Kondo-enhanced Andreev tunneling in InAs nanowire quantum dots

Jespersen, Thomas Sand; Paaske, Jens; Andersen, Brian Møller; Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Aagesen, Martin; Sørensen, C. B.; Lindelof, Poul Erik; Flensberg, Karsten; Nygård, Jesper

Published in: Physical Review Letters

Publication date: 2007

Document version: Early version, also known as pre-print

Download date: 14. jul., 2023
Kondo-Enhanced Andreev Tunneling in InAs Nanowire Quantum Dots

Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
(Received 10 March 2007; published 19 September 2007)

We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with subgap peaks at $|V_{sd}| = \Delta/e$ markedly stronger (weaker) than the quasiparticle tunneling peaks at $|V_{sd}| = 2\Delta/e$ for odd (even) occupation. We attribute the enhanced Δ peak to an interplay between Kondo correlations and Andreev tunneling in dots with an odd number of spins, and we substantiate this interpretation by a poor man’s scaling analysis.

Since the discovery of the Kondo effect in quantum dots (QD) [1] this phenomenon has received extensive theoretical and experimental attention [2]. The effect emerges for QD’s coupled strongly to the leads when the total spin of the electrons on the QD is nonzero, e.g., if it hosts an odd number of electrons N. At temperatures below the so-called Kondo temperature, T_K, the conduction electrons in the leads screen the spin through multiple cotunneling spin-flip processes resulting in a correlated many-body state which is experimentally observable as an increased linear conductance through the dot. If the leads consist of (s-wave) superconductors (S) the conduction electrons form spin-singlet Cooper pairs incapable of flipping the dot spin, and therefore the Kondo effect and superconductivity constitute competing many-body effects.

Recent developments in techniques for fabrication of quantum dot systems have made it possible to produce S-QD-S systems [3–7] enabling experimental studies of this intriguing interplay. In carbon nanotubes [3], it was found that the Kondo state persists when the energy needed for breaking the Cooper pairs is compensated by the energy gained in forming the Kondo state ($T_K > \Delta$). Here Δ is the gap of the superconducting leads. Otherwise, the Kondo state is suppressed and the Kondo-induced increase in the linear conductance disappears.

For bias voltages less than $|V_{sd}| = 2\Delta/e$, transport occurs through multiple Andreev reflection (AR) processes where electrons (holes) impinging on a superconducting electrode are reflected as holes (electrons) upon injecting (absorbing) a Cooper pair [8] as illustrated in Fig. 1(c) and 1(d). The allowed processes depend on V_{sd}, upon increasing $|V_{sd}|$ through $2\Delta/ne$, $n = 2, 3, \ldots$ processes containing $(n + 1)$ AR are lost while those with $(n - 1)$ AR start to contribute. This basic mechanism gives rise to a rich subharmonic gap structure (SGS) in electrical transport measurements which has been studied extensively in superconducting weak links [9], break junctions [10], and for quantum dots outside the Kondo regime [11]. Nevertheless, no experimental study of the influence of Kondo correlations on the SGS has yet been reported and this is the focus of the present work. We find that even when the Kondo peak in the linear conductance is suppressed by the superconducting gap, a pronounced Kondo enhancement of the leading subgap peak in dI/dV_{sd} emerges at $|V_{sd}| = \Delta/e$. We study the characteristics of this peak and attribute it to a Kondo enhancement of the Andreev-tunneling amplitude in dots with odd occupancy.

![FIG. 1 (color online).](color online). (a) SEM image of a typical nanowire device. (b) Linear conductance in the Kondo regime for temperatures $T = 750$ mK (black line) $- T = 950$ mK (red line) and at 300 mK (dashed line). The qualitative temperature dependence of the valley conductances for temperatures above T_c are indicated by arrows. Leftmost inset shows dI/dV_{sd} vs V_{sd} and V_g for the region of k_1 at 800 mK($> T_c$). At 300 mK, i.e., below T_c (rightmost inset) the Kondo ridge is suppressed. (c), (d) Schematic illustration of the processes which lead to peaks at $|V_{sd}| = 2\Delta/e$ and $|V_{sd}| = \Delta/e$, respectively.

