Infinitary term graph rewriting is simple, sound and complete

Bahr, Patrick

Published in:
23rd International Conference on Rewriting Techniques and Applications (RTA’12)

DOI:
10.4230/LIPIcs.RTA.2012.69

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Infinitary Term Graph Rewriting is Simple, Sound and Complete

Patrick Bahr

Department of Computer Science, University of Copenhagen (DIKU)

Abstract

Based on a simple metric and a simple partial order on term graphs, we develop two infinitary calculi of term graph rewriting. We show that, similarly to infinitary term rewriting, the partial order formalisation yields a conservative extension of the metric formalisation of the calculus. By showing that the resulting calculi simulate the corresponding well-established infinitary calculi of term rewriting in a sound and complete manner, we argue for the appropriateness of our approach to capture the notion of infinitary term graph rewriting.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.1.1 Models of Computation

Keywords and phrases term graphs, partial order, metric, infinitary rewriting, graph rewriting

Digital Object Identifier 10.4230/LIPIcs.RTA.2012.69

Category Regular Research Paper

1 Introduction

Term graph rewriting provides an efficient technique for implementing term rewriting by avoiding duplication of terms and instead relying on pointers in order to refer to a term several times [8]. Due to cycles, finite term graphs may represent infinite terms, and, correspondingly, finite term graph reductions may represent transfinite term reductions. Kennaway et al. [16] showed that finite term graph reductions simulate a restricted class of transfinite term reductions, called rational reductions, in a sound and complete manner via the unravelling mapping \(U(\cdot) \) from term graphs to terms. More precisely, given a term graph rewriting system \(\mathcal{R} \) and a finite term graph \(g \), we have for each finite term graph reduction \(g \rightarrow^*_{\mathcal{R}} h \), a rational term reduction \(U(g) \rightarrow^*_{U(\mathcal{R})} U(h) \) (soundness), and conversely, for each rational term reduction \(U(g) \rightarrow^*_{U(\mathcal{R})} t \), there is a term graph reduction \(g \rightarrow^*_{\mathcal{R}} h \) and a rational term reduction \(t \rightarrow^*_{U(\mathcal{R})} U(h) \) (completeness). Since term graph reduction steps may contract several term redexes simultaneously, the completeness result has to be formulated in this weaker form. Note, however, that this completeness property subsumes completeness of normalising reductions: for each rational reduction \(U(g) \rightarrow^*_{U(\mathcal{R})} t \) to a normal form \(t \), there is a reduction \(g \rightarrow^*_{\mathcal{R}} h \) with \(U(h) = t \).

In this paper, we aim to resolve the asymmetry in the comparison of term rewriting and term graph rewriting by studying transfinite term graph reductions. To this end, we develop two infinitary calculi of term graph rewriting by generalising the notions of strong convergence on terms, based on a metric [15] resp. partial order [4], to term graphs. Instead of the complicated structures that we have used in our previous approach to weak convergence on term graphs [5], we adopt a rather simple and intuitive metric resp. partial order [6].

After summarising the basic theory of infinitary term rewriting (Section 2) and the fundamental concepts concerning term graphs (Section 3), we present a metric and a partial
Infinitary Term Graph Rewriting is Simple, Sound and Complete

order on term graphs (Section 4). Based on these two structures, we define the notions of strong m-convergence resp. strong p-convergence and show that – akin to term rewriting – both coincide on total term graphs and that strong p-convergence is normalising (Section 5).

In Section 6, we present the main result of this paper: strongly p-converging term graph reductions are sound and complete w.r.t. strongly p-converging term reductions in the sense of Kennaway et al. [16] explained above.

This result comes with some surprise, though, as Kennaway et al. [16] argued that infinitary term graph rewriting cannot adequately simulate infinitary term rewriting. In particular, they present a counterexample for the completeness of an informally defined infinitary calculus of term graph rewriting. This counterexample indeed shows that strongly m-converging term graph reductions are not complete for strongly m-converging term reductions.

However, using the correspondence between strong p-convergence and m-convergence, we can derive soundness of the metric calculus from the soundness of the partial order calculus. Moreover, we prove that the metric calculus is still complete for normalising reductions. We thus argue that strong m-convergence, too, can be adequately simulated by term graph rewriting. In fact, in their original work on term graph rewriting [8], Barendregt et al. showed completeness only for normalising reductions in order to argue for the adequacy of acyclic finite term graph rewriting for simulating finite term rewriting.

Due to space restrictions, we could not include all proofs in the main body of this paper. All missing proofs can be found in the companion report [7].

2 Infinitary Term Rewriting

We assume familiarity with the basic theory of term rewriting [19], ordinal numbers, orders and topological spaces [14]. Below, we give an outline of infinitary term rewriting [15, 4].

We denote ordinal numbers by lower case Greek letters $\alpha, \beta, \gamma, \lambda, \iota$. A sequence S of length α in a set A, written $(a_i)_{i<\alpha}$, is a function from α to A with $i \mapsto a_i$ for all $i \in \alpha$. We write $|S|$ for the length α of S. If α is a limit ordinal, S is called open; otherwise it is called closed. Given two sequences S, T, we write $S \cdot T$ to denote their concatenation and $S < T$ (resp. $S < T$) if S is a (proper) prefix of T. The prefix of T of length $\beta \leq |T|$ is denoted $T|\beta$.

For a set A, we write A^* to denote the set of finite sequences over A. For a finite sequence $(a_i)_{i<\alpha} \in A^*$, we also write $(a_0, a_1, \ldots, a_{\alpha-1})$. In particular, $\langle \rangle$ denotes the empty sequence.

We consider the sets $T^\infty(\Sigma)$ and $T(\Sigma)$ of (possibly infinite) terms resp. finite terms over a signature Σ. Each symbol f has an associated arity $ar(f)$, and we write $\Sigma^{(n)}$ for the set of symbols in Σ with arity n. For rewrite rules, we consider the signature $\Sigma_V = \Sigma \cup V$ that extends the signature Σ with a set V of nullary variable symbols. For terms $s, t \in T^\infty(\Sigma)$ and a position $\pi \in P(t)$ in t, we write $t|\pi$ for the subterm of t at π, $t(\pi)$ for the symbol in t at π, and $t[s]_\pi$ for the term t with the subterm at π replaced by s.

A term rewriting system (TRS) R is a pair (Σ, R) consisting of a signature Σ and a set of terms R of term rewrite rules of the form $l \rightarrow r$ with $l \in T^\infty(\Sigma_V) \setminus V$ and $r \in T^\infty(\Sigma_V)$ such that all variables occurring in r also occur in l. If the left-hand side of each rule in a TRS R is finite, then R is called left-finite. Every TRS R defines a rewrite relation \rightarrow_R as usual: $s \rightarrow_R t$ iff there is a position $\pi \in P(s)$, a rule $\rho: l \rightarrow r \in R$, and a substitution σ such that $s|\pi = l\sigma$ and $t = s[r\sigma]_\pi$. We write $s \rightarrow_{\rho, \pi} t$ in order to indicate the applied rule ρ and the position π.

The subterm $s|\pi$ is called a redex and is said to be contracted to $r\sigma$.

The metric d on $T^\infty(\Sigma)$ that is used in the setting of infinitary term rewriting is defined by $d(s, t) = 0$ if $s = t$ and $d(s, t) = 2^{-k}$ if $s \neq t$, where k is the minimal depth at which s and t differ. The pair $(T^\infty(\Sigma), d)$ is known to form a complete ultrametric space [2].
A reduction in a term rewriting system \mathcal{R}, is a sequence $S = (t_0 \rightarrow_\mathcal{R} t_1 \rightarrow_\mathcal{R} \ldots)_{t < \alpha}$ of reduction steps in \mathcal{R}. The reduction S is called strongly m-continuous if $\lim_{m \to \lambda} t_i = t_\lambda$ and the depths of contracted redexes $\langle |\pi_i| \rangle_{t < \alpha}$ tend to infinity, for each limit ordinal $\lambda < \alpha$. A reduction S is said to strongly m-converge to t, written $S : t_0 \xrightarrow{m} R t$, if it is strongly m-continuous and either S is closed with $t = t_\alpha$ or S is open with $t = \lim_{m \to \alpha} t_i$ and the depths of contracted redexes $\langle |\pi_i| \rangle_{t < \alpha}$ tend to infinity.

> **Example 2.1.** Consider the rule $\rho : \ Y x \to x (Y x)$ defining the fixed point combinator Y in an applicative language. If we use an explicit function symbol \oplus instead of juxtaposition to denote application, ρ reads $\oplus(Y, x) \to \oplus(x, \oplus(Y, x))$. Given a term t, we get the reduction

$$S : t \xrightarrow{\rho} t(Y t) \xrightarrow{\rho} t(t(Y t)) \xrightarrow{\rho} \ldots$$

which strongly m-converges to the infinite term $t(t(\ldots))$.

