Constructing light spanners deterministically in near-linear time

Alstrup, Stephen; Dahlgaard, Søren; Filtser, Arnold; Stöckel, Morten; Wulff-Nilsen, Christian

Published in:
Theoretical Computer Science

DOI:
10.1016/j.tcs.2022.01.021

Publication date:
2022

Document version
Early version, also known as pre-print

Citation for published version (APA):
Constructing Light Spanners Deterministically in Near-Linear Time

Stephen Alstrup∗1, Søren Dahlgaard†1, Arnold Filtser‡2, Morten Stöckel§1, and Christian Wulff-Nilsen¶1

1University of Copenhagen, {s.alstrup,soerend,most,koolooz}@di.ku.dk
2Bar Ilan University, arnold273@gmail.com

Abstract

Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [CW18] improved the state-of-the-art for light spanners by constructing a $(2k-1)(1+\varepsilon)$-spanner with $O(n^{1+1/k})$ edges and $O_{\varepsilon}(n^{1/k})$ lightness. Soon after, Filtser and Solomon [FS20] showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the greedy spanner is its running time of $O(mn^{1+1/k})$ (which is faster than [CW18]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness $\Omega(\varepsilon kn^{1/k})$, even when randomization is used.

The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an $O_{\varepsilon}(m+n\log n)$ time spanner construction which achieves the state-of-the-art bounds. Our second result is an $O_{\varepsilon}(m+n\log n)$ time construction of a spanner with $(2k-1)(1+\varepsilon)$ stretch, $O(\log k \cdot n^{1+1/k})$ edges and $O_{\varepsilon}(\log k \cdot n^{1/k})$ lightness. This is an exponential improvement in the dependence on k compared to the previous result with such running time. Finally, for the important special case where $k = \log n$, for every constant $\varepsilon > 0$, we provide an $O(m+n^{1+\varepsilon})$ time construction that produces an $O(\log n)$-spanner with $O(n)$ edges and $O(1)$ lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any $k = \omega(1)$.

To achieve our constructions, we show a novel deterministic incremental approximate distance oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our new oracle is of independent interest.

∗Research partly supported by Innovationsfonden DK, DABAI (5153-00004A) and by VILLUM Foundation grant 16582, Basic Algorithms Research Copenhagen (BARC).
†Research partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for Independent Research.
‡Supported in part by the Simons Foundation, ISF grant No. (1817/17), and by BSF grant No. 2015813. The research was done while the author was affiliated with Ben-Gurion University of the Negev, and Columbia University.
§Research partly supported by Villum Fonden.
¶Research partly supported by the Starting Grant 7027-00050B from the Independent Research Fund Denmark under the Sapere Aude research career programme.
Contents

1 Introduction ... 3
 1.1 Our results .. 4
 1.2 Related work 6

2 Preliminaries .. 7

3 Paper overview .. 7

4 A framework for creating light spanners efficiently 9

5 Efficient approximate greedy spanner 13
 5.1 Details of the almost-greedy spanner 13
 5.2 Near-quadratic time implementation 15

6 Almost Linear Spanner 16
 6.1 Details of the construction 17
 6.2 Exact implementation of Algorithm 2 19

7 Proof of Theorem 6 21
 7.1 Algorithm .. 21
 7.2 Stretch .. 22
 7.3 Sparsity ... 23
 7.4 Running Time .. 24
 7.5 Prophet Union/Find 24

8 Deterministic Incremental Distance Oracles for Small Distances 26
 8.1 The distance oracle 31
 8.2 Bounding time and stretch 34

9 A note on the lightness of other spanners 35

10 Proof of Lemma 5 .. 37

11 Missing proofs from the analysis 38
 11.1 Stretch .. 38
 11.2 Proofs of Lemma 7 and Lemma 8 39

12 Halperin Zwick spanner 41
 12.1 Modified [HZ96] Spanner 42
1 Introduction

A fundamental problem in graph data structures is compressing graphs such that certain metrics are preserved as well as possible. A popular way to achieve this is through graph spanners. Graph spanners are sparse subgraphs that approximately preserve pairwise shortest path distances for all vertex pairs. Formally, we say that a subgraph $H = (V, E', w)$ of an edge-weighted undirected graph $G = (V, E, w)$ is a t-spanner of G if for all $u, v \in V$ we have $d_H(u, v) \leq t \cdot d_G(u, v)$, where d_X is the shortest path distance function for graph X and w is the edge weight function. Under such a guarantee, we say that our graph spanner H has stretch t. In the following, we assume that the underlying graph G is connected; if it is not, we can consider each connected component separately when computing a spanner.

Graph spanners originate from the 80’s [PS89, PU87] and have seen applications in e.g. synchronizers [PU87], compact routing schemes [TZ01, PU88, Che13], broadcasting [FPZW04], and distance oracles [Wul12].

The two main measures of the sparseness of a spanner H is the size (number of edges) and the lightness, which is defined as the ratio $w(H)/w(MST(G))$, where $w(H)$ resp. $w(MST(G))$ is the total weight of edges in H resp. a minimum spanning tree (MST) of G. It has been established that for any positive integer k, a $(2k-1)$-spanner of $O(n^{1+1/k})$ edges exists for any n-vertex graph [Awe85]. This stretch-size tradeoff is widely believed to be optimal due to a matching lower bound implied by Erdős’ girth conjecture [Erd64], and there are several papers concerned with constructing spanners efficiently that get as close as possible to this lower bound [TZ05, BS07, RZ11].

Obtaining spanners with small lightness (and thus total weight) is motivated by applications where edge weights denote e.g. establishing cost. The best possible total weight that can be achieved in order to ensure finite stretch is the weight of an MST, thus making the definition of lightness very natural. The size lower bound of the unweighted case provides a lower bound of $\Omega(n^{1/k})$ lightness under the girth conjecture, since H must have size and weight $\Omega(n^{1+1/k})$ while the MST has size and weight $n - 1$. Obtaining this lightness has been the subject of an active line of work [ADD+93, CDNS92, ENS15, CW18, FS20]. Throughout this paper we say that a spanner is optimal when its bounds coincide asymptotically with those of the girth conjecture. Obtaining an efficient spanner construction with optimal stretch-lightness trade-off remains one of the main open questions in the field of graph spanners.

Light spanners. Historically, the main approach of obtaining a spanner of bounded lightness has been through different analyses of the classic greedy spanner. Given $t \geq 1$, the greedy t-spanner is constructed as follows: iterate through the edges in non-decreasing order of weight and add an edge e to the partially constructed spanner H if the shortest path distance in H between the endpoints of e is greater than t times the weight of e. The study of this spanner algorithm dates back to the early 90’s with its first analysis by Althöfer et al. [ADD+93]. They showed that this simple procedure with stretch $2k - 1$ obtains the optimal $O(n^{1+1/k})$ size, and has lightness $O(n/k)$. The algorithm was subsequently analyzed in [CDNS92, ENS15, FS20] with stretch $(1 + \varepsilon)(2k - 1)$ for any $0 < \varepsilon < 1$. Recently, a break-through result of Chechik and Wulff-Nilsen [CW18] showed that a significantly more complicated spanner construction obtains nearly optimal stretch, size and lightness giving the following theorem.

Theorem 1 ([CW18]). Let $G = (V, E, w)$ be an edge-weighted undirected n-vertex graph and let k be a positive integer. Then for any $0 < \varepsilon < 1$ there exists a $(1 + \varepsilon)(2k - 1)$-spanner of size $O(n^{1+1/k})$ and lightness $O_\varepsilon(n^{1/k})$.\(^1\)

\(^1\)O\(_\varepsilon\) notation hides polynomial factors in $1/\varepsilon$.

3
Following the result of [CW18] it was shown by Filtser and Solomon [FS20] that this bound is matched by the greedy spanner. In fact, they show that the greedy spanner is existentially optimal, meaning that if there is a t-spanner construction achieving an upper bound m(n, t) resp. l(n, t) on the size resp. lightness of any n-vertex graph then this bound also holds for the greedy t-spanner. In particular, the bounds in Theorem 1 also hold for the greedy spanner.

Efficient spanners. A major drawback of the greedy spanner is its $O(m \cdot (n^{1+1/k} + n \log n))$ construction time [ADD1+93]. Similarly, Chechik and Wulff-Nilsen [CW18] only state their construction time to be polynomial, but since they use the greedy spanner as a subroutine, it has the same drawback. Adressing this problem, Elkin and Solomon [ES16] considered efficient construction of light spanners. They showed how to construct a spanner with stretch $((1+\varepsilon)(2k-1)$, size $O_\varepsilon(kn^{1+1/k})$ and lightness $O_\varepsilon(kn^{1/k})$ in time $O(km + \min(n \log n, ma(n)))$. Improving on this, a recent paper of Elkin and Neiman [EN19] uses similar ideas to obtain stretch $((1+\varepsilon)(2k-1)$, size $O(\log k \cdot n^{1+1/k})$ and lightness $O(kn^{1/k})$ in expected time $O(m + \min(n \log n, ma(n)))$.