0031-9007/07/99(12)/126603(4)

PACS numbers: 72.15.Qm, 73.21.La, 73.23.−b
Our devices are based on semiconducting InAs nanowires grown by molecular beam epitaxy [12] and electrically contacted by a superconducting Ti/Au/Ti trilayer (10/60/10 nm) [4]. The superconducting transition temperature $T_c = 750$ mK and critical magnetic field $B_c = 250$ mT of the contacts are determined experimentally. Figure 1(a) shows a scanning electron micrograph of a device. The wire has a diameter $d = 70$ nm and the electrode separation is $L = 300$ nm. As in our previous studies of nanowire devices contacted by (normal metal) Ti/Au leads, tunnel barriers develop close to the nanowire-metal interfaces and due to spatial confinement of the wire, a quantum dot with discrete eigenstates is formed [13]. The barrier transparency and carrier concentration can be tuned by applying a voltage V_g to the degenerately doped Si substrate, and below we focus on the regime appropriate for Kondo physics. The two-terminal conductance of the device is measured as a function of applied source-drain bias and gate potential using standard lock-in techniques.

We first characterize the device with the contacts in the normal state. Figure 1(b) shows the linear conductance G as a function of V_g for temperatures 750 mK–950 mK when the contacts are normal (solid lines). A series of overlapping Coulomb peaks are observed and the temperature dependence of the valley conductances are indicated by the arrows. In four valleys, the conductance decreases upon lowering the temperature, as expected for Coulomb blockade. For the three valleys labeled κ_1–κ_3 the opposite behavior is observed, signifying Kondo physics. The left inset is a gray scale plot of the differential conductance dI/dV_{sd} versus V_g and V_{sd} (stability diagram) measured at 800 mK($> T_c$). It shows the familiar pattern of Coulomb diamonds (charging energy $E_C = 1.5$ meV, level spacing $\Delta E \sim 1$ meV) and confirms the presence of a high conductance Kondo ridge around zero bias through the diamond κ_1. The black dashed line shows G versus V_g measured at 300 mK($< T_c$). Instead of continuing their increase as expected for the Kondo effect (without superconductivity) the valley conductances G_v of κ_1–κ_3 decrease below their values at 950 mK. This result is consistent with the findings of Ref. [3] and shows that the binding energy $\sim k_B T_K$ of the Kondo states κ_1–κ_3 is lower than the binding energy of the superconducting Cooper pairs $\Delta = 1.75 k_B T_c$. Here k_B is Boltzmann’s constant and the Kondo temperature T_K is therefore smaller than $\Delta/k_B = 1.3$ K in all three charge states κ_1–κ_3 [14]. The suppression of the Kondo state is confirmed by the disappearance of the Kondo ridge in the stability diagram measured at 300 mK shown for κ_1 in the rightmost inset to Fig. 1(b).

The finite-bias peaks indicated by the arrows are observed throughout the stability diagram and appear symmetrically around $V_{sd} = 0$ V (see also Fig. 2). These are manifestations of the superconducting state of the contacts where peaks are expected at $|V_{sd}| = 2\Delta/e$ when the density of states at the gap edges line up as illustrated in Fig. 1(c). The stability diagram in Fig. 2(a) shows a detailed measurement of these low-bias features for the Coulomb diamonds of κ_1 and κ_2. Close to the degeneracy points of the Coulomb diamonds a complicated peak structure is observed, since in this region multiple Andreev reflections (MAR) occur resonantly through the gate-voltage dependent dot level [11,15,16].

We restrict our discussion to the middle region of the Coulomb diamonds where the peak positions are largely gate independent and transport occurs by cotunneling between the two superconductors. In this case, MAR peaks are expected at $|V_{sd}| = 2\Delta/ne$, $n = 1, 2, \ldots$ with intensities determined mainly by the effective transparency of the device (defined below). The peaks at $|V_{sd}| = \Delta/e (n = 2)$ result from the opening and closing of processes involving one and three Andreev reflections, respectively, as schematically shown in Fig. 1(d). The lower trace in Fig. 2(b) shows the differential conductance along the white dashed line in Fig. 2(a) through the middle of an even-N diamond. As expected, peaks are observed at $|V_{sd}| = 2\Delta/e$ with fainter shoulders at $|V_{sd}| = \Delta/e$. However, as seen in Fig. 2(a) the SGS in the odd-N diamonds of the suppressed Kondo ridges κ_1 and κ_2 is clearly modified. Unexpectedly, the peaks at $|V_{sd}| = \Delta/e$ are more than 5 times larger than the peaks at $|V_{sd}| = 2\Delta/e$, as emphasized...
by the upper trace in Fig. 2(b) through the middle of the \(k_1 \)
diamond. This contrasts the expectations for simple tun-
neling between the two superconductors, and the presence of
the Kondo effect in the normal state points towards
electron-electron correlations as the origin of the modified
SGS [17].