As another example, consider the rule $\rho' : f(x) \to f(g(x))$ and its induced reduction

$$T : h(c, f(c)) \xrightarrow{\rho'} h(c, f(g(c))) \xrightarrow{\rho'} h(c, f(g(g(c)))) \rightarrow \ldots$$

Although the underlying sequence of terms converges in the metric space $(T^\infty(\Sigma), d)$, viz. to the infinite term $h(c, f(g(\ldots)))$, the reduction T does not strongly m-converges since the depth of the contracted redexes does not tend to infinity but instead stays at 1.

The partial order \leq_\bot is defined on partial terms, i.e. terms over signature $\Sigma_\bot = \Sigma \uplus \{ \bot \}$, with \bot a nullary symbol. It is characterised as follows: $s \leq_\bot t$ iff t can be obtained from s by replacing each occurrence of \bot by some partial term. The pair $(T^\infty(\Sigma_\bot), \leq_\bot)$ forms a complete semilattice [13]. A partially ordered set (A, \leq) is called a complete partial order (cpo) if it has a least element and every directed subset D of A has a least upper bound (lub) $\bigcup D$ in A. If, additionally, every non-empty subset B of A has a greatest lower bound (glb) $\bigcap B$, then (A, \leq) is called a complete semilattice. This means that for complete semilattices the limit inferior $\liminf_{\lambda \to \alpha} a_\lambda = \bigcup_{\beta < \alpha} \left(\bigcap_{\beta \leq \lambda} a_\lambda \right)$ of a sequence $(a_\lambda)_{t < \alpha}$ is always defined.

In the partial order approach to infinitary rewriting, convergence is defined by the limit inferior. Since we are considering strong convergence, the positions π_i at which reductions take place are taken into consideration as well. In particular, we consider, for each reduction step $t_i \rightarrow_\pi t_{i+1}$ at position π_i, the reduction context $c_i = t_i[\bot, \ldots]$ of the starting term with the redex at π_i replaced by \bot. To indicate the reduction context c_i of a reduction step, we also write $t_i \rightarrow_{c_i} t_{i+1}$. A reduction $S = (t_i \rightarrow_{c_i} t_{i+1})_{t < \alpha}$ is called strongly p-continuous if $\liminf_{\lambda \to \alpha} c_i = t_\lambda$ for each limit ordinal $\lambda < \alpha$. The reduction S is said to strongly p-converge to a term t, written $S : t_0 \xrightarrow{p} R t$, if it is strongly p-continuous and either S is closed with $t = t_\alpha$, or S is open with $\liminf_{\lambda \to \alpha} c_i = t$. If $S : t_0 \xrightarrow{p} R t$ and t as well as all t_i with $i < \alpha$ are total, i.e. contained in $T^\infty(\Sigma)$, then we say that S strongly p-converges to t in $T^\infty(\Sigma)$.

The distinguishing feature of the partial order approach is that, since the partial order on terms forms a complete semilattice, each continuous reduction also converges. It provides a conservative extension to strong m-convergence that allows rewriting modulo meaningless terms [4] by rewriting terms to \bot if they are divergent according to the metric calculus.

> **Example 2.2.** Reconsider S and T from Example 2.1. S has the same convergence behaviour in the partial order setting, viz. $S : Y t \xrightarrow{p} t(t(\ldots))$. However, while the reduction T does not strongly m-converge, it does strongly p-converge, viz. $T : h(c, f(c)) \xrightarrow{p} h(c, \bot)$.

The relation between m- and p-convergence illustrated in the examples above is characteristic: strong p-convergence is a conservative extension of strong m-convergence.

> **Theorem 2.3 ([4]).** For every reduction S in a TRS the following equivalence holds:

$$S : s \xrightarrow{m} R t \iff S : s \xrightarrow{p} R t \text{ in } T^\infty(\Sigma).$$
In the remainder of this paper, we shall develop a generalisation of both strong \(m\)- and \(p\)-convergence to term graphs that maintains the above correspondence, and additionally simulates term reductions in a sound and complete way.

3 Graphs and Term Graphs

The notion of term graphs that we employ in this paper is taken from Barendregt et al. [8].

Definition 3.1 (graphs). Let \(\Sigma \) be a signature. A graph over \(\Sigma \) is a tuple \(g = (N, \text{lab}, \text{suc}) \) consisting of a set \(N \) (of nodes), a labelling function \(\text{lab}: N \to \Sigma \), and a successor function \(\text{suc}: N \to N^\ast \) such that \(|\text{suc}(n)| = \text{ar}(\text{lab}(n))\) for each node \(n \in N \), i.e. a node labelled with a \(k \)-ary symbol has precisely \(k \) successors. If \(\text{suc}(n) = \langle n_0, \ldots, n_k - 1 \rangle \), then we write \(\text{suc}_i(n) \) for \(n_i \). Moreover, we use the abbreviation \(\text{ar}_g(n) \) for the arity \(\text{ar}(\text{lab}(n)) \) of \(n \) in \(g \).

Definition 3.2 (paths, reachability). Let \(g = (N, \text{lab}, \text{suc}) \) be a graph and \(n, m \in N \). A path in \(g \) from \(n \) to \(m \) is a finite sequence \(\pi \in N^\ast \) such that either \(\pi \) is empty and \(n = m \), or \(\pi = (i) \cdot \pi' \) with \(0 \leq i < \text{ar}_g(n) \) and the suffix \(\pi' \) is a path in \(g \) from \(\text{suc}_i(n) \) to \(m \). If there exists a path from \(n \) to \(m \) in \(g \), we say that \(m \) is reachable from \(n \) in \(g \).

Definition 3.3 (term graphs). Given a signature \(\Sigma \), a term graph \(g \) over \(\Sigma \) is a tuple \((N, \text{lab}, \text{suc}, r) \) consisting of an underlying graph \((N, \text{lab}, \text{suc}) \) over \(\Sigma \) whose nodes are all reachable from the root node \(r \in N \). The class of all term graphs over \(\Sigma \) is denoted \(G^\infty(\Sigma) \). We use the notation \(N^g, \text{lab}^g, \text{suc}^g \) and \(r^g \) to refer to the respective components \(N, \text{lab}, \text{suc} \) and \(r \) of \(g \). Given a graph or a term graph \(h \) and a node \(n \) in \(h \), we write \(h|_n \) to denote the sub-term graph of \(h \) rooted in \(n \), which consists of all nodes reachable from \(n \) in \(h \).

Paths in a graph are not absolute but relative to a starting node. In term graphs, however, we have a distinguished root node from each which node is reachable. Paths relative to the root node are central for dealing with term graphs modulo isomorphism:

Definition 3.4 (positions, depth, trees). Let \(g \in G^\infty(\Sigma) \) and \(n \in N^g \). A position of \(n \) in \(g \) is a path in the underlying graph of \(g \) from \(r^g \) to \(n \). The set of all positions of \(n \) in \(g \) is denoted \(P(g) \); the set of all positions of \(n \) in \(g \) is denoted \(P_g(n) \). A position \(\pi \in P_g(n) \) is called minimal if no proper prefix \(\pi' < \pi \) is in \(P_g(n) \). The set of all minimal positions of \(n \) in \(g \) is denoted \(P^m_g(n) \). The depth of \(n \) in \(g \), denoted \(\text{depth}_g(n) \), is the minimum of the lengths of the positions of \(n \) in \(g \). For a position \(\pi \in P(g) \), we write \(\text{node}_g(\pi) \) for the unique node \(n \in N^g \) with \(\pi \in P_g(n) \), \(g(\pi) \) for its symbol \(\text{lab}^g(n) \), and \(g|_n \) for the sub-term graph \(g|_n \). The term graph \(g \) is called a term tree if each node in \(g \) has exactly one position.

Note that the labelling function of graphs – and thus term graphs – is total. In contrast, Barendregt et al. [8] considered open (term) graphs with a partial labelling function such that unlabelled nodes denote holes or variables. This partiality is reflected in their notion of homomorphisms in which the homomorphism condition is suspended for unlabelled nodes.

Instead of a partial node labelling function, we chose a syntactic approach that is more flexible and closer to the representation in terms. Variables, holes and “bottoms” are labelled by a distinguished set of constant symbols and the notion of homomorphisms is parametrised by a set of constant symbols \(\Delta \) for which the homomorphism condition is suspended:

Definition 3.5 (\(\Delta\)-homomorphisms). Let \(\Sigma \) be a signature, \(\Delta \subseteq \Sigma^{(0)} \), and \(g, h \in G^\infty(\Sigma) \). A function \(\phi: N^g \to N^h \) is called homomorphic in \(n \in N^g \) if the following holds:

\[
\text{lab}^g(n) = \text{lab}^h(\phi(n)) \quad \text{(labelling)}
\]

\[
\phi(\text{suc}_i^g(n)) = \text{suc}_i^h(\phi(n)) \quad \text{for all } 0 \leq i < \text{ar}_g(n) \quad \text{(successor)}
\]
A Δ-homomorphism ϕ from g to h, denoted $\phi: g \rightarrow_{\Delta} h$, is a function $\phi: N^g \rightarrow N^h$ that is homomorphic in n for all $n \in N^g$ with $\text{lab}^g(n) \notin \Delta$ and satisfies $\phi(r^g) = r^h$.