Several papers also consider efficient constructions of sparse spanners, which are not necessarily light. Baswana and Sen [BS07] gave a $(2k-1)$-spanner with $O(kn^{1+1/k})$ edges in $O(km)$ expected time. This was later derandomized by Roditty et al. [RTZ05] (while keeping the same sparsity and running time). Recently, Miller et al. [MPVX15] presented a randomized algorithm with $O(m + n \log k)$ running time and $O(\log k \cdot n^{1+1/k})$ size at the cost of a constant factor in the stretch $O(k)$.

It is worth noting that for super-constant k, none of the above spanner constructions obtain the optimal $O(n^{1+1/k})$ size or $O(n^{1/k})$ lightness even if we allow $O(k)$ stretch. If we are satisfied with nearly-quadratic running time, Elkin and Solomon [ES16] gave a spanner with $(1+\varepsilon)(2k-1)$ stretch, $O_\varepsilon(n^{1+1/k})$ size and $O_\varepsilon(kn^{1/k})$ lightness in $O(kn^{2+1/k})$ time by extending a result of Roditty and Zwick [RZ11] who got a similar result but with unbounded lightness. However, this construction still has an additional factor k in the lightness. Thus, the fastest known spanner construction obtaining optimal size and lightness is the classic greedy spanner – even if we allow $O(k)$ stretch or $o(kn^{1/k})$ lightness.

We would like to emphasize that the case $k = \log n$ is of special interest. This is the point on the tradeoff curve allowing spanners of linear size and constant lightness. Prior to this paper, the state of the art for efficient spanner constructions with constant lightness suffered from distortion at least $O(\log^2 n)$. See the discussion after Corollary 1 for further details.

A summary of spanner algorithms can be seen in Table 1.

1.1 Our results

We present the first spanner obtaining the same near-optimal guarantees as the greedy spanner in significantly faster time by obtaining a $(1 + \varepsilon)(2k-1)$-spanner with optimal size and lightness in $O_\varepsilon(n^{2+1/k+\varepsilon'})$ time. We also present a variant of this spanner, improving the running time to $O(m + n \log n)$ by paying a $\log k$ factor in the size and lightness. Finally, we present an optimal $O_\varepsilon(\log n)$-spanner which can be constructed in $O(m + n^{1+\varepsilon})$ time. This special case is of particular interest in the literature (see e.g. [BFN19, KX16]). Furthermore, all of our constructions are deterministic, giving the first subquadratic deterministic construction without the additional dependence on k in the size of the spanner. As an important tool, we introduce a new deterministic approximate incremental distance oracle which works in near-linear time for maintaining small distances approximately. We believe this result is of independent interest.

More precisely, we show the following theorems.

Theorem 2. Given a weighted undirected graph $G = (V, E, w)$ with m edges and n vertices, any positive integer k, and $\varepsilon, \varepsilon' > 0$ where ε arbitrarily close to 0 and ε' is a constant, one can
Table 1: Table of related spanner constructions. In the top of the table we list non-efficient spanner constructions. In the middle we list known efficient spanner constructions. In the bottom we list our contributions. Results marked * are different analyses of the greedy spanner. Results marked † are randomized. Lightness complexities marked ** are from the analysis in Section 9 and W denotes the maximum edge weight of the input graph. The bounds hold for any constant $\varepsilon, \varepsilon' > 0$.

deterministically construct an $(1 + \varepsilon)(2k - 1)$-spanner of G with $O_{\varepsilon}(n^{1+1/k})$ edges and lightness $O_{\varepsilon}(n^{1/k})$ in $O(n^{2+1/k + \varepsilon'})$ time.

Theorem 3. Given a weighted undirected graph $G = (V,E,w)$ with m edges and n vertices, a positive integer $k \geq 640$, and $\varepsilon > 0$, one can deterministically construct a $(2k - 1)(1+\varepsilon)$-spanner of G with $O_{\varepsilon}(\log k \cdot n^{1+1/k})$ edges and lightness $O_{\varepsilon} \left(\log k \cdot n^{1/k}\right)$ in time $O(m + n \log n)$.

Note that in Theorem 3 we require k to be larger than 640. This is not a significant limitation, as for $k = O(1)$ [ES16] is already optimal.

Our $O(\log n)$-spanner is obtained as a corollary of the following more general result.

Theorem 4. Given a weighted undirected graph $G = (V,E,w)$ with m edges and n vertices, any positive integer k and constant $\varepsilon' > 0$, one can deterministically construct an $O(k)$-spanner of G with $O(n^{1+1/k})$ edges and lightness $O(n^{1/k})$ in $O(m + n^{1+\varepsilon'+1/k})$ time.

We note that the stretch $O(k)$ of Theorem 4 (and Corollary 1 below) hides an exponential factor in $1/\varepsilon'$, thus we only note the result for constant ε'. Bartal et. al. [BFN19] showed that given a spanner construction that for every n-vertex weighted graph produces a $t(n)$-stretch spanner with $m(n,t)$ edge and $l(n,t)$ lightness in $T(n,m)$ time, then for every parameter $0 < \delta < 1$ and every graph G, one can construct a t/δ-spanner with $m(n,t)$ edges and $1 + \delta \cdot l(n,t)$ lightness in $T(n,m) + O(m)$ time. Plugging $k = \log n$ and using this reduction w.r.t. δ in Theorem 4, and $\delta' = \frac{\delta}{\log \log n}$ in Theorem 3, we get

Corollary 1. Let $G = (V,E,w)$ be a weighted undirected n-vertex graph, let $\varepsilon' > 0$ be a constant and $\delta > 0$ be a parameter arbitrarily close to 0. Then one can construct a spanner of G with:
1. $O(\log n)/\delta$ stretch, $O(n)$ edges and $1 + \delta$ lightness in time $O(m + n^{1+\varepsilon'})$.

2. $O(\log n \log \log n)/\delta$ stretch, $O(n \log \log n)$ edges and $1 + \delta$ lightness in time $O(m + n \log n)$.

Corollary 1 above should be compared to previous attempts to efficiently construct a spanner with constant lightness. Although not stated explicitly, the state-of-the-art algorithms of [ES16, EN19], combined with the lemma from [BFN19], provide an efficient spanner construction with $1 + \delta$ lightness, $O(n \log \log n)$ edges and only $O(\log^2 n/\delta)$ stretch.

We emphasize, that Corollary 1 is the first sub-quadratic construction of spanner with optimal size and lightness for any non-constant k.

In order to obtain Theorem 4 we construct the following deterministic incremental approximate distance oracle with near-linear total update time for maintaining small distances. We believe this result is of independent interest, and discuss it in more detail in the related work section below and in Section 3.

Theorem 5. Let G be a graph that undergoes a sequence of m edge insertions. For any constant $\varepsilon' > 0$ and parameter $d \geq 1$ there exists a data structure which processes the m insertions in total time $O(m^{1+\varepsilon'} \cdot d)$ and can answer queries at any point in the sequence of the following form. Given a pair of nodes u, v, the oracle gives, in $O(1)$ time, an estimate $\hat{d}(u, v)$ such that $\hat{d}(u, v) \geq d(u, v)$ and if $d(u, v) \leq d$ then $\hat{d}(u, v) = O(1) \cdot d(u, v)$.

Theorem 5 assumes that ε' is constant; the O-notation hides a factor exponential in $1/\varepsilon'$ for both total update time and stretch whereas the query time bound only hides a factor of $1/\varepsilon'$.

We also obtain the following sparse, but not necessarily light, spanner in linear time as a subroutine in proving Theorem 3.

Theorem 6. Given a weighted undirected graph $G = (V, E, w)$ with m edges and n vertices, any positive integer k, any $\varepsilon > 0$, and any positive integer $s = O(1)$, one can deterministically construct a $(2k - 1)(1 + \varepsilon)$-spanner of G with $O(n^{1+1/k} \cdot \log k)$ edges; the running time is $O(m + n \log^{(s-1)} k \log k)$ and if $k \leq \log n / \log^{(s+1)} n$, the running time is $O(m)$.

Here, the function $\log^{(s)}$ is log concatenated with itself s times. Specifically, $\log^{(0)} n = n$, $\log^{(1)} n = \log n$, and in general for $s \geq 1$, $\log^{(s)} n = \log(\log^{(s-1)} n)$. $\log^* n$ is the minimum index s such that $\log^{(s)} n \leq 2$.

Note that since we may assume that $k = O(\log n)$, the time bound of Theorem 6 is linear for almost all choices of k and very close to linear for any choice of k.

Organization In Section 4 we state our framework that used in Theorems 2 to 4. Theorem 4 is proved in Section 5, and Theorem 2 in Section 5.2. Theorem 3 is proved in Section 6. Theorem 5 is proved in Section 8. The proof of Theorem 6 appears in Section 7.