Further support of the connection between the Kondo
effect and the enhanced \(\Delta \) peak is provided in Fig. 2(c): the
lower panel shows the linear conductance (right axis) over a
\(V_g \) range of 5 odd-\(N \) and 6 even-\(N \) Coulomb valleys. In
the three odd-\(N \) valleys \(k_1 \sim k_3 \) from Fig. 1(b) and an
additional one, \(k_0 \), the Kondo effect was observed in the normal
state, and as seen in the upper panel, the enhanced \(\Delta \) peak
is observed in the SGS of each Coulomb diamond. In the
remaining diamonds, including \(o1 \) with odd-\(N \) (which did
not show the Kondo effect in the normal state), the
conventional SGS is observed. Thus, the effect is connected to
Kondo correlations rather than to the number of electrons
on the dot. In the lower panel of Fig. 2(c) the separations
between the \(-2\Delta \) and \(+2\Delta \) peaks (squares) and between
the \(-\Delta \) and \(+\Delta \) peaks (circles) are extracted for each
Coulomb valley (left axis). The separations of the \(\pm 2\Delta \)
peaks depend slightly on \(N \) and are increased in the \(k \)
valleys with respect to the even-\(N \) values; however, the \(\Delta \)
peaks in the \(\kappa \) valleys always appear at exactly half the
separation of the corresponding \(2\Delta \) peaks.

To investigate further the origin of the \(\Delta \) peak we study
the temperature dependence of the SGS. Figure 3(a) shows
\(dI/dV_{sd} \) versus \(V_{sd} \) through the middle of \(k_1 \) for tempera-
tures 1700 mK–310 mK. Upon lowering the temperature,
the initial formation of the Kondo peak is observed for \(T > \)
\(T_c \), followed by the formation of the subgap peaks at
\(|V_{sd}| = \Delta/e \) with shoulders at \(|V_{sd}| = 2\Delta/e \) for \(T < T_c \).
The peak positions follow the expected temperature de-
pendence of the BCS gap \(\Delta_{BCS}(T) \) (red lines). To allow for
a better comparison of the evolution of the \(\Delta \) and \(2\Delta \) peaks
we include in Fig. 3(c) a similar measurement performed
for a suppressed Kondo ridge in a different device where
the four peaks can be clearly distinguished. In Figs. 3(b) and
3(d) the temperature dependencies of the average peak
heights and the valley conductances have been extracted.
In both cases the \(\Delta \) peaks increase with roughly constant
slope, whereas the \(2\Delta \) peaks of the measurement in
Fig. 3(e) saturate below \(\sim 0.5 \) K. In the absence of inter-
actions the temperature dependence is governed by the
gap, and we expect the measured peak heights to be pro-
portional to \(\Delta_{BCS}(T) \) [18]. The solid lines in Figs. 3(b) and
3(d) show such fits and \(\Delta_{BCS}(T) \) indeed describes the
behavior of the \(2\Delta \) peak in Fig. 3(d). For the enhanced \(\Delta \)
peaks, however, the continuing strengthening is not cap-
tured, thereby adding further evidence to the importance of
correlations for the origin of these peaks.

In the middle of the Coulomb diamonds, charge fluctua-
tions are strongly suppressed and electrons traverse the dot
via cotunneling processes with a tunneling amplitude of
the order of \(J_{LR} \sim t_L t_R/E_C \), where \(t_{LR} \) are the tunneling
amplitudes from the dot to the two leads. This means that
the even occupied dot can be viewed as an effective super-
conducting single-mode junction with transparency \(\alpha \sim
(\nu_F J_{LR})^2 \ll 1 \), which has been studied in Ref. [19] (\(\nu_F \)
denotes the density of states at the Fermi levels). In single-
mode junctions with low transparency, the quasiparticle
tunneling conductance peak at \(|V_{sd}| = 2\Delta/e \) dominates
over the subgap peaks, as observed in our even Coulomb
diamonds. In the case of odd occupation, however, trans-
port occurs via exchange (co)tunneling which gives rise to
a Kondo-enhanced transparency of the order of
\(1/\ln^2(\Delta/k_B T_K) \). Since the leading subgap peak at \(V_{sd} = \Delta/e \)
can exceed the \(2\Delta \) peak for moderate values of the
transparency [19], our observations are consistent with a
Kondo-enhanced transparency of the junction. This argu-
ment is valid only for \(\Delta \gg k_B T_K \), but clearly the spin-full
dot holds the premise for a Kondo-enhanced transparency,
which provides a simple understanding of the \(\Delta \) peak
dominating the \(2\Delta \) peak in the odd diamonds which sup-
ported a Kondo resonance for temperatures above \(T_C \).