Note that, in contrast to Barendregt et al. [8], we require that root nodes are mapped to root nodes. This additional requirement makes our generalised notion of homomorphisms more akin to that of Barendsen [9]: for $\Delta = \emptyset$, we obtain his notion of homomorphisms.

Nodes labelled with a symbol from Δ can be thought of as holes in the term graphs, which can be filled with other term graphs. For example, if we have a distinguished set of variable symbols $V \subseteq \Sigma(0)$, we can use V-homomorphisms to formalise the matching of a term graph against a term graph rule, which requires the instantiation of variables.

Note that Δ-homomorphisms are unique [5], i.e. there is at most one Δ-homomorphism from one term graph to another. Consequently, whenever there are two Δ-homomorphisms $\phi: g \rightarrow_{\Delta} h$ and $\psi: h \rightarrow_{\Delta} g$, they are inverses of each other, i.e. Δ-isomorphisms. If two term graphs are Δ-isomorphic, we write $g \cong_{\Delta} h$.

For the two special cases $\Delta = \emptyset$ and $\Delta = \{\sigma\}$, we write $\phi: g \rightarrow h$ resp. $\phi: g \rightarrow_{\sigma} h$ instead of $\phi: g \rightarrow_{\Delta} h$ and call ϕ a homomorphism resp. a σ-homomorphism. The same convention applies to Δ-isomorphisms.

Since we are studying modes of convergence over term graphs, we want to reason modulo isomorphism. The following notion of canonical term graphs will allow us to do that:

Definition 3.6 (canonical term graphs). A term graph g is called canonical if $n = \mathcal{P}_g(n)$ for each $n \in N^g$. The set of all canonical term graphs over Σ is denoted $G^\infty_\Sigma(\Sigma)$.

For each term graph g, we can give a unique canonical term graph $C(g)$ isomorphic to g:

- $N^C(g) = \{\mathcal{P}_g(n) | n \in N\}$, $r^C(g) = \mathcal{P}_g(r)$
- $\text{lab}^C(g)(\mathcal{P}_g(n)) = \text{lab}(n)$, $\text{suc}^C_i(g)(\mathcal{P}_g(n)) = \mathcal{P}_g(\text{suc}_i(n))$ for all $n \in N, 0 \leq i < \text{ar}_g(n)$

As we have shown previously [5], this indeed yields a canonical representation of term graphs, viz. $g \cong h$ iff $C(g) = C(h)$ for all term graphs g, h.

Note that the set of nodes $N^C(g)$ above forms a partition of the set of positions in g. We write \sim_g for the equivalence relation on $\mathcal{P}(g)$ that is induced by this partition. That is, $\pi_1 \sim_{\pi_2}$ iff $\text{node}_g(\pi_1) = \text{node}_g(\pi_2)$. The structure of a term graph g is uniquely determined by its set of positions $\mathcal{P}(g)$, the labelling $g(\cdot): \pi \mapsto g(\pi)$, and the equivalence \sim_g. We will call such a triple $(\mathcal{P}(g), g(\cdot), \sim_g)$ a labelled quotient tree. Labelled quotient trees uniquely represent term graphs up to isomorphism. In other words: labelled quotient trees uniquely represent canonical term graphs. For a more axiomatic treatment of labelled quotient tree that studies these relationships, we refer to our previous work [5].

We can characterise Δ-homomorphisms in terms of labelled quotient trees:

Lemma 3.7 ([5]). Given $g, h \in G^\infty_\Sigma(\Sigma)$, there is a $\phi: g \rightarrow_{\Delta} h$ iff for all $\pi, \pi' \in \mathcal{P}(g)$,

(a) $\pi \sim_g \pi' \implies \pi \sim_h \pi'$, and (b) $g(\pi) = h(\pi)$ whenever $g(\pi) \notin \Delta$.

Intuitively, (a) means that h has at least as much sharing of nodes as g has, whereas (b) means that h has at least the same non-Δ-symbols as g.

Given a term tree g, the equivalence \sim_g is the identity relation $\mathcal{I}_{\mathcal{P}(g)}$ on $\mathcal{P}(g)$, i.e. $\pi_1 \sim_g \pi_2$ iff $\pi_1 = \pi_2$. There is an obvious one-to-one correspondence between canonical term trees and terms: a term $t \in T^\infty_\Sigma(\Sigma)$ corresponds to the canonical term tree given by the labelled quotient tree $(\mathcal{P}(t), t(\cdot), \mathcal{I}_{\mathcal{P}(t)})$. We thus consider the set of terms $T^\infty_\Sigma(\Sigma)$ as the subset of term trees in $G^\infty_\Sigma(\Sigma)$.

With this correspondence in mind, we define the unravelling of a term graph g, denoted $\mathcal{U}(g)$, as the unique term t such that there is a homomorphism $\phi: t \rightarrow g$.
Example 3.8. Consider the term graphs \(g_2 \) and \(h_0 \) illustrated in Figure 1. The unravelling of \(g_2 \) is the term \(\tilde{\hat{\alpha}}(f, \tilde{\hat{\alpha}}(f, \tilde{\hat{\alpha}}(y, f))) \) whereas the unravelling of the cyclic term graph \(h_0 \) is the infinite term \(\tilde{\hat{\alpha}}(f, \tilde{\hat{\alpha}}(f, \ldots)) \).

4 Two Simple Modes of Convergence for Term Graphs

In a previous attempt to generalise the modes of convergence of term rewriting to term graphs, we developed a metric and a partial order on term graphs that were both rather complicated [5]. While the resulting notions of weak convergence have a correspondence similar to that for terms (cf. Theorem 2.3), they are also limited as we explain below. In this paper, we shall use a much simpler and more intuitive approach that we recently developed [6], and which we summarise briefly below.

Like for terms, we move to a signature \(\Sigma_\perp = \Sigma \uplus \{ \perp \} \) to define a partial order on term graphs. Term graphs over signature \(\Sigma_\perp \) are also referred to as partial whereas term graphs over \(\Sigma \) are referred to as total. In order to generalise the partial order \(\leq_{\perp} \) on terms to term graphs, we make use of the observation that \(\perp \)-homomorphisms characterise the partial order \(\leq_{\perp} \): given two terms \(s, t \in T^\infty(\Sigma_\perp) \), we have \(s \leq_{\perp} t \) iff there is a \(\perp \)-homomorphism \(\phi: s \rightarrow_{\perp} t \). In our previous work, we have used a restricted form of \(\perp \)-homomorphisms in order to define a partial order on term graphs [5]. In this paper, however, we simply take \(\perp \)-homomorphism as the definition of the partial order on term graphs. The simple partial order \(\leq_1 \) on \(G^\infty(\Sigma_\perp) \) is defined as follows: \(g \leq_1 h \) iff there is a \(\perp \)-homomorphism \(\phi: s \rightarrow_{\perp} t \). Hence, we get the following characterisation, according to Lemma 3.7:

\[\phi \in P \times P \cap \bigcup_{\beta<\alpha} \left(\perp^{\beta} \right) = \left(\perp^{\beta} \right) \begin{cases} \pi \sim_g \pi' & \text{iff } \pi \sim_h \pi' \quad \text{for all } \pi, \pi' \in P(\pi) \\ g(\pi) = h(\pi) & \text{iff } g(\pi) \in \Sigma. \end{cases} \]

With this partial order on term graphs, we indeed get a complete semilattice:

\[P = \bigcup_{\beta<\alpha} \{ \pi \in P(\beta) | \forall \pi' < \pi \forall \beta \leq \iota \leq \alpha: g_\iota(\pi') = g_\beta(\pi') \} \]

\[\sim = (P \times P) \cap \bigcup_{\beta<\alpha} \bigcap_{\beta \leq \iota \leq \alpha} \sim_{g_\iota}. \]

\[l(\pi) = \begin{cases} g_{\beta}(\pi) & \text{if } \exists \beta < \alpha \forall \beta \leq \iota \leq \alpha: g_\iota(\pi) = g_\beta(\pi) \\ \perp & \text{otherwise} \end{cases} \quad \text{for all } \pi \in P \]

In order to generalise the metric \(d \) on terms to term graphs, we need to formalise what it means for two term graphs to be “equal” up to a certain depth. To this end, we define for each term graph \(g \in G^\infty(\Sigma_\perp) \) and \(d \in \mathbb{N} \) the simple truncation \(g|_d \) as the term graph obtained from \(g \) by relabelling each node at depth \(d \) with \(\perp \) (and (thus) removing all nodes at depth greater than \(d \). The distance \(d_1(g, h) \) between two term graphs \(g, h \in G^\infty(\Sigma) \) is then defined as \(0 \) if \(g \equiv h \) and otherwise as \(2^{-d} \) with \(d \) the greatest \(d \in \mathbb{N} \) with \(g|_d \equiv h|_d \). This definition indeed yields a complete ultrametric space:

\[P = \liminf_{\iota \rightarrow \alpha} P(g_\iota) = \bigcup_{\beta<\alpha} \bigcap_{\beta \leq \iota < \alpha} P(g_\iota) \sim = \liminf_{\iota \rightarrow \alpha} \sim_{g_\iota} = \bigcup_{\beta<\alpha} \bigcap_{\beta \leq \iota < \alpha} \sim_{g_\iota}. \]

\[l(\pi) = g_{\beta}(\pi) \quad \text{for some } \beta < \alpha \text{ with } g_\beta(\pi) = g_\beta(\pi) \text{ for each } \beta \leq \iota < \alpha \quad \text{for all } \pi \in P \]
The metric space that we have previously studied [5] was similarly defined in terms of a truncation. However, we used a much more complicated notion of truncation that would retain certain nodes of depth greater than \(d \).