1.2 Related work

Closely related to graph spanners are approximate distance oracles (ADOs). An ADO is a data structure which, after preprocessing a graph G, is able to answer distance queries approximately. Distance oracles are studied extensively in the literature (see e.g. [TZ05, Wu13, Che14, Che15]) and often use spanners as a building block. The state of the art static distance oracle is due to Chechik [Che15], where a construction of space $O(n^{1+1/k})$, stretch $2k - 1$, and query time $O(1)$ is given. Our distance oracle of Theorem 5 should be compared to the result of Henzinger, et al. [HKN16], who gave a deterministic construction for incremental (or decremental) graphs with a total update time of $O(mn \log n)$, a query time of $O(\log \log n)$ and stretch $1 + \varepsilon$. For our particular application, we require near-linear total update time and only good stretch for short
distances, which are commonly the most troublesome when constructing spanners. It should be added that Henzinger et al. give a general deterministic data structure for choosing centers, i.e., vertices which are roots of shortest path trees maintained by the data structure. While this data structure may be fast when the total number of centers is small, we need roughly \(n \) centers and it is not clear how this number can be reduced. Having this many centers requires at least order \(mn \) time with their data structure.

To achieve our fast update time bound, we are interested in trading worse stretch for distances above parameter \(d \) for construction time. Roditty and Zwick [RZ12] gave a randomized distance oracle for this case, however their construction does not work against an adaptive adversary as is required for our application, where the edges to be inserted are determined by the output to the queries of the oracle (see Section 3 for more discussion on this). Removing the assumption of a non-adaptive adversary in dynamic graph algorithms has seen recent attention at prestigious venues, e.g. [Wul17, BHN16]. Our new incremental approximate distance oracle for short distances given in Theorem 5 is deterministic and thus is robust against such an adversary, and we believe it may be of independent interest as a building block in deterministic dynamic graph algorithms.

For unweighted graphs, there is a folklore spanner construction by Halperin and Zwick [HZ96] which is optimal on all parameters. The construction time is \(O(m) \), it has \(O(n^{1+1/k}) \) edges and \(2k - 1 \) stretch. In Section 6 we will use this spanner as a building block in proving Theorem 3.

2 Preliminaries

Consider a weighted graph \(G = (V, E, w) \), we will abuse notation and refer to as \(E \) both a set of edges and the graph itself. \(d_G \) will denote the shortest path metric (that is \(d_G(v, u) \) is the weight of the lightest path between \(v, u \) in \(G \)). Given a subset \(V' \) of \(V \), \(G[V'] \) is the induced graph by \(V' \). That is it has \(V' \) as its vertices, \(E \setminus \{(v, u) : v, u \in V' \} \) as its edges and \(w \) as weight function. The diameter of a vertex set \(V' \) in a graph \(G' \) \(\text{diam}_{G'}(V') = \max_{u,v \in V'} d_{G'}(u, v) \) is the maximal distance between two vertices in \(V' \) under the shortest path metric induced by \(G' \). For a set of edges \(A \) with weight function \(w \), the aspect ratio of \(A \) is \(\max_{e \in A} w(e) / \min_{e \in A} w(e) \). The sparsity of \(A \) is simply \(|A| / \text{its size} \).

We will assume that \(k = O(\log n) \) as the guarantee for lightness and sparsity will not be improved by picking larger \(k \). Instead of proving \((1 + \varepsilon)(2k - 1) \) bound on stretch, we will prove only \((1 + O(\varepsilon))(2k - 1) \) bound. This is good enough, as Post factum we can scale \(\varepsilon \) accordingly. By \(O_{\varepsilon} \) we denote asymptotic notation which hides polynomial factors of \(1/\varepsilon \), that is \(O_{\varepsilon}(f) = O(f) \cdot \text{poly}(1/\varepsilon) \).

3 Paper overview

General framework Theorems 2 to 4 are generated via a general framework. The framework is fed two algorithms for spanner constructions: \(A_1 \), an algorithm suitable for graphs with small aspect ratio, and \(A_2 \), an algorithm that returns a sparse spanner, but with potentially unbounded lightness. We consider a partition of the edges into groups according to their weights. For treating most of the groups we use exponentially growing clusters, partitioning the edges according to weight. Each such group has bounded aspect ratio, and thus we can use \(A_1 \). Due to the exponential growth rate, we show that the contribution of all the different groups is converging. Thus only the first group is significant. However, with this approach we need a special treatment for edges of small weight. This is, as using the previous approach, the number of clusters needed to treat light edges is unbounded. Nevertheless, these edges have small impact.
on the lightness and we may thus use algorithm A_2, which ignores this property.

The main work in proving Theorems 2 to 4 is in designing the algorithms A_1 and A_2 described briefly below.

Approximate greedy spanner The major time consuming ingredient of the greedy spanner algorithm is its shortest path computations. By instead considering approximate shortest path computations we significantly speed this process up. We are the first to apply this idea on general graphs, while it has previously been applied by [DN97, FS20] on particular graph families. Specifically, we consider the following algorithm: given some parameters $t < t'$, initialize $H \leftarrow \emptyset$ and consider the edges $(u, v) \in E$ according to increasing order of weight. If $d_H(u, v) > t' \cdot w(u, v)$ the algorithm is obliged to add (u, v) to H. If $d_H(u, v) < t \cdot w(u, v)$, the algorithm is free to include the edge or not. As a result, we will get spanner with stretch t', which has the same lightness and sparsity guarantees of the greedy t-spanner. Note however, that the resulting spanner is not necessarily a subgraph of any greedy spanner.

We obtain both Theorem 2 and Theorem 4 using this approach via an incremental approximate distance oracle. It is important to note that the edges inserted into H using this approach depend on the answers to the distance queries. It is therefore not possible to use approaches that do not work against an adaptive adversary such as the result of Roditty and Zwick [RZ12], which is based on random sampling. Furthermore, this is the case even if we allow the spanner construction itself to be randomized. In order to obtain Theorem 2, we use our previously described framework coupled with the “approximately greedy spanner” using an incremental $(1 + \varepsilon)$-approximate distance oracle of Henzinger et al. [HKN16]. For Theorem 4, we present a novel incremental approximate distance oracle, which is described below. This is the main technical part of the paper and we believe that it may be of independent interest.

Deterministic distance oracle The main technical contribution of the paper and key ingredient in proving Theorem 4 is our new deterministic incremental approximate distance oracle of Theorem 5. The oracle supports approximate distance queries of pairs within some distance threshold, d. In particular, we may set d to be some function of the stretch of the spanner in Theorem 4. Similar to previous work on distance oracles, we have some parameter, k, and maintain k sets of nodes $\emptyset = A_{k-1} \subseteq \ldots \subseteq A_0 = V$, and for each $u \in A_i$ we maintain a ball of radius $r \leq d_i$. Here, d_i is a distance threshold depending on the parameter d and which set A_i we are considering, and r is chosen such that the total degree of nodes in the ball of radius r from u is relatively small. The implementation of each ball can be thought of as an incremental Even-Shiloach tree. The set A_{i+1} is then chosen as a maximal set of nodes with disjoint balls (see Figure 3 in Section 8.1). Here we use the fact that the vertices in A_{i+1} are centers of disjoint balls in A_i to argue that A_{i+1} is much smaller than A_i. The decrease in size of A_{i+1} pays for an increase in the maximum ball radius d_i at each level. The ball of a node u may grow in size during edge insertions. In this case, we freeze the ball associated with u, shrink the radius r associated with u, and create a new ball with the new radius. Thus, for each A_i we end up with $O(\log d)$ different radii for which we pick a maximal set of nodes with disjoint balls. For each node $u_i \in A_i$ we may then associate a node $u_{i+1} \in A_{i+1}$ whose ball intersects with u_i's. We use these associated nodes in the query to ensure that the path distance we find is not “too far away” from the actual shortest path distance. Consider a query pair (u, v). Then the query algorithm iteratively finds a sequence of vertices $u = u_0 \in A_0, u_1 \in A_1, \ldots, u_i \in A_i$; d_i is picked such that if v is not in the ball centered at u_i with radius d_i then the shortest path distance between u and v is at least d and the algorithm outputs ∞. Otherwise, the algorithm uses the shortest path distances stored in the balls that it encounters to output the weight of a uv-path.
Almost linear spanner Chechik and Wulff-Nilsen [CW18] implicitly used our general framework, but used the (time consuming) greedy spanner both as their A_2 component and as a sub-routine in A_1. We show an efficient alternative to the algorithm of [CW18]. For the A_2 component we provide a novel sparse spanner construction (Theorem 6, see paragraph below). For A_1, we perform a hierarchical clustering, while avoiding the costly exact diameter computations used in [CW18]. Finally, we replace the greedy spanner used as a sub-routine of [CW18] by an efficient spanner that exploits bounded aspect ratio (see Lemma 5). This spanner can be seen as a careful adaptation of Elkin and Solomon [ES16] analyzed in the case of bounded aspect ratio. The idea here is (again) a hierarchical partitioning of the vertices into clusters of exponentially increasing size. However, here the growth rate is only $(1+\varepsilon)$. Upon each clustering we construct a super graph with clusters as vertices and graph edges from the corresponding weight scale as inter-cluster edges. To decide which edges in each scale add to our spanner, we execute the extremely efficient spanner of Halperin and Zwick [HZ96] for unweighted graphs.