The logarithmic enhancement of the transparency can be
established from a poor man’s scaling analysis [20] of the
Kondo model with superconducting leads and \(\Delta \gg k_B T_K \).
The exchange coupling, \(\nu_F J_{LR} \), grows stronger as the
conduction electron bandwidth, \(D \), is reduced, and ter-
iminates at \(1/\ln(\Delta/k_B T_K) \) when \(D \) reaches \(\Delta \). Interestingly,
the scaling also generates a new anomalous operator inde-
pendent of the impurity spin. The effective low-energy
(time-dependent) Hamiltonian thus contains an Andreev-

FIG. 3 (color online). (a) \(dI/dV_{sd} \) vs \(V_{sd} \) through the middle of \(k_1 \) for differ-
tent temperatures 310 mK–1700 mK (offset for clarity). Bold
trace shows the Kondo peak at \(T \approx 800 \) mK and the formation
of the \(\Delta/e \) peak can be followed. Symbols correspond to traces
in (b) showing the suppression of the valley conductance
(crosses) and the continuing increase of the average heights of
the \(\Delta \) peaks below \(T_c \) (squares). Solid line shows a fit to the gap
function \(\Delta_{BCS}(T) \). (c), (d) As in (a), (b) from another device.
tunneling term, $A_T[e^{i\mu_{L,R} - \mu_L} \sum_{k'} C_{k'}^\dagger C_{L,R}^\dagger + (L \leftrightarrow R)] + \text{H.c.}$, where $\mu_{L,R}$ denotes the chemical potentials and the explicit time dependence from the applied bias has been gauged into a phase factor on the electron operators. The current is readily calculated to second order in A_T and sets in with a step at $V = \Delta$. Schematically, the coupled scaling equations for J and A_T take the form

$$\frac{dA_T}{d\ln D} = -\frac{3}{4} \frac{\Delta}{D} J^2 - \frac{4}{D} \frac{\Delta}{D} A_T^2,$$

$$\frac{dJ}{d\ln D} = -J^2 + 2 \frac{\Delta}{D} J A_T,$$

leaving out all lead indices (L, R) and step functions determining the energy scales beyond which the various terms no longer contribute to the flow. For $D \gg \Delta$, only J grows logarithmically whereas the flow of A_T is prohibited by extra factors of Δ/D deriving from the virtual propagation of a Cooper pair near the band edge. For $D \ll \Delta$, however, these factors of Δ/D would rather enhance the flow and lead to a divergence of A_T. We postpone the full analysis of these scaling equations to a future publication [21], and we merely note here that the alignment of the Fermi level with the gap edge for $|V_{sd}| = \Delta/e$ might permit the flow to continue to strong coupling, which in turn may lead to the anomalous temperature dependence which we observe for the Δ-peak height. Further analysis of the finite-bias scaling equations will clarify this issue. Finally, we note that the Andreev-tunneling operator is also generated in the even diamonds by simple potential scattering, but in this case the J^2 term driving the enhancement of the transparency is missing.

In summary, we have discovered a pronounced alternation of the strength of the leading subgap conductance peak between even and odd occupied quantum dots coupled to superconducting leads. We have observed this effect in 15 suppressed Kondo ridges in two different devices and we ascribe the enhancement of the Δ peaks for odd occupations to a Kondo-enhanced Andreev-tunneling amplitude. Furthermore, we have found that, unlike the 2Δ peak, the Δ-peak height does not saturate with $\Delta(T)$ when lowering the temperature.

This work was supported by the EC FP6 funding (Project No. FP6-IST-003673) and the Danish Agency for Science, Technology, and Innovation.

Note added.—Recently, we have become aware of an independent, parallel study of the above phenomenon in a different system materials, carbon nanotubes, by A. Eichler et al. [22].

[14] In agreement with Ref. [3] we have also observed Kondo ridges that survive the transition to superconducting contacts and are further enhanced by the superconductor as expected for $T_K > \Delta/k_B$.