Similarly to the corresponding modes of convergence on terms, we have that if a sequence of total term graphs \((g_i)_{i<\alpha}\) converges in the metric space \((\mathcal{G}_\Sigma^\infty(\Sigma \cup \mathcal{V}), d_1)\), then \(\lim_{i \to \alpha} g_i = \liminf_{i \to \alpha} g_i\). However, unlike in the setting of terms, the converse is not true! That is, if \(\liminf_{i \to \alpha} g_i\) is a total term graph, then it is not necessarily equal to \(\lim_{i \to \alpha} g_i\) — in fact, \((g_i)_{i<\alpha}\) might not even converge at all. As a consequence, we are not able to obtain a correspondence in the vein of Theorem 2.3 for weak convergence. In the next section, we will show that we do, however, obtain such a correspondence for strong convergence.

Note that the more restrictive partial order and metric space that we have studied in our previous work [5] does yield the above described correspondence for weak convergence. However, this result comes at the expense of generality and intuition: the convergence behaviour illustrated in Figure 1c, which is intuitively expected and also captured by the partial order \(\leq^{\Sigma}_V\) and the metric \(d_1\), is not possible in these more restrictive structures [6].

5 Infinitary Term Graph Rewriting

In this paper, we adopt the term graph rewriting framework of Barendregt et al. [8]. In order to represent placeholders in rewrite rules, this framework uses variables — in a manner much similar to term rewrite rules. To this end, we consider a signature \(\Sigma_V = \Sigma \cup \mathcal{V}\) that extends the signature \(\Sigma\) with a set \(\mathcal{V}\) of nullary variable symbols.

▶ Definition 5.1 (term graph rewriting systems).

(i) Given a signature \(\Sigma\), a term graph rule \(\rho\) over \(\Sigma\) is a triple \((g, l, r)\) where \(g\) is a graph over \(\Sigma_V\) and \(l, r \in \mathbb{N}^\#$ such that all nodes in \(g\) are reachable from \(l\) or \(r\). We write \(\rho_l\) resp. \(\rho_r\) to denote the left- resp. right-hand side of \(\rho\), i.e. the term graph \(g|_l\) resp. \(g|_r\).

Additionally, we require that for each variable \(v \in \mathcal{V}\) there is at most one node \(n\) in \(g\) labelled \(v\) and that \(n\) is different but still reachable from \(l\).

(ii) A term graph rewriting system (GRS) \(\mathcal{R}\) is a pair \((\Sigma, R)\) with \(\Sigma\) a signature and \(R\) a set of term graph rules over \(\Sigma\).

The notion of unravelling straightforwardly extends to term graph rules: let \(\rho\) be a term graph rule with \(\rho_l\) and \(\rho_r\), its left- resp. right-hand side term graph. The unravelling of \(\rho\), denoted \(\mathcal{U}(\rho)\) is the term rule \(\mathcal{U}(\rho_l) \to \mathcal{U}(\rho_r)\). The unravelling of a GRS \(\mathcal{R} = (\Sigma, R)\), denoted \(\mathcal{U}(\mathcal{R})\), is the TRS \((\Sigma, \{\mathcal{U}(\rho) \mid \rho \in R\})\).

▶ Example 5.2. Figure 1a shows two term graph rules which both unravel to the term rule \(\rho: \mathcal{Y} x \to x(\mathcal{Y} x)\) from Example 2.1. Note that sharing of nodes is used both to refer to variables in the left-hand side from the right-hand side, and in order to simulate duplication.

Without going into all details of the construction, we describe the application of a rewrite rule \(\rho\) with root nodes \(l\) and \(r\) to a term graph \(g\) in four steps: at first a suitable sub-term graph of \(g\) rooted in some node \(n\) of \(g\) is matched against the left-hand side of \(\rho\). This matching amounts to finding a \(\mathcal{V}\)-homomorphism \(\phi\) from the left-hand side \(\rho_l\) to the sub-term graph in \(g\) rooted in \(n\), the redex. The \(\mathcal{V}\)-homomorphism \(\phi\) allows us to instantiate variables in the rule with sub-term graphs of the redex. In the second step, nodes and edges in \(\rho\) that are not in \(\rho_l\) are copied into \(g\), such that each edge pointing to a node \(m\) in \(\rho_l\) is redirected to \(\phi(m)\). In the next step, all edges pointing to the root \(n\) of the redex are redirected to the root \(n'\) of the contractum, which is either \(r\) or \(\phi(r)\), depending on whether \(r\) has been copied
76 Infinitary Term Graph Rewriting is Simple, Sound and Complete

\[
\begin{align*}
\ell & \xrightarrow{\ell} l \quad \rho & \xrightarrow{\ell} l \\
Y & \xrightarrow{x} Y \quad Y & \xrightarrow{f} Y
\end{align*}
\]

(a) Term graph rules that unravel to \(Y \xrightarrow{x} (Y \cdot x)\).

\[
\begin{align*}
\ell & \xrightarrow{\ell} f \quad \rho_1 \quad \rho_2 \quad \ell \quad \ell \quad \ell
\end{align*}
\]

(b) A single \(\rho_2\)-step.

\[
\begin{align*}
\ell & \xrightarrow{\ell} f \quad \rho_1 \quad \rho_1 \quad \rho_1 \quad \ell \quad \ell \quad \ell \quad \ell
\end{align*}
\]

(c) A strongly \(m\)-convergent term graph reduction over \(\rho_1\).

\[\text{Figure 1} \quad \text{Implementation of the fixed point combinator as a term graph rewrite rule.}\]

into \(g\) or not (because it is reachable from \(l\) in \(\rho\)). Finally, all nodes not reachable from the root of (the now modified version of) \(g\) are removed.

With \(h\) the result of the above construction, this induces a pre-reduction step \(\psi: g \mapsto_{n,\rho,n'} h\) from \(g\) to \(h\). In order to indicate the underlying GRS \(\mathcal{R}\), we also write \(\psi: g \mapsto_{R} h\).

The definition of term graph rewriting in the form of pre-reduction steps is very operational in style. The result of applying a rewrite rule to a term graph is constructed in several steps by manipulating nodes and edges explicitly. While this is beneficial for implementing a rewriting system, it is problematic for reasoning on term graphs modulo isomorphism, which is necessary for introducing notions of convergence. In our case, however, this does not cause any harm since the construction of the result term graph of a pre-reduction step is invariant under isomorphism. This observation justifies the following definition of reduction steps:

\[\text{Definition 5.3.} \quad \text{Let} \ \mathcal{R} = (\Sigma, R) \text{ be GRS,} \ \rho, h \in \Sigma^\infty C(\Sigma) \text{ with} \ n \in N^g \ \text{and} \ m \in N^h. \ \text{A tuple} \ \phi = (g, n, \rho, m, h) \ \text{is called a reduction step, written} \ \phi: g \mapsto_{n,\rho,m} h \text{, if there is a pre-reduction step} \ \phi': g' \mapsto_{n',\rho,n'} h' \text{ with} \ C(g') = g, \ C(h') = h, \ n = \mathcal{P}_\rho(n'), \ \text{and} \ m = \mathcal{P}_\rho(m'). \ \text{Similarly to pre-reduction steps, we write} \ \phi: g \mapsto_{R} h \text{ or} \ \phi: g \mapsto_{R} h \text{ for short.}\]

In other words, a reduction step is a canonicalised pre-reduction step. Figures 1b and 1c show various (pre-)reduction steps derived from the rules in Figure 1a.

5.1 Reduction Contexts

The idea of strong convergence is to conservatively approximate the convergence behaviour somewhat independently from the actual rules that are applied. Strong \(m\)-convergence in TRSs requires that the depth of the redexes tends to infinity thereby assuming that anything at the depth of the redex or below is potentially affected by a reduction step. Strong \(p\)-convergence, on the other hand, uses a better approximation that only assumes that the redex is affected by a reduction step – not however other subterms at the same depth. To this end strong \(p\)-convergence uses a notion of reduction contexts – essentially the term minus the redex – for the formation of limits. In this section, we shall devise a corresponding
we eventually obtain the following fundamental property of reduction contexts:

Definition 5.4. Let \(g \in \mathcal{G}^\infty(\Sigma_\perp) \) and \(n \in N^g \). The local truncation of \(g \) at \(n \), denoted \(g \backslash n \), is obtained from \(g \) by labelling \(n \) with \(\perp \) and removing all outgoing edges from \(n \) as well as all nodes that thus become unreachable from the root.