Linear time sparse spanner As mentioned above we provide a novel sparse spanner construction as a building block in proving Theorem 3. Our construction is based on partitioning edges into $O(\varepsilon \log k)$ “well separated” sets E_1, E_2, \ldots, such that the ratio between $w(e)$ and $w(e')$ for edges $e, e' \in E_i$ is either a constant or at least k. This idea was previously employed by Elkin and Neiman [EN19] based on [MPVX15]. For these well-separated graphs, Elkin and Neiman used an involved clustering scheme based on growing clusters according to exponential distribution, and showed that the expected number of inter-cluster edges, in all levels combined, is small enough. We provide a linear time deterministic algorithm with an arguably simpler clustering scheme. Our clustering is based upon the clusters defined implicitly by the spanner for unweighted graphs of Halperin and Zwick [HZ96]. In particular, we introduce a charging scheme, such that each edge added to our spanner is either paid for by a large cluster with many coins, or significantly contributing to reduce the number of clusters in the following level.

4 A framework for creating light spanners efficiently

In this section we describe a general framework for creating spanners, which we will use to prove our main results. The framework is inspired by a standard clustering approach (see e.g. [ES16] and [CW18]). The spanner framework takes as input two spanner algorithms for restricted graph classes, A_1 and A_2, and produces a spanner algorithm for general graphs. The algorithm A_1 works for graphs with unit weight MST edges and small aspect ratio, and A_2 creates a small spanner with no guarantee for the lightness. The main work in showing Theorems 2, 3, and 4 is to construct the algorithms, A_1 and A_2, that go into Lemma 1 below. We do this in Sections 5 and 6. The framework is described in the following lemma.

Lemma 1. Let $G = (V, E)$ be a weighted graph with n nodes and m edges and let $k > 0$ be an integer, $g > 1$ a fixed parameters and $\varepsilon > 0$. Assume that we are given two spanner construction algorithms A_1 and A_2 with the following properties:

- A_1 computes a spanner of stretch $f_1(k)$, size $O(\varepsilon s_1(k) \cdot n^{1+1/k})$ and lightness $O(\varepsilon l_1(k) \cdot n^{1/k})$ in time $T_1(n, m, k)$ when given a graph with maximum weight g^k, where all MST edges have weight 1. Moreover, T_1 has the property that $\sum_{i=0}^{\infty} T_1 \left(\frac{n}{g^i m_i}, m_i, k \right) = O \left(T_1(n, m, k) \right)$, where $\sum_i m_i = m + O(n)$.

A2 computes a spanner of stretch \(f_2(k) \) and size \(O_\epsilon(s_2(k) \cdot n^{1+1/k}) \) in time \(T_2(n, m, k) \).

Then one can compute a spanner of stretch \(\max((1+\epsilon)f_1(k), f_2(k)) \), size \(O_\epsilon((s_1(k)+s_2(k))n^{1+1/k}) \), and lightness \(O_\epsilon((t_1(k)+s_2(k)) \cdot n^{1/k}) \) in time \(O(T_1(n, m, k) + T_2(n, m, k) + m + n \log n) \).

As an example, let us assume that we have both an optimal spanner algorithm for graphs with small aspect ratio, and an optimal spanner algorithm for sparse spanners in weighted graph. Specifically, we have algorithm \(A_1 \) that given a graph as above creates a \((1+\epsilon)(2k-1)\)-spanner with \(O_\epsilon(n^{1+1/k}) \) edges and lightness \(O_\epsilon(n^{1/k}) \) in \(O_\epsilon(m + n \log n) \) time. In addition we have algorithm \(A_2 \) that returns an \((1+\epsilon)(2k-1)\)-spanner with \(O_\epsilon(n^{1+1/k}) \) edges in \(O_\epsilon(m) \) time. Then, given a general graph, Lemma 1 provide us with a \((1+\epsilon)(2k-1)\)-spanner of \(O_\epsilon(n^{1+1/k}) \) size and \(O_\epsilon(n^{1/k}) \) lightness, in time \(O_\epsilon(m + n \log n) \).

Before proving Lemma 1 we need to describe the clustering approach. The main tool needed is what we call an \((i, \epsilon)\)-clustering. This clustering procedure is performed on graphs where all the MST edges have unit weight. Let \(G, g, \epsilon, k \) be as in Lemma 1, then we say that an \((i, \epsilon)\)-clustering is a partitioning of \(V \) into clusters \(C_1, \ldots, C_n \), such that each \(C_j \) contains at least \(\epsilon g^{ik} \) nodes and has diameter at most \(4\epsilon g^{ik} \) (even when restricted to MST edges of \(G \)). Let \(G_i \) denote the graph obtained by contracting the clusters of such an \((i, \epsilon)\)-clustering of \(G \), and keeping the MST edges only. Then \(G_i \) has \(n_i \) nodes, and we can construct \(G_i \) from \(G_{i-1} \) as follows. Start at some vertex \(v \) in \(G_{i-1} \) (corresponding to an \((i-1, \epsilon)\)-cluster) and iteratively grow an \((i, \epsilon)\)-cluster \(\varphi_v \) by joining arbitrary un-clustered neighbors to \(\varphi_v \) in \(G_{i-1} \) one at a time. If the number of original vertices in \(\varphi_v \) reaches \(\epsilon g^{ik} \), make \(\varphi_v \) into an \((i, \epsilon)\)-cluster, where the current vertices in \(\varphi_v \) are called its core. We argue that the diameter of the core is bounded by \(\epsilon g^{ik} + 4\epsilon g^{i(k-1)} \). If the vertex \(v \) (from \(G_i \)) already contains \(\epsilon g^{ik} \) vertices, then \(\varphi_v = v \) and by the induction hypothesis the diameter of \(\varphi_v \) is at most \(4\epsilon g^{i(k-1)} \). Otherwise \(|v| < \epsilon g^{ik} \), consider the last vertex \(u \in G_{i-1} \) to join \(\varphi_v \). As \(u \) joins \(\varphi_v \), necessarily \(|\varphi_v \setminus u| < \epsilon g^{ik} \). In particular, the diameter of \(\varphi_v \setminus u \) (restricted to MST edges) is at most \(g^{ik} - 1 \). The diameter of \(u \) is at most \(4\epsilon g^{i(k-1)} \) and therefore the diameter of \(\varphi_v \) is indeed bounded by \(\epsilon g^{ik} + 4\epsilon g^{i(k-1)} \).

We perform this procedure starting at an un-clustered vertex until all vertices of \(G_{i-1} \) belong to some \((i, \epsilon)\)-cluster. In the case where \(\varphi_v \) has no un-clustered neighbors, but does not contain \(\epsilon g^{ik} \) vertices, we simply merge it with an existing \((i, \epsilon)\)-cluster \(\varphi_u \) via an MST-edge to the core of \(\varphi_u \). Note that the size of \(\varphi_v \), and therefore its diameter, before the merging is at most \(\epsilon g^{ik} - 1 \) (as each cluster is connected when restricting to MST edges). To show that this gives a valid \((i, \epsilon)\)-clustering, consider an \((i, \epsilon)\)-cluster \(\varphi_v \) with core \(\tilde{\varphi}_v \). Suppose that the “sub-clusters” \(\tilde{\varphi}_{u_1}, \ldots, \tilde{\varphi}_{u_2} \) were merged into \(\tilde{\varphi}_v \) during this process. The diameter of \(\varphi_v \) is then bounded by

\[
diam(\tilde{\varphi}_v) + 2 + \max_{j, j'}(diam(\tilde{\varphi}_{u_j}) + diam(\tilde{\varphi}_{u_{j'}})) \leq (\epsilon g^{ik} + 4\epsilon g^{i(k-1)}k) + 2\epsilon g^{ik} \leq 4\epsilon g^{ik} .
\]

Moreover, the size of \(\varphi_v \) is at least the size of its core, \(|\tilde{\varphi}_v| \geq \epsilon g^{ik} \). See figure Figure 1 for illustration.

Note that we have \(n_i \leq \frac{m}{\epsilon g^{ik}} \). Using the above procedure, we can construct the \((i + 1, \epsilon)\) clustering from the \((i, \epsilon)\) clustering in \(O(n_i) \) time. Therefore we can construct the clusters for all the levels in \(O \left(\sum_{i \geq 0} n_i \right) = O \left(n \sum_{i \geq 0} \frac{1}{g^{ik}} \right) = O(n) \) time (if we are given the MST).

With this tool in hand, we may now prove Lemma 1.

