellence in Quark Matter) (Grants No. 346327, No. 346328), Finland; Programa de Apoyos para la Superación del Personal Académico, UNAM, Mexico.

[16] S. Acharya et al. (ALICE Collaboration), Charm-quark fragmentation fractions and production cross section at

[19] S. Acharya et al. (ALICE Collaboration), Measurement of the cross sections of Ξ^0_c and Ξ^-_c baryons and of the branching-fraction ratio $BR(\Xi^0_c \rightarrow \Xi^- e^+ \nu_e)/BR(\Xi^-_c \rightarrow \Xi^- \pi^+)$ in pp collisions at 13 TeV, Phys. Rev. Lett. 127, 272001 (2021).

MEASUREMENT OF THE FRACTION OF JET LONGITUDINAL … PHYS. REV. D 109, 072005 (2024)