Lemma 5.5. For each \(g \in \mathcal{G}^\infty(\Sigma_\perp) \) and \(n \in N^g \), the local truncation \(g \backslash n \) has the following labelled quotient tree \((P, l, \sim)\):

\[
P = \{ \pi \in \mathcal{P}(g) \mid \forall \pi' \prec \pi: \pi' \notin \mathcal{P}_g(n) \} \\
\sim = \sim_g \cap P \times P \\
l(\pi) = \begin{cases} g(\pi) & \text{if } \pi \notin \mathcal{P}_g(n) \\ \perp & \text{if } \pi \in \mathcal{P}_g(n) \end{cases} \text{ for all } \pi \in P
\]

As a corollary of Lemma 5.5 and Corollary 4.1 we obtain the following:

Corollary 5.6. For each \(g \in \mathcal{G}^\infty(\Sigma_\perp) \) and \(n \in N^g \), we have \(g \backslash n \leq^\perp g \).

It is also possible – although cumbersome – to show that, given a reduction step \(g \to_n h \) at node \(n \), the local truncation \(g \backslash n \) is isomorphic to the term graph that is obtained from \(h \) by essentially relabelling the positions \(\mathcal{P}_g(n) \) occurring in \(h \) with \(\perp \). For this term graph, denoted \(h \backslash [\mathcal{P}_g(n)] \), we then also have \(h \backslash [\mathcal{P}_g(n)] \leq^\perp h \). By combining this with Corollary 5.6, we eventually obtain the following fundamental property of reduction contexts:

Proposition 5.7. Given a reduction step \(g \to_n h \), we have \(g \backslash n \leq^\perp g, h \).

This means that the local truncation at the root of the redex is preserved by reduction steps and is therefore an adequate notion of reduction context for strong \(p \)-convergence [3].

5.2 Strong Convergence

Now that we have an adequate notion of reduction contexts, we can define strong \(p \)-convergence on term graphs analogously to strong \(p \)-convergence on terms. For strong \(m \)-convergence, we simply take the same notion of depth that we already used for the definition of the simple truncation \(g \backslash d \) and thus the simple metric \(d_1 \).

Definition 5.8. Let \(\mathcal{R} = (\Sigma, R) \) be a GRS.

(i) The **reduction context** \(c \) of a graph reduction step \(\phi: g \to_n h \) is the term graph \(\mathcal{C}(g \backslash n) \).

We write \(\phi: g \to_c h \) to indicate the reduction context of a graph reduction step.

(ii) Let \(S = (g_i \to_{n_i}, g_{i+1})_{i<\alpha} \) be a reduction in \(\mathcal{R} \). \(S \) is **strongly \(m \)-continuous** in \(\mathcal{R} \) if \(\lim_{i \to \lambda} g_i = g_\lambda \) and \((\text{depth}_{g_i}(n_i))_{i<\lambda} \) tends to infinity for each limit ordinal \(\lambda \prec \alpha \). \(S \) **strongly \(m \)-converges** to \(g \) in \(\mathcal{R} \), denoted \(S: g_0 \mto g \), if it is strongly \(m \)-continuous and either \(S \) is closed with \(g = g_\alpha \) or \(S \) is open with \(g = \lim_{i \to \alpha} g_i \) and \((\text{depth}_{g_i}(n_i))_{i<\alpha} \) tending to infinity.

(iii) Let \(S = (g_i \to_{c_i}, g_{i+1})_{i<\alpha} \) be a reduction in \(\mathcal{R}_\perp = (\Sigma_\perp, R) \). \(S \) is **strongly \(p \)-continuous** in \(\mathcal{R} \) if \(\lim \inf_{i \to \alpha} c_i = g_\lambda \) for each limit ordinal \(\lambda \prec \alpha \). \(S \) **strongly \(p \)-converges** to \(g \) in \(\mathcal{R} \), denoted \(S: g_0 \pto g \), if it is strongly \(p \)-continuous and either \(S \) is closed with \(g = g_\alpha \) or \(S \) is open with \(g = \lim \inf_{i \to \alpha} c_i \).

Note that we have to extend the signature of \(\mathcal{R} \) to \(\Sigma_\perp \) for the definition of strong \(p \)-convergence. However, we can obtain the total fragment of strong \(p \)-convergence if we restrict ourselves to total term graphs: a reduction \((g_i \to_{R_\perp} g_{i+1})_{i<\alpha} \) strongly \(p \)-converging to \(g \) is called **strongly \(p \)-converging** to \(g \) in \(\mathcal{G}_p^\infty(\Sigma) \) if \(g \) as well as each \(g_i \) is total, i.e. an element of \(\mathcal{G}_p^\infty(\Sigma) \).
Example 5.9. Figure 1c illustrates an infinite reduction derived from the rule p_1 in Figure 1a. Note that the reduction rule is applied to sub-term graphs at increasingly large depth. Since additionally, $g_i(i + 1) \cong g_{i+1}(i + 1)$ for all $i < \omega$, i.e. $\lim_{n \to \omega} g_i = g_\omega$, the reduction strongly m-converges to the term graph g_ω. Moreover, since each node in g_ω eventually appears in a reduction context and remains stable afterwards, we have $\lim_{n \to \omega} g_i = g_\omega$. Consequently, the reduction also strongly p-converges to g_ω.

The rest of this section is concerned with proving that the above correspondence in convergence behaviour – similarly to infinitary term rewriting (cf. Theorem 2.3) – is characteristic: strong p-convergence in $G^\infty_\Sigma(\Sigma)$ coincides with strong m-convergence.

Since the partial order \leq^5_\perp forms a complete semilattice on $G^\infty_\Sigma(\Sigma_\perp)$ according to Theorem 4.2, we know that strong p-continuity coincides with strong p-convergence:

Proposition 5.10. Each strongly p-continuous reduction in a GRS is strongly p-convergent.

The two lemmas below form the central properties that link strong m- and p-convergence:

Lemma 5.11. Let $(g_i \to n_i, g_{i+1})_{i<\alpha}$ be an open reduction in a GRS \mathcal{R}_\perp. If S strongly p-converges to a total term graph, then $(\text{depth}_{g_i}(n_i))_{i<\alpha}$ tends to infinity.

Lemma 5.12. Let $(g_i \to n_i, g_{i+1})_{i<\alpha}$ be an open reduction strongly p-converging to g in a GRS \mathcal{R}_\perp. If $(g_i)_{i<\alpha}$ is Cauchy and $(\text{depth}_{g_i}(n_i))_{i<\alpha}$ tends to infinity, then $g \cong \lim_{n \to \omega} g_i$.

The following property, which relates strong m-convergence and \sim-continuity, follows from the fact that our definition of strong m-convergence on term graphs instantiates the abstract notion of strong m-convergence from our previous work [3]:

Lemma 5.13. Let $S = (g_i \to n_i, g_{i+1})_{i<\alpha}$ be an open strongly m-continuous reduction in a GRS. If $(\text{depth}_{g_i}(n_i))_{i<\alpha}$ tends to infinity, then S is strongly m-convergent.

Proof. Special case of Proposition 5.5 from [3]; cf. [10, Thm. B.2.5] for the correct proof. ▶

Now we have everything in place to prove that strong p-convergence conservatively extends strong m-convergence.

Theorem 5.14. Let \mathcal{R} be a GRS and S a reduction in \mathcal{R}_\perp. We then have that

$$\text{S: } g \stackrel{m}{\Rightarrow} \mathcal{R} h \quad \text{iff} \quad S: \ g \stackrel{p}{\Rightarrow} \mathcal{R} h \text{ in } G^\infty_\Sigma(\Sigma).$$

Proof. Let $S = (g_i \to n_i, g_{i+1})_{i<\alpha}$ be a reduction in \mathcal{R}_\perp. We prove the “only if” direction by induction on α. The case $\alpha = 0$ is trivial. If α is a successor ordinal, then the statement follows immediately from the induction hypothesis.

Let α be a limit ordinal. As $S: \ g \stackrel{m}{\Rightarrow} \mathcal{R} g_\alpha$, we know that $S|_\gamma: \ g \stackrel{m}{\Rightarrow} \mathcal{R} g_\gamma$ for all $\gamma < \alpha$. Hence, we can apply the induction hypothesis to obtain that $S|_\gamma: \ g \stackrel{p}{\Rightarrow} \mathcal{R} g_\gamma$ for each $\gamma < \alpha$. Thus, S is strongly p-continuous, which means, by Proposition 5.10, that S strongly m-converges to some term graph h'. As S strongly m-converges, we know that $(g_i)_{i<\alpha}$ is Cauchy and that $(\text{depth}_{g_i}(n_i))_{i<\alpha}$ tends to infinity. Hence, we can apply Lemma 5.12 to obtain that $h' = \lim_{i \to \alpha} g_i = h$, i.e. $S: \ g \stackrel{p}{\Rightarrow} \mathcal{R} h$. The “in $G^\infty_\Sigma(\Sigma)$” part follows from $S: \ g \stackrel{m}{\Rightarrow} \mathcal{R} h$.