Proof of Lemma 1. The proof constructs an algorithm consisting of two phases. The preparation phase where \(A_2 \) is used to reduce the problem to a graph where all MST edges have weight 1, and the bootstrapping phase where we perform an iterative clustering of the graph to obtain several graphs with small aspect-ratio, where we can apply \(A_1 \).
Preparation phase: Let T be an MST of G and let $w' = \sum_{(u,v) \in T} \frac{w(u,v)}{1+\varepsilon}$. Define G_2 to be G with all edges of weight greater than w'/ε removed and let H^2 be the spanner resulting from running A_2 on G_2. Next, we construct G_1 from G as follows. First, round up the weight of each edge in G to the nearest multiple of w'. For each edge $e \in T$ subdivide it such that each edge of the resulting MST has weight w'^2. As the weight of each edge increase by at most an additive factor of w', the weight of the MST increase by at most $(n-1)w' < w(T)$. The new number of vertices is bounded by $\sum_{(u,v) \in T} \left\lfloor \frac{w(u,v)}{w'} \right\rfloor \leq (n-1) + \frac{1}{w'} \cdot \sum_{(u,v) \in T} w(u,v) < 2n$. Finally, divide the weight of each edge by w'. This finishes the construction of G_1.

Bootstrapping phase: We will now use A_1 to make a spanner H^1 for the graph G_1 created above. We start by partitioning the edges into sets E_i, where E_i contains all edges of G_1 with weights in $[g^{ik}, g^{(i+1)k})$. Note that since each MST edge of G_1 has weight 1 we only need to consider edges with weight up to $O(n)$. Next, we let T_i be an MST of G_1 and for all $i = 0, 1, \ldots, O(\log n)$ we create T_i by contracting all clusters of an (i, ε)-clustering of T, where the (i, ε)-clustering is computed as described above. Note that T_i is also a tree since each cluster is a connected subtree of T. We now construct graphs G_i by taking T_i and adding any minimum weight edge of E_i going between each pair of clusters (i.e. nodes corresponding to clusters). Finally, we divide the weight of each non-MST edge of G_i by g^{ik}. This gives us a graph with maximum weight g^k, where MST edges have weight 1. We call this new weight function w_i. Let H_i be the spanner obtained by running algorithm A_1 on G_i. Finally, let H_1 be the union of all H_is, where each edge of H_i is replaced by the corresponding edge(s) from G.

Analysis: We set the final spanner $H = \text{MST}(G) \cup H^1 \cup H^2$. To bound the stretch of H first note that any edge of G_2 has stretch at most $f_2(k)$ from H^2. What remains is to bound the stretch of non-MST edges (u,v) with $w(u,v) \geq w'/\varepsilon$. First, observe that the rounding procedure used to create G_1 can at most increase the weight of (u,v) in G_1 by a factor of $(1+\varepsilon)$ compared to G.

Now assume that $(u,v) \in E_i$ for some i. Let φ_u and φ_v denote the clusters containing u, respectively, v in G_i. If $\varphi_u = \varphi_v$ we know that the distance between u and v using the MST is

Figure 1: The small cycles represent $(i-1, \varepsilon)$-clusters, which are the vertices of G_{i-1}. The $(i-1, \varepsilon)$-cluster v iteratively grows a cluster around itself until it contains εg^k original vertices. This current cluster is called $\tilde{\varphi}_v$. $\tilde{\varphi}_v$ also called the core of φ_v, an (i, ε)-cluster that we will have at the end of the process. Afterwards, the $(i-1, \varepsilon)$-cluster u_i iteratively grow a cluster around itself. When the temporary cluster is $\tilde{\varphi}_{u_i}$ there are no outgoing edges to unclustered vertices. However, since G_{i-1} is connected, there is some outgoing edge. Necessarily the second endpoint of this edge belongs to the core of an existing cluster (here, $\tilde{\varphi}_v$), that is, as $\tilde{\varphi}_v$ stop growing while still having unclustered neighbors. All the vertices of $\tilde{\varphi}_{u_i}$ joins the cluster of v. In a similar manner, $\tilde{\varphi}_{u_2}$ and $\tilde{\varphi}_{u_3}$ are also joined into the cluster of v. In the end of the algorithm, the (i, ε)-cluster of v is $\varphi_v = \tilde{\varphi}_v \cup \tilde{\varphi}_{u_1} \cup \tilde{\varphi}_{u_2} \cup \tilde{\varphi}_{u_3}$.

2Formally, for an edge $e = (v, v') \in T$ of weight cw', we add $c-1$ new vertices u_1, \ldots, u_{c-1} and replace the edge (v, v') with the edges $(v, u_1), (u_1, u_2), \ldots, (u_{c-2}, u_{c-1}), (u_{c-1}, v')$, all with weight w'.

11
at most $4\varepsilon g^{ik}$ and we are done. Thus, assume that $\varphi_u \neq \varphi_v$. By definition of G_i, there must be some edge (φ_u, φ_v) in G_i with $w_i(\varphi_u, \varphi_v) \leq (1 + \varepsilon) \cdot w(u, v) / g^{ik}$. We know that there is a path

$\{\varphi_u = \varphi_{z_0}, \varphi_{z_1}, \ldots, \varphi_{z_s} = \varphi_v\}$ from φ_u to φ_v in H_i of length at most $f_1(k) \cdot w_i(\varphi_u, \varphi_v)$. Recall that the minimum weight in H_i is 1, thus we have $s \leq f_1(k) \cdot w_i(\varphi_u, \varphi_v)$. Furthermore, the diameter of each cluster, φ_{z_q}, is at most $4\varepsilon g^{ik}$. We now conclude (see Figure 2 for illustration)

$$d_H(u, v) \leq \sum_{q=0}^{s} \text{diam}_T(\varphi_{z_q}) + g^{ik} \sum_{q=0}^{s-1} w_i(\varphi_{z_q}, \varphi_{z_{q+1}})$$

$$\leq (s + 1) \cdot 4\varepsilon g^{ik} + g^{ik} f_1(k) \cdot w_i(\varphi_u, \varphi_v)$$

$$\leq (1 + 8\varepsilon) \cdot g^{ik} \cdot f_1(k) \cdot w_i(\varphi_u, \varphi_v)$$

$$\leq (1 + O(\varepsilon)) \cdot f_1(k) \cdot w(u, v)$$

(1)

Next we consider the size and lightness of H. First we see that, since G_2 is a subgraph of G, the spanner H^2 has size at most $O(s_2(k) \cdot n^{1+1/k})$. Furthermore since every edge in G_2 has weight at most w'/ε the total weight of H^2 is

$$O\left(s_2(k) \cdot n^{1+1/k} \cdot \frac{w(\text{MST}(G))}{(n-1)\varepsilon}\right) = O\varepsilon\left(s_2(k) \cdot n^{1/k}\right).$$

Recall that n_i is the number of (i, ε) clusters, and therefore also the number of nodes in T_i. We can bound the total weight of H^1 by

$$O\left(\sum_{i=0}^{\infty} g^{ik} \cdot w(T_i) \cdot l_1(k) \cdot n_i^{1/k}\right) = O\left(\sum_{i=0}^{\infty} g^{ik} \cdot n_i \cdot l_1(k) \cdot n_i^{1/k}\right)$$

$$= O\varepsilon\left(n \cdot \sum_{i=0}^{\infty} l_1(k) \cdot \left(\frac{n}{g^{ik}}\right)^{1/k}\right)$$

$$= O\varepsilon\left(l_1(k) \cdot n^{1+1/k} \cdot \sum_{i=0}^{\infty} \frac{1}{g^i}\right)$$

$$= O\varepsilon\left(l_1(k) \cdot n^{1+1/k}\right).$$

Since the MST of G_1 has weight $n - 1$ it follows that H^1 has lightness $O(l_1(k) \cdot n^{1/k})$ w.r.t. G_1 and thus also G. The size can be bounded in a similar fashion.

The total running time of the algorithm is $O(m + n \log n)$ to find the MST of G and divide edges to G_1 and G_2, $T_2(n, m, k)$ for creating H^2, $O(n)$ for creating the different (i, ε)-clusters.

Figure 2: $e = (u, v)$ is an edge (colored in blue) in E_i, such that u and v belong to the i-clusters φ_u, φ_v, respectively. The closed bold black curves represent i-clusters. The red edges represent edges in H_i. The thin black curves represent MST paths. There is an edge e' between φ_v to φ_u in G_i. Therefore H_i contains a short path between φ_v to φ_u.
and additional $O(m + nk) = O(m + n \log n)$ to create the graphs G_i, as described above. What is left is to bound the time needed to create the spanners H_i. Let $m_i = |E_i|$, then this time can be bounded by

$$O\left(\sum_{i=0}^{\infty} m_i + n_i + T_1(n_i, m_i, k)\right) = O\left(m + \sum_{i=0}^{\infty} T_1\left(\frac{n}{g^{ik}}, m_i, k\right)\right) = O(m + T_1(n, m, k)).$$

\[\square \]

5 Efficient approximate greedy spanner

In this section we will show how to efficiently implement algorithms A_1 and A_2 of Lemma 1 in order to obtain Theorems 2 and 4. We do this by implementing an “approximate-greedy” spanner, which uses an incremental approximate distance oracle to determine whether an edge should be added to the spanner or not.

We first prove Theorem 4 and then show in Section 5.2 how to modify the algorithm to give Theorem 2. We will use Theorem 5 as a main building block, but defer the proof of this theorem to Section 8. Our A_1 is obtained by the following lemma giving stretch $O(k)$ and optimal size $O(n^{1+1/k})$ and lightness $O(n^{1/k})$ for small weights.

Lemma 2. Let $G = (V, E, w)$ be an undirected graph with $m = |E|$ and $n = |V|$ and integer edge weights bounded from above by W. Let k be a positive integer and let $\varepsilon > 0$ be a constant. Then one can deterministically construct an $O(k)$-spanner of G with size $O(n^{1+1/k})$ and lightness $O(n^{1/k})$ in time $O\left(m + kWn^{1+1/k+\varepsilon'}\right)$.

We note that Lemma 2 above requires integer edge weights, but we may obtain this by simply rounding up the weight of each edge losing at most a factor of 2 in the stretch. Alternatively we can use the approach of Lemma 4 in Section 5.2 to reduce this factor of 2 to $(1 + \varepsilon)$.

Our A_2 will be obtained by the following lemma, which is essentially a modified implementation of Lemma 2.

Lemma 3. Let $G = (V, E, w)$ be an edge-weighted graph with $m = |E|$ and $n = |V|$. Let k be a positive integer and let $\varepsilon > 0$ be a constant. Then one can deterministically construct an $O(k)$-spanner of G with size $O(n^{1+1/k})$ in time $O\left(m + kn^{1+1/k+\varepsilon'}\right)$.

Combining Lemma 1 of Section 4 with Lemmas 2 and 3 above immediately gives us a spanner with stretch $O(k)$, size $O(n^{1+1/k})$ and lightness $O(n^{1/k})$ in time $O(m + n^{1+1/k+\varepsilon''})$ for any constant $\varepsilon'' > 0$. This is true because we may assume that $k \leq \gamma \log n$ for any constant $\gamma > 0$ (as the improvement in sparsity and lightness obtained by picking $k > \gamma \log n$ is bounded by 2^γ), and thus by picking γ and ε' accordingly we have that the running time given by Lemma 1 can be bounded by

$$O\left(m + kWn^{1+1/k+\varepsilon'} + kn^{1+1/k+\varepsilon'}\right) = O\left(m + kgn^{1+1/k+\varepsilon'}\right) = O\left(m + n^{1+1/k+\varepsilon''}\right).$$

5.1 Details of the almost-greedy spanner

Set $\varepsilon = 1/3$. Our algorithm for Lemma 2 is described below in Algorithm 1. It computes a spanner of stretch $c_1(1 + \varepsilon)(2k - 1)$, where $c_1 = O(1)$ is the stretch of our incremental approximate distance oracle in Theorem 5. Let $t = c_1(1 + \varepsilon)(2k - 1)$ throughout the section. With Algorithm 1 defined we are now ready to prove Lemma 2.

\[^3 \text{In Section 5.2 we let } 0 < \varepsilon < 1 \text{ here to be arbitrary small parameter.} \]
Algorithm 1: Approximate-Greedy

input: Graph $G = (V, E, w)$, Parameters ε, k

output: Spanner H

1. Create $H = (V, \emptyset)$
2. Initialize incremental distance oracle (Theorem 5) on H with $d = t \cdot W$
3. for $(u, v) \in E$ in non-decreasing order do
 4. if $\hat{d}_H(u, v) > t \cdot w(u, v)$ then
 5. Add (u, v) to H
6. return H

Proof of Lemma 2. Let H be the spanner created by running Algorithm 1 on the input graph G with the input parameters.

Stretch: We will bound the stretch by showing that for any edge $(u, v) \in E$ there is a path of length at most $t \cdot w(u, v)$ in H. Let (u, v) be any edge considered in the for loop of Algorithm 1. If (u, v) was added to H we are done. Thus, assume that $(u, v) \notin H$. In this case we have $\hat{d}_H(u, v) \leq t \cdot w(u, v)$ as (u, v) would have been otherwise added to H. The lemma now follows by noting that $d(u, v) \leq \hat{d}_H(u, v)$ by Theorem 5.

Size and lightness: Next we bound the size and lightness of H. Our proof is very similar to the proof of Fitser and Solomon for the greedy spanner [FS20]. However, we need to be careful as we are using an approximate distance oracle and do not have the exact distances when inserting an edge. Let H' be any spanner of H with stretch $(1 + \varepsilon)(2k - 1)$. We will argue that $H' = H$. To see this let $(u, v) \in H \setminus H'$ be any edge contradicting the above statement. Then there must be a path P in H' connecting u and v with $w(P) \leq (1 + \varepsilon)(2k - 1) \cdot w(u, v)$. Let (x, y) be the last edge in $P \cup \{(u, v)\}$ examined by Algorithm 1. It follows that $w(x, y) \geq w(u, v)$. As $P \cup \{(u, v)\} \in H$ it follows that all the edges of $(P \cup \{(u, v)\}) \setminus \{(x, y)\}$ were already in H when (x, y) was added. These edges form a path in H connecting x and y of weight

$$w(P) - w(x, y) + w(u, v) \leq w(P) \leq (1 + \varepsilon)(2k - 1) \cdot w(u, v) \leq (1 + \varepsilon)(2k - 1) \cdot w(x, y).$$

It follows that $d(x, y) \leq (1 + \varepsilon)(2k - 1) \cdot w(x, y) \leq d$ just before (x, y) was added to H, and by Theorem 5 that $\hat{d}_H(x, y) \leq t \cdot w(x, y)$. Thus Algorithm 1 did not add the edge (x, y) to H, which is a contradiction. We conclude that $H' = H$.

Now, since H' could be any spanner of H, we may in particular choose it to be the $(1+\varepsilon)(2k-1)$ spanner from Theorem 1. It now follows immediately that $H = H'$ has size $O(n^{1+1/k})$. For the lightness we know that H' has lightness $O(n^{1/k})$ with regard to the MST of H. Thus, if we can show that the MST of H is the same as the MST of G we are done. However, this follows by noting that Algorithm 1 adds exactly the MST of G to H that would have been added by Kruskal’s algorithm [Kru56], since each such edge connects two disconnected components. Thus the MST of G and H have the same weight which completes the proof.

Running time: In Algorithm 1 we perform m queries to the incremental distance oracle of Theorem 5 each of which take $O(1)$ time. We also perform $|E(H)|$ insertions to the incremental distance oracle. We invoke Theorem 5 using ε^* picked such that $1/\varepsilon^*$ is integer and $\varepsilon^* + \varepsilon^* / k \leq \varepsilon'$. Since $d = O(kW)$, it follows from Theorem 5 and the size bound above that running time of the for-loop of Algorithm 1 is

$$O(m + d|E(H)|^{1+\varepsilon^*}) = O(m + kWn^{1+1/k+\varepsilon^*+\varepsilon'/k}) = O(m + kWn^{1+1/k+\varepsilon'}).$$

To achieve the non-decreasing order we may simply run the algorithm of Baswana and Sen [BS07]
first with parameter $k = 1/\varepsilon'$. This gives an additional factor of $O(1/\varepsilon')$ to the stretch, but leaves us with a graph with only $O(n^{1+\varepsilon'})$ edges which we may then sort.

Next, we sketch the proof Lemma 3, by explaining how to modify the proof of Lemma 2.

Proof of Lemma 3. Recall that c_1 is defined as the constant stretch provided by Theorem 5. We use Algorithm 1 with the following modifications: (1) we pick $d = c_1(2k - 1)$, (2) when adding an edge to the distance oracle we add it as an unweighted edge, (3) we add an edge if its endpoints are not already connected by a path of at most d edges according to the approximate distance oracle.

The stretch of the spanner follows by the same stretch argument as in Lemma 2 and the fact that we consider the edges in non-decreasing order. To see that the size of the spanner is $O(n^{1+1/k})$ consider an edge (u, v) added to H by the modified algorithm. Since (u, v) was added to H we know that the distance estimate was at least $c_1(2k - 1)$. It thus follows from Theorem 5 that u and v have distance at least $2k$ in H and therefore H has girth at least $2k + 1$. It now follows that H has $O(n^{1+1/k})$ edges by a standard argument. The running time of this modified algorithm follows directly from Theorem 5.

5.2 Near-quadratic time implementation

The construction of the previous section used our result from Theorem 5 to efficiently construct a spanner losing a constant factor exponential in $1/\varepsilon$ in the stretch. We may instead use the seminal result of Even and Shiloach [ES81] to obtain the same result with stretch $(1 + \varepsilon)(2k - 1)$ at the cost of a slower running time as detailed in Theorem 2. It is well-known that the decremental data structure in [ES81] can be made to work with the same time guarantees in the incremental setting; we will make use of this result:

Theorem 7 ([ES81]). There exists a deterministic incremental APSP data structure for graphs with integer edge weights, which answers distance queries within a given threshold d in $O(1)$ time and has total update time $O(mnd)$.

Here, the threshold means that if the distance between two nodes is at most d, the data structure outputs the exact distance and otherwise it outputs ∞ (or some other upper bound).

To obtain Theorem 2 we use the framework of Section 4. For the algorithm A_2 we may simply use the deterministic spanner construction of Roditty and Zwick [RZ11] giving stretch $2k - 1$ and size $O(n^{1+1/k})$ in time $O(kn^{2+1/k})$. For A_1 we will show the following lemma.