We will also prove the “if” direction by induction on α: again, the case $\alpha = 0$ is trivial and the case that α is a successor ordinal follows immediately from the induction hypothesis.

Let α be a limit ordinal. As S is strongly p-convergent in $G^\infty_\Sigma(\Sigma)$, we know that $S|_\gamma: \ g \stackrel{p}{\Rightarrow} \mathcal{R} g_\gamma$ in $G^\infty_\Sigma(\Sigma)$ for all $\gamma < \alpha$. Thus, we can apply the induction hypothesis to obtain that $S|_\gamma: \ g \stackrel{m}{\Rightarrow} \mathcal{R} g_\gamma$ for each $\gamma < \alpha$. Hence, S is strongly m-continuous. As S strongly p-converges in $G^\infty_\Sigma(\Sigma)$, we know from Lemma 5.11 that $(\text{depth}_{g_i}(n_i))_{i<\alpha}$ tends to infinity. With the strong m-continuity of S, this yields, according to Lemma 5.13, that S strongly m-converges to some h'. By Lemma 5.12, we conclude that $h' = h$, i.e. $S: \ g \stackrel{m}{\Rightarrow} \mathcal{R} h$. ◀
5.3 Normalisation of Strong p-convergence

In this section we shall show that – similarly to TRSs [4] – GRSs are normalising w.r.t. strong p-convergence. As for terms, this is a distinguishing feature of strong p-convergence.

For example, the term graph rule (that unravels to) $c \rightarrow c$, for some constant c, yields a system in which c has no normal form w.r.t. strong m-convergence (or finite reduction or weak p-/m-convergence). If we consider strong p-convergence however, repeatedly applying the rule to c yields the normalising reduction $c \xrightarrow{p_n} \bot$. Term graphs which can be infinitely often contracted at the root – such as c – are called root-active:

Definition 5.15. Let R be a GRS over Σ and $g \in \mathcal{G}^{\infty}_{\Sigma}(\Sigma_\bot)$. Then g is called root-active if, for each reduction $g \xrightarrow{p} g'$, there is a reduction $g' \xrightarrow{p} h$ to a redex h in R. The term graph g is called root-stable if, for each reduction $g \xrightarrow{p} h$, h is not a redex in R.

Similar to the construction of Böhm normal forms [18], the strategy for rewriting a term graph into normal form is to rewrite root-active sub-term graphs to \bot and non-root-active sub-term graphs to root-stable terms. The following lemma will allow us to do that:

Lemma 5.16. Let R be a GRS over Σ and $g \in \mathcal{G}^{\infty}_{\Sigma}(\Sigma_\bot)$.

(i) If g is root-active, then there is a reduction $g \xrightarrow{p} \bot$.

(ii) If g is not root-active, then there is a reduction $g \xrightarrow{p} h$ to a root-stable term graph h.

(iii) If g is root-stable, then so is every term graph h with a reduction $g \xrightarrow{p} h$.

In the following, we need to generalise the concatenation of sequences. To this end, we make use of the fact that the prefix order \leq on sequences forms a cpo and thus has lubs for directed sets: let $(S_i)_{i < \alpha}$ be a sequence of sequences in a common set. The concatenation of $(S_i)_{i < \alpha}$, written $\prod_{i < \alpha} S_i$, is recursively defined as the empty sequence $\langle \rangle$ if $\alpha = 0$, $(\prod_{i < \alpha'} S_i) \cdot S_{\alpha'}$ if $\alpha = \alpha' + 1$, and $\bigcup_{n < \alpha} \prod_{i < n} S_i$ if α is a limit ordinal.

The following lemma shows that we can use the reductions from Lemma 5.16 in order to turn the sub-term graphs of a term graph into root-stable form level by level:

Lemma 5.17. Let R be a GRS over Σ, $g \in \mathcal{G}^{\infty}_{\Sigma}(\Sigma_\bot)$ and $d < \omega$ such that $g|_n$ is root-stable for all $n \in N^g$ with $\text{depth}_g(n) < d$. Then there is a reduction S_d: $g \xrightarrow{p} h$ such that $h|_n$ is root-stable for each $n \in N^g$ with $\text{depth}_g(n) \leq d$.

Proof. There are only finitely many nodes in g at depth d, say, n_0, n_1, \ldots, n_k. Let π_i be a minimal position of n_i in g for each $i \leq k$. For each $i \leq k$, we construct a reduction T_i: $g|_{\pi_i} \xrightarrow{R} g_{i+1}$ with $g_0 = g$. Since all sub-term graphs at depth $< d$ are root stable, each step in T_i takes place at depth $\geq d$ and thus π_{i+1} is still a position in g_{i+1} of a node at depth d. If $g_i|_{\pi_i}$ is root-active, then Lemma 5.16 yields a reduction $g_i|_{\pi_i} \xrightarrow{p} \bot$. Let T_i be the embedding of this reduction into g_i at position π_i. Hence, $g_i|_{\pi_i} = \bot$ is root-stable. If $g_i|_{\pi_i}$ is not root-active, then Lemma 5.16 yields a reduction $g_i|_{\pi_i} \xrightarrow{p} g'_i$ to a root-stable term graph g'_i. Let T_i be the embedding of this reduction into g_i at position π_i. Hence, $g_{i+1}|_{\pi_i} = g'_i$ is root-stable.

Define $S_d = \prod_{i \leq k} T_i$. Since, by Lemma 5.16, root-stability is preserved by strongly p-converging reductions, we can conclude that S_d: $g \xrightarrow{p} g_{k+1}$ such that all sub-term graphs at depth at most d in g_{k+1} are root-stable.\[
\]Note that the assumption that all sub-term graphs at depth $< d$ are root-stable is crucial. Otherwise, reductions within sub-term graphs at depth d may take place at depth $< d$!

Finally, the strategy for rewriting a term graph into normal form is to simply iterate the reductions that are given by Lemma 5.17 above.
Infinitary Term Graph Rewriting is Simple, Sound and Complete

Theorem 5.18. Every GRS \mathcal{R} is normalising w.r.t. strongly p-converging reductions. That is, for each partial term graph g, there is a reduction $g \to_{\mathcal{R}} h$ to a normal form h in \mathcal{R}.

Proof. Given a partial term graph g_0, take the reductions $S_d: g_d \to_{\mathcal{R}} g_{d+1}$ from Lemma 5.17 for each $d \in \mathbb{N}$ and construct $S = \prod_{d<\omega} S_d$. By Proposition 5.10, we have $S: g_0 \to_{\mathcal{R}} g_\omega$ for some g_ω. As, by Lemma 5.16, root-stability is preserved by strongly p-converging reductions, and each reduction S_d increases the depth up to which sub-term graphs are root-stable, we know that each sub-term graph of g_ω is root-stable, i.e. g_ω is a normal form.

The ability of strong p-convergence to normalise any term graph will be a crucial component of the proof of completeness of infinitary term graph rewriting.

6 Soundness and Completeness of Infinitary Term Graph Rewriting

In this section, we will study the relationship between GRSs and the corresponding TRSs they simulate. In particular, we will show the soundness of GRSs w.r.t. strong convergence and a restricted form of completeness. To this end we make use of the isomorphism between terms and canonical term trees as outlined at the end of Section 3.

Proposition 6.1. The unravelling $\mathcal{U}(g)$ of a term graph $g \in \mathcal{G}(\Sigma)$ is given by the labelled quotient tree $(\mathcal{P}(g), g(\cdot), I_{\mathcal{P}(g)})$.

Proof. Since $I_{\mathcal{P}(g)}$ is a subrelation of \sim_g, we know that $(\mathcal{P}(g), g(\cdot), I_{\mathcal{P}(g)})$ is a labelled quotient tree and thus uniquely determines a term t. By Lemma 3.7, there is a homomorphism from t to g. Hence, $\mathcal{U}(g) = t$.

Before we start investigating the correspondences between term rewriting and term graph rewriting, we need to transfer the notions of left-linearity and orthogonality to GRSs:

Definition 6.2. Let $\mathcal{R} = (\Sigma, R)$ be a GRS. A rule $\rho \in R$ is called left-linear resp. left-finite if its left-hand side ρ_l is a term tree resp. a finite term graph. The GRS \mathcal{R} is called left-linear resp. left-finite if all its rules are left-linear resp. left-finite. The GRS \mathcal{R} is called orthogonal if it is left-linear and the TRS $\mathcal{U}(\mathcal{R})$ is non-overlapping.