Lemma 4. Let $G = (V, E, w)$ be an undirected graph with $m = |E|$ and $n = |V|$, edge weights bounded from above by W and where all MST edges have weight 1. Let k be a positive integer. Then one can deterministically construct a $(1 + \varepsilon)(2k - 1)$-spanner of G with size $O_c(n^{1+1/k})$ and lightness $O_c(n^{1/k})$ in time $O_c(m \log n + kWn^{2+1/k})$.

Proof sketch. The final spanner will be a union of two spanners. Since Theorem 7 requires integer weights. We therefore need to treat edges with weight less than $1/\varepsilon$ separately. For these edges we use the algorithm of Roditty and Zwick [RZ11] to produce a spanner with stretch $2k - 1$, size $O(n^{1+1/k})$ and thus total weight $O(n^{1+1/k}/\varepsilon)$.

For the remaining edges with weight at least $1/\varepsilon$ we now round up the weight to the nearest integer incurring a stretch of at most a factor of $1 + \varepsilon$. We now follow the approach of Algorithm 1 using the incremental APSP data structure of Theorem 7 and a threshold in line 4 of $(1 + \varepsilon)(2k - 1) \cdot w(u, v)$ instead. We use the distance threshold $d = (1 + \varepsilon)(2k - 1) \cdot W$.

15
The final spanner, H, is the union of the two spanners above. The stretch, size and lightness of the spanner follows immediately from the proof of Lemma 2. For the running time, we add in the additional time to sort the edges and query the distances to obtain a total running time of

$$O_{\epsilon}(m \log n + d \cdot |E(H)| \cdot |V(H)|) = O_{\epsilon}\left(m \log n + kWn^{2 + 1/k}\right). \quad \Box$$

Now, recall that $W = g^k$, where $k \leq \log n$ and $g > 1$ is a fixed parameter of our choice. By picking g such that $g^{2k} \leq n^{\epsilon'}$ we get a running time of $O(n^{2 + 1/(k + \epsilon')})$ for A_1. Theorem 2 now follows from Lemma 1.

6 Almost Linear Spanner

Our algorithm builds on the spanner of Chechik and Wulff-Nilsen [CW18]. Here we first describe their algorithm and then present the modifications. Chechik and Wulff-Nilsen implicitly used our general framework, and thus provide two different algorithms A_1^{CW} and A_2^{CW}. A_2^{CW} is simply the greedy spanner algorithm.

A_1^{CW} starts by partitioning the non-MST edges into k buckets, such that the ith bucket contains all edges with weight in $[g^{i-1}, g^i)$. The algorithm is then split into k levels with the ith bucket being treated in the ith level. In the ith level, the vertices are partitioned into i-clusters, where the i-clusters refine the $(i-1)$-clusters. Each i-cluster has diameter $O(kg^i)$ and contains at least $\Omega(kg^i)$ vertices. This is similar to the (i, ϵ)-clusters in Section 4 with the modification of having two types of clusters, heavy and light. A cluster is heavy if it has many incident i-level edges and light otherwise. For a light cluster, we add all the incident i-level edges to the spanner directly. For the heavy clusters, Chechik and Wulff-Nilsen [CW18] create a special auxiliary cluster graph and run the greedy spanner on this to decide which edges should be added.

To bound the lightness of the constructed spanner, they show that each time a heavy cluster is constructed the number of clusters in the next level is reduced significantly. Then, using a clever potential function, they show that the contribution of all the greedy spanners is bounded. It is interesting to note, that in order to bound the weight of a single greedy spanner, they use the analysis of [ENS15]. Implicitly, [ENS15] showed that on graphs with $O(\text{poly}(k))$ aspect ratio, the greedy $(1 + \epsilon)(2k - 1)$-spanner has $O_{\epsilon}(n^{1/k})$ lightness and $O(n^{1+1/k})$ edges.

There are three time-consuming parts in [CW18]: 1) The clustering procedure iteratively grows the i-clusters as the union of several $(i-1)$-clusters, but uses expensive exact diameter calculations in the original graph. 2) They employ the greedy spanner several times as a subroutine during A_1^{CW} for graphs with $O(\text{poly}(k))$ aspect ratio. 3) They use the greedy spanner as A_2^{CW}.

In order to handle 1) above we will grow clusters purely based on the number of nodes in the $(i-1)$-clusters (in similar manner to (i, ϵ)-clusters), thus making the clustering much more efficient without losing anything significant in the analysis. To handle 2) We will use the following lemma in place of the greedy spanner.

Lemma 5. Given a weighted undirected graph $G = (V, E, w)$ with m edges and n vertices, a positive integer k, $\epsilon > 0$, such that all the weights are within $[a, a \cdot \Delta]$, and the MST have weight $O(n a)$. One can deterministically construct a $(2k - 1)(1 + \epsilon)$-spanner of G with $O_{\epsilon}(n^{1+\frac{1}{k}})$ edges and lightness $O_{\epsilon}\left(n^{\frac{1}{k}} \cdot \log (\Delta)\right)$ in time $O((m + n \log n))$.

The core of Lemma 5 already appears in [ES16], while here we analyze it for the special case where the aspect ratio is bounded by Δ. The main ingredient is an efficient spanner construction by Halperin and Zwick [HZ96] for unweighted graphs (Theorem 10). The description of the
algorithm of Lemma 5 and its analysis can be found in Section 10. Replacing the greedy spanner by Lemma 5 above is the sole reason for the additional \(\log k \) factor in the lightness of Theorem 3.

Imitating the analysis of [CW18] with the modified ingredients, we are able to prove the following lemma, which we will use as \(A_1 \) in our framework.

Lemma 6. Given a weighted undirected graph \(G = (V, E, w) \) with \(m \) edges and \(n \) vertices, a positive integer \(k \geq 640 \), and \(\epsilon > 0 \), such that all MST edges have unit weight, and all weights bounded by \(g^k \), one can deterministically construct a \((2k-1)(1+\epsilon)-\)spanner of \(G \) with \(O_n(n^{1+1/k}) \) edges and lightness \(O_n \left(\log k \cdot n^{\frac{1}{k}} \right) \) in time \(O(m + nk) \).

To address the third time-consuming part we instead use the algorithm of Theorem 6 as \(A_2 \). Replacing the greedy algorithm by Theorem 6 is the sole reason for the additional \(\log k \) factor in the sparsity of Theorem 3.

Combining Lemma 6, Theorem 6 and Lemma 1 we get Theorem 3. The remainder of this section is concerned with proving Lemma 6.

6.1 Details of the construction

Algorithm 2 below contains a high-level description of the algorithm. We defer part of the exact implementation details and the analysis of the running time to Section 6.2. We denote \(E_i = \{ (u, v) \in E \mid w(u, v) \in [g^i, g^{i+1}) \} \).

Using our modified clustering we will need the following claim which is key to the analysis. The claim is proved in Section 6.2. We refer to the definitions from Algorithm 2 in the following section.

Claim 1. For each \(i \)-level cluster \(C \in \mathcal{C}_i \) produced by Algorithm 2 it holds that:

1. \(C \) has diameter at most \(\frac{1}{2} kg^i \) (w.r.t to the current stage of the spanner \(E_{sp} \)).
2. The number of vertices in \(C \) is larger than its diameter and is at least \(\frac{1}{2} kg^i \).

Our analysis builds upon [CW18]. The bound on the stretch of Lemma 5 follows as we have only replaced the greedy spanner by alternative spanners with the same stretch (and have similar guartanies on the clusters diameter). The proof appears at Section 11.1.

To bound the sparsity and lightness we consider the two phases of Algorithm 2. During the \(i \)th level of the first phase we add at most \(d \) edges per light cluster and at most 1 edge per \((i-1)\)-cluster to form the heavy clusters. By Claim 1 each \(i \)-level cluster contains \(\Omega(kg^i) \) vertices and thus the total number of clusters over all levels is bounded by \(\sum_{i=0}^{\infty} O(\frac{n}{kg^i}) = O(n/k) \). It follows that we add at most \(O(n) \) edges during the first phase. For the lightness of these edges, note that edges added during the \(ith \) level have weight at most \(g^{i+1} \). Hence the total weight added during the \(ith \) level is at most \(O(\frac{n}{kg^{r+1}} \cdot g^{i+1}) \) for heavy clusters and at most \(O(\frac{dn}{kg^i} \cdot g^{i+1}) \) for light clusters. Summing over all \(k \) levels this contributes at most \(O(n) \) to the total weight from the first phase.

Next consider the second phase. First note \(S_0 \) has an MST of weight \(n - 1 \) and only contains edges with weight in \([1, \frac{k}{2}]\). Thus, by Lemma 5, \(|H_0| = O_n(n^{1+\frac{1}{k}}) \) and \(w(H_0) = O_n \left(n^{\frac{1}{k}} \cdot \log \left(\frac{k}{2} \right) \right) = O_n \left(n^{\frac{1}{k}} \cdot \log k \right) \).

Fix some \(r \in [1, \lceil k/\mu \rceil - 1] \). Recall the definitions of \(V_r, S_r, \) and \(H_r \): \(V_r \) is a set of vertices representing a subset of the \((r-1)\)-level clusters. \(S_r \) is a graph with nodes \(V_r \) where all the edges have weight in \([kg^{r-1})\mu/\epsilon, g^{(r+1)\mu}] = [g^{r\mu}, g^{r\mu}k/\epsilon] \). \(H_r \) is a spanner of \(S_r \) constructed using Lemma 5. Denote by \(M_r \) the MST of \(S_r \). The following lemma bound its weight. A proof can be found in Section 11.2.
Algorithm 2: A_1 component of Theorem 3

input: Parameters k, ε, weighted graph $G = (V, E, w)$ where all MST edges have unit weight and $\max_{e \in E} w(e) \leq g^k$.

output: Spanner E_{sp}.

1. Fix $g = 20$, $c = 24$, $d = 160$ and $\mu = \log_g (k/\varepsilon)$

2. $E_{sp} \leftarrow \text{MST}(G)$ /* First phase: */

3. Partition V into 0-clusters C_0 such that for every $C \in C_0$, $|C| \in \left[\frac{k}{c}, \frac{k}{2}\right]$

4. for $i = 1$ to $k - 1$ do

5. Let K_i be G with each $C \in C_{i-1}$ contracted. Retain only edges of weight $[g^i, g^{i+1})$ (keeping K_i simple).

6. /* Construct i-level heavy clusters */

7. for $\varphi \in K_i$ do

8. if $\deg(\varphi) \geq d$ and φ is unmarked then

9. Create new heavy cluster $\hat{\varphi}$ with φ and all neighbours

10. Mark all nodes of $\hat{\varphi}$

11. end for

12. for $\varphi \in K_i$ do

13. if $\deg(\varphi) \geq d$ and φ is unmarked then /* φ must then have marked neighbour. */

14. Add φ to the heavy cluster of a marked neighbour

15. end for

16. Mark all clustered, unmarked vertices φ

17. Add all edges used to join heavy clusters to E_{sp} /* Construct i-level light clusters */

18. Add all edges incident to unmarked nodes to E_{sp}

19. Join remaining nodes into clusters of size (number of original vertices) $\geq \frac{1}{c} \cdot kg^i$ and diameter $\leq \frac{1}{2} \cdot kg^i$ using MST edges

20. If a cluster cannot reach $\frac{1}{2} \cdot kg^i$ nodes. Add it to a neighbouring heavy cluster (via MST edge) /* Second phase: */

21. Let S_0 be a subgraph of G which contain only edges of weight at most k/ε. Let H_0 be a $(2k - 1)(1 + \epsilon)$-spanner of S_0 constructed using Lemma 5

22. Add H_0 to E_{sp}

23. for $r = 1$ to $\lceil k/\mu \rceil - 1$ do

24. Let V_r to be the set of nodes obtained by contracting each $(r - 1)\mu$ cluster contained in some i-level heavy cluster for $i \in [r\mu, (r+1)\mu)$ (deleting all the other $(r - 1)\mu$-clusters)

25. Let E_r be all the edges used to create i-clusters (heavy or light) for $i \in [(r - 1)\mu, (r + 1)\mu]$.

26. Let S_r be the graph with V_r as its vertices and $E_r \cup \bigcup_{i=1}^{(r+1)\mu - 1} E_i$ as its edges (keeping S_r simple)

27. Let $w_r(e) = \max\{w(e), kg^{(r-1)\mu}/\varepsilon\}$ be the weight function of S_r

28. Construct a $(2k - 1)(1 + \epsilon)$-spanner H_r of S_r using Lemma 5

29. Add H_r to E_{sp}

30. return E_{sp}
Lemma 7. The MSF M_r of S_r has weight $w_r(M_r) = O(|V_r| \cdot kg(r-1)\mu/\varepsilon)$.

By Lemma 5, $|S_r| = O_k(|V_r|^{1+\frac{1}{k}})$. Summing over all the indices r, we can bound the number of edges added in second phase by

$$
\sum_{r=0}^{[k/\mu]-1} |H_r| = O_k(n^{1+\frac{1}{\mu}}) + \sum_{r=1}^{[k/\mu]-1} O_k\left(|V_r|^{1+\frac{1}{k}}\right)
= O_k\left(n^{1+\frac{1}{\mu}} + \sum_{r=1}^{[k/\mu]-1} \left(\frac{n}{kg(r-1)\mu}\right)^{1+1/k}\right)
= O_k\left(n^{1+\frac{1}{\mu}} \sum_{r=0}^{\infty} \frac{1}{g^r}\right)
= O_k\left(n^{1+\frac{1}{\mu}} \log k\right).
$$

Using a potential function, we show that the sum of the weights $\sum_r w(H_r)$ converges nicely. The details can be found in Section 11.2.

Lemma 8. The total weight of the spanners constructed in the second phase of Algorithm 2 is $O_k\left(n^{1+\frac{1}{\mu}} \cdot \log k\right)$.

The size and lightness of Lemma 6 now follows. All that is left is to describe the exact implementation details and analyze the running time, which is done below.

6.2 Exact implementation of Algorithm 2

In this section we give a detailed description of Algorithm 2 and bound its running time. In addition we prove Claim 1.

First phase Let $m_i = |E_i|$ and $n_i = |C_i|$ be number of i-level clusters as described in Algorithm 2. For each i, the clusters C_i form a partition of V_i, where C_i is a refinement of C_{i+1}. To efficiently facilitate certain operations we will maintain a forest T representing the hierarchy of containment between the clusters in different levels. Specifically, T will have levels going from -1 to k. For simplicity, we treat each vertex $v \in V$ as a -1-cluster. Each i-cluster φ will be represented by an i-level node v_φ. v_φ will have a unique out-going edge to $v_{\varphi'}$, the $(i+1)$-level node that represents the $(i+1)$-cluster φ' containing φ. In addition, each node v_φ in T will store the size of the cluster it represents. Further, every -1 level node v in T will have a link to each of its ancestors in T (i.e. nodes representing the $i \geq 0$ clusters containing v).

0-clusters: are constructed upon -1-clusters (V). The construction of C_0 is done the same way as for $i \geq 1$ (see below), where we start the construction right away from the construction of light clusters.

i-clusters: Fix some $i \in [1, k-1]$. We assume that T is updated. Construct a graph K_i with C_{i-1} as its vertices. We add all the edges of E_i to K_i (deleting self-loops and keeping only the lightest edge between two clusters). The construction of K_i is finished in $O(m_i)$ time (using T).

The construction of C_i is done from K_i in two parts. In the first part we construct the heavy clusters. In the beginning all the nodes are unmarked. We now go over all the nodes, φ, in K_i and consider the following cases: If φ has at least d neighbors and both φ and all its neighbors are unmarked we create a new i-level heavy cluster $\hat{\varphi}$ containing φ and all of its neighbors. We mark all the nodes currently in $\hat{\varphi}$, called the origin of $\hat{\varphi}$ (additional clusters might be added later). In addition, we add all the (representatives of the) edges between φ and its neighbors to E_{sp}. At the end of this procedure, each unmarked node φ with at least d neighbors has at least one marked neighbor. We add each such φ to a neighboring i-level cluster (via and edge to its origin) and mark φ. We also add the corresponding edge to E_{sp}. For every heavy cluster
φ created so far, we denote all the vertices currently in φ as the core of φ (additional clusters might be added later during the formation of light clusters).

In the second part we construct the light clusters. We start by adding all the (representatives of the) edges incident to the remaining unmarked nodes to \(E_G \). Let \(L_i \) be the graph with the remaining unmarked nodes as its vertex set and the edges of the MST going between these nodes (keeping the graph simple) as its edge set. The clustering is similar to the \((i, ε)\) clustering described in Section 4. Iteratively, we pick an arbitrary node \(φ ∈ L_i \), and grow a cluster around it by joining arbitrary neighbors one at a time. Once the cluster has size at least \(kg^i/c \) (number of actual vertices from \(G \)) we stop and make it an \(i \)-level light cluster \(φ \). We call the nodes currently in \(φ \) the core of \(φ \). If the cluster has size less than \(kg^i/c \) and there is no remaining neighboring vertices in \(L_i \), we add it to an existing neighboring cluster (heavy or light) via an MST edge to its core (note that this is always possible). We continue doing this until all nodes are part of an \(i \)-level cluster.

This finishes the description of the clustering procedure. We are now ready to prove Claim 1.

Proof of Claim 1. Recall the value of our constants: \(g = 20, c = 24, d = 160 \). We also assumed that \(k ≥ 640 \).

We will prove the claim by induction on \(i \). We start with \(i = 0 \). Property (2) of Claim 1 is straightforward from the construction as we used only unit weight edges. For property (1), note that the core of each 0-cluster has diameter at most \(\frac{k}{ε} \). Each additional part has diameter at most \(\frac{k}{ε} - 1