Note that the unravelling $\mathcal{U}(\mathcal{R})$ of a GRS \mathcal{R} is left-linear if \mathcal{R} is left-linear, that $\mathcal{U}(\mathcal{R})$ is left-finite if \mathcal{R} is left-linear and left-finite, and that $\mathcal{U}(\mathcal{R})$ is orthogonal if \mathcal{R} is orthogonal.

We have to single out a particular kind of redex that manifests a peculiar behaviour:

Definition 6.3. A redex of a rule (g, l, r) is called circular if l and r are distinct but the matching \mathcal{V}-homomorphism ϕ maps them to the same node, i.e. $l \neq r$ but $\phi(l) = \phi(r)$.

Kennaway et al. [16] show that circular redexes only reduce to themselves:

Proposition 6.4. For every circular ρ-redex $g|_n$, we have $g \not\to_{n,\rho} g$.

However, contracting the unravelling of a circular redex also yields the same term:

Lemma 6.5. For every circular ρ-redex $g|_n$, we have $\mathcal{U}(g) \to_{\mathcal{U}(\rho)} \mathcal{U}(g)$ for all $\pi \in \mathcal{P}(\rho)$.

Proof. Since there is a circular ρ-redex, we know that the right-hand side root r^ρ is reachable but different from the left-hand side root l^ρ of ρ. Hence, there is a non-empty path $\hat{\pi}$ from l^ρ to r^ρ. Because $g|_n$ is a circular ρ-redex, the corresponding matching \mathcal{V}-homomorphism maps both l^ρ and r^ρ to n. Since Δ-homomorphisms preserve paths, we thus know that $\hat{\pi}$ is also a
The original results are on finite term graphs. However, for the correspondence of normal forms, this restriction is not necessary, and for the soundness, only the finiteness of left-hand sides is crucial.

\[\text{Proposition 6.6.} \text{ Given a left-linear GRS } \mathcal{R} \text{ and a term graph } g \text{ in } \mathcal{R}, \text{ it holds that } g \text{ is a normal form in } \mathcal{R} \text{ iff } \mathcal{U}(g) \text{ is a normal form in } \mathcal{U}(\mathcal{R}). \]

\[\text{Theorem 6.7.} \text{ Let } \mathcal{R} \text{ be a left-linear, left-finite GRS with a reduction step } g \rightarrow_{n,p} h. \text{ Then for each sequence } (g_i)_{i<\alpha} \text{ in the partially ordered set } (\mathcal{G}_0^\infty(\Sigma_\perp), \leq^5), \text{ we have that } \mathcal{U}(\lim \inf_{i<\alpha} g_i) = \lim \inf_{i<\alpha} \mathcal{U}(g_i). \]

\[\text{Proof.} \text{ This is an immediate consequence of Theorem 4.2 and Proposition 6.1.} \]

In the following, we will generalise the above soundness theorem to strongly p-converging term graph reductions. We will then use the correspondence between strong m-convergence and strong p-convergence in $\mathcal{G}_0^\infty(\Sigma)$ to transfer that result to strongly m-converging reductions.

At first, we can observe that the limit inferior commutes with the unravelling:

\[\text{Proposition 6.8.} \text{ For each sequence } (g_i)_{i<\alpha} \text{ in the partially ordered set } (\mathcal{G}_0^\infty(\Sigma_\perp), \leq^5), \text{ we have that } \mathcal{U}(\lim \inf_{i<\alpha} g_i) = \lim \inf_{i<\alpha} \mathcal{U}(g_i). \]

\[\text{Proof.} \text{ This is an immediate consequence of Theorem 4.2 and Proposition 6.1.} \]

In order to prove soundness w.r.t. strong p-convergence, we need to turn the statement about the depth of redexes in Theorem 6.7 into a statement about the corresponding reduction contexts. To this end, we make use of the fact that the semilattice structure of \leq^5 admits greatest lower bounds for non-empty sets of term graphs:

\[\text{Proposition 6.9 ([16]).} \text{ In the partially ordered set } (\mathcal{G}_0^\infty(\Sigma_\perp), \leq^5) \text{ every non-empty set } G \text{ has a greatest lower bound } \bigcap G \text{ given by the following labelled quotient tree } (P,l,\sim): \]

\[P = \left\{ \pi \in \bigcap_{g \in G} \mathcal{P}(g) \mid \forall \pi' < \pi \exists f \in \Sigma_\perp \forall g \in G : g(\pi') = f \right\} \]

\[l(\pi) = \begin{cases} f & \text{if } \forall g \in G : f = g(\pi) \\ \perp & \text{otherwise} \end{cases} \]

\[\sim = \bigcap_{g \in G} \sim_g \cap P \times P \]

In particular, the glb of a set of term trees is again a term tree.

We can then prove the following proposition which relates the reduction context of a term graph reduction step with the reduction contexts of the corresponding term graph reduction:

\[\text{Proposition 6.10.} \text{ For each reduction step } g \rightarrow_c h \text{ in a left-linear, left-finite GRS } \mathcal{R}, \text{ there is a non-empty reduction } S = (t_i \rightarrow_{c_i} t_{i+1})_{i<\alpha} \text{ with } S : \mathcal{U}(g) \rightarrow_{\mathcal{U}(\mathcal{R})} \mathcal{U}(h) \text{ and } \mathcal{U}(c) = \bigcap_{i<\alpha} c_i. \]
Infinitary Term Graph Rewriting is Simple, Sound and Complete

Proof. By Theorem 6.7, there is a reduction $S : \mathcal{U}(g)^{\mathfrak{w}_{\mathcal{U}(R)}} \mathcal{U}(h)$. At first we assume that the redex $g|_n$ contracted in $g \rightarrow_n h$ is not a circular redex. Hence, S is a complete development of the set of redex occurrences $\mathcal{P}_g(n)$ in $\mathcal{U}(g)$. By Theorem 2.3, we then obtain $S : \mathcal{U}(g)^{\mathfrak{w}_{\mathcal{U}(R)}} \mathcal{U}(h)$. From Lemma 5.5 and Proposition 6.1 it follows that $\mathcal{U}(g|\gamma)g_n$ is obtained from $\mathcal{U}(g)$ by replacing each subterm of $\mathcal{U}(g)$ at a position γ, that has a prefix in $\mathcal{P}_g(n)$, i.e., a minimal position of n, by \bot. Since each step $t_i \rightarrow_{\pi}, t_{i+1} \in S$ contracts a redex at a position π, that has a prefix in $\mathcal{P}_g(n)$, we have, by Proposition 6.9 and Corollary 4.1, that $\mathcal{U}(g|\gamma)n \leq \bot \prod_{i < \alpha} t_i[\bot]_{\pi_i} = \prod_{i < \alpha} c_i$. Moreover, for each $\pi \in \mathcal{P}_g(n)$ there is a step at $t_{\pi} < \alpha$ in S that takes place at π. From Proposition 6.9, it is thus clear that $\mathcal{U}(g|\gamma)n = \prod_{\pi \in \mathcal{P}_g(n)} c_{\pi}$, which means that $\mathcal{U}(g|\gamma)\gamma = \prod_{i < \alpha} c_i$. Due to the antisymmetry of \leq_{\bot}, we thus know that $\mathcal{U}(g|\gamma)n = \prod_{i < \alpha} c_i$. Then $\mathcal{U}(c) = \prod_{i < \alpha} c_i$ follows from the fact that $c \equiv g|\gamma$. If the p-redex $g|\gamma$ contracted in $g \rightarrow_{\rho} h$ is a circular redex, then $g = h$ according to Proposition 6.4. However, by Lemma 6.5, each $\mathcal{U}(\rho)$-redex at positions in $\mathcal{P}_g(n)$ in $\mathcal{U}(g)$ reduces to itself as well. Hence, we get a reduction $\mathcal{U}(g)^{\mathfrak{w}_{\mathcal{U}(\rho)}} \mathcal{U}(h)$ via a complete development of the redexes at the minimal positions $\mathcal{P}_g(n)$ of n in g. The equality $\mathcal{U}(c) = \prod_{i < \alpha} c_i$ then follows as for the first case above.

In order to prove the soundness of strongly p-converging term graph reductions, we need the following technical lemma, which can be proved easily:

Lemma 6.11. Let $(a_i)_{i < \alpha}$ be a sequence in a complete semilattice (\mathcal{A}, \leq) and $(\gamma_i)_{i < \delta}$ a strictly monotone sequence in the ordinal α such that $\bigcap_{i \leq \delta} \gamma_i = \alpha$. Then $$\liminf_{i \rightarrow \beta} a_i = \liminf_{i \rightarrow \delta} \left(\bigcap_{\gamma \leq i < \gamma + 1} a_i \right).$$

Theorem 6.12. Let \mathcal{R} be a left-linear, left-finite GRS. If $g \mathfrak{w}_{\mathcal{U}(R)} h$, then $\mathcal{U}(g)^{\mathfrak{w}_{\mathcal{U}(R)}} \mathcal{U}(h)$.

Proof. Let $S = (g_i \rightarrow c_i, g_{i+1})_{i < \alpha}$ be a reduction strongly p-converging to g_{α} in \mathcal{R}. By Proposition 6.10, there is, for each $\gamma < \alpha$, a reduction $T_{\gamma} : \mathcal{U}(g_{\gamma})^{\mathfrak{w}_{\mathcal{U}(R)}} \mathcal{U}(g_{\gamma+1})$ such that

$$\prod_{i \leq |T_{\gamma}|} t_i = \mathcal{U}(c_{\gamma}), \quad \text{where } (t_i)_{i \leq |T_{\gamma}|} \text{ is the sequence of reduction contexts in } T_{\gamma}. \quad (*)$$

Define for each $\delta \leq \alpha$ the concatenation $U_{\delta} = \prod_{i \leq \delta} T_i$. We will show that $U_{\delta} : \mathcal{U}(g_0)^{\mathfrak{w}_{\mathcal{U}(R)}} \mathcal{U}(g_{\delta})$ for each $\delta \leq \alpha$ by induction on δ. The theorem is then obtained from the case $\delta = \alpha$.

The case $\delta = 0$ is trivial, and the case $\delta = \delta + 1$ follows from the induction hypothesis.

For the case that δ is a limit ordinal, let $U_{\delta} = (t_i \rightarrow c_i, t_{i+1})_{i < \delta}$. For each $\gamma < \beta$ we find some $\delta' < \delta$ with $U_{\delta'}|_{\gamma} < U_{\delta'}$. By induction hypothesis, we can assume that $U_{\delta'}$ is strongly p-continuous. Thus, the proper prefix $U_{\delta'}|_{\gamma}$ strongly p-converges to t_{γ}. This shows that each proper prefix $U_{\delta'}|_{\gamma}$ of U_{δ} strongly p-converges to t_{γ}. Hence, U_{δ} is strongly p-continuous.

In order to show that $U_{\delta} : \mathcal{U}(g_0)^{\mathfrak{w}_{\mathcal{U}(R)}} \mathcal{U}(g_{\delta})$, it remains to be shown that $\liminf_{i \rightarrow \beta} c_i = \mathcal{U}(g_{\delta})$. Since S is strongly p-converging, we know that $\liminf_{i \rightarrow \beta} c_i = g_{\delta}$. By Proposition 6.8, we thus have $\liminf_{i \rightarrow \beta} \mathcal{U}(c_i) = \mathcal{U}(g_{\delta})$. By $(*)$ and the construction of U_{δ}, there is a strictly monotone sequence $(\gamma_i)_{i < \delta}$ with $\gamma_0 = 0$ and $\bigcap_{i < \delta} \gamma_i = \beta$ such that $\mathcal{U}(c_i) = \prod_{i \leq \gamma_i < \gamma_{i+1}} c_i$ for all $i < \delta$. Thus, we can complete the proof as follows:

$$\mathcal{U}(g_{\delta}) = \liminf_{i \rightarrow \beta} \mathcal{U}(c_i) = \liminf_{i \rightarrow \delta} \left(\prod_{i \leq \gamma_i < \gamma_{i+1}} c_i \right) \overset{\text{Lem. 6.11}}{=} \liminf_{i \rightarrow \beta} c_i \quad \blacksquare$$

By combining the soundness result above with the normalisation of strong p-convergence, we obtain the following completeness result:

Theorem 6.13. Given an orthogonal, left-finite GRS \mathcal{R}, we obtain for each reduction $\mathcal{U}(g)^{\mathfrak{w}_{\mathcal{U}(R)}} t$, a reduction $g \mathfrak{w}_{\mathcal{R}} h$ such that $t \mathfrak{w}_{\mathcal{U}(R)} \mathcal{U}(h)$.

Proof. Let \(U(g) \xrightarrow{m_{U(\mathcal{R})}} t \). By Theorem 5.18 there is a normalising reduction \(g \xrightarrow{m_{\mathcal{R}}} h \). According to Theorem 6.12, \(g \xrightarrow{m_{\mathcal{R}}} h \) implies \(U(g) \xrightarrow{m_{U(\mathcal{R})}} U(h) \). By Proposition 6.6, \(U(h) \) is a normal form in \(U(\mathcal{R}) \). Since orthogonal, left-finite TRSs are confluent w.r.t. strong \(p \)-convergence [4], the reduction \(U(g) \xrightarrow{m_{U(\mathcal{R})}} U(h) \) together with \(U(g) \xrightarrow{m_{U(\mathcal{R})}} t \) yields a reduction \(t \xrightarrow{m_{U(\mathcal{R})}} U(h) \).

The results above make strongly \(p \)-converging term graph reductions sound and complete for strongly \(p \)-converging term reductions in the sense of adequacy of Kennaway et al. [16].

The notion of adequacy of Kennaway et al. [16] does not only comprise soundness and completeness but also demands that the unravelling \(U(\cdot) \) is surjective and both preserves and reflects normal forms. For infinitary term graph rewriting, surjectivity of \(U(\cdot) \) is trivial since each term is the image of itself under \(U(\cdot) \) and the preservation and reflection of normal forms is given for left-linear GRSs by Proposition 6.6.

From the soundness result for strong \(p \)-convergence, we can straightforwardly derive a corresponding result for strong \(m \)-convergence:

\[\text{Theorem 6.14.} \quad \text{Let } \mathcal{R} \text{ be a left-linear, left-finite GRS. If } g \xrightarrow{m_{\mathcal{R}}} h, \text{ then } U(g) \xrightarrow{m_{U(\mathcal{R})}} U(h). \]

Proof. Given a reduction \(S: g \xrightarrow{m_{\mathcal{R}}} h \), we know, by Theorem 5.14, that \(S: g \xrightarrow{m_{\mathcal{R}}} h \) in \(G^x_{\mathcal{R}}(\Sigma) \). According to Theorem 6.12, we then find a reduction \(U(g) \xrightarrow{m_{U(\mathcal{R})}} U(h) \). Since, \(g, h \) are total, so are \(U(g), U(h) \). Hence, by Corollary 7.15 of [4], we obtain a reduction \(U(g) \xrightarrow{m_{U(\mathcal{R})}} U(h) \).

Similar to the proof of Theorem 6.13, we can derive a weakened completeness property for strong \(m \)-convergence:

\[\text{Theorem 6.15.} \quad \text{Given an orthogonal, left-finite GRS } \mathcal{R} \text{ that is normalising w.r.t. strongly } m \text{-converging reductions, we find for each normalising reduction } U(g) \xrightarrow{m_{U(\mathcal{R})}} t \text{ a reduction } g \xrightarrow{m_{\mathcal{R}}} h \text{ such that } t = U(h). \]

Proof. Let \(U(g) \xrightarrow{m_{U(\mathcal{R})}} t \) with \(t \) a normal form in \(U(\mathcal{R}) \). As \(\mathcal{R} \) is normalising w.r.t. strongly \(m \)-converging reductions, there is a reduction \(g \xrightarrow{m_{\mathcal{R}}} h \) with \(h \) a normal form in \(\mathcal{R} \). According to Theorem 6.14, we then find a reduction \(U(g) \xrightarrow{m_{U(\mathcal{R})}} U(h) \). By Proposition 6.6, \(U(h) \) is a normal form in \(U(\mathcal{R}) \). Since \(U(\mathcal{R}) \) is left-finite and orthogonal, we know that, according to Theorem 7.15 in [17], \(\mathcal{R} \) has unique normal forms w.r.t. \(m_{\mathcal{R}} \). Consequently, \(t = U(h) \).

While the above theorem is restricted to normalising GRSs, we conjecture that this restriction is not needed: as soon as we have a compression lemma for strong \(p \)-convergence, completeness of normalising strong \(m \)-convergence follows from the completeness of strong \(p \)-convergence.

Yet, as mentioned in the in the introduction, the restriction to normalising reductions is crucial. The counterexample that Kennaway et al. [16] give for their informal notion of term graph convergence in fact also applies to our notion of strong \(m \)-convergence.

\section{Conclusions}

By generalising the metric and partial order based notions of convergence from terms to term graphs, we have obtained two infinitary term graph rewriting calculi that simulate infinitary term rewriting adequately. Not only do these results show the appropriateness of our notions of infinitary term graph rewriting. They also refute the claim of Kennaway et al. [16] that infinitary term graph rewriting cannot adequately simulate infinitary term rewriting.

Since reasoning over the rather operational style of term graph rewriting is tedious, we tried to simplify the proofs using labelled quotient trees. In future work, it would be helpful...
to characterise term graph rewriting itself in this way or to adopt a more declarative approach to term graph rewriting [12, 11, 1].

We think that, in this context, strong p-convergence may help to bridge the differences between the operational style of Barendregt et al. [8] and the declarative formalisms [12, 11, 1], which arise from the different way of contracting circular redexes. While in the operational approach that we adopted here, circular redexes are contracted to themselves, they are contracted to \bot in the abovementioned declarative approaches. However, since circular redexes are root-active, they can be rewritten to \bot in a strongly p-converging reduction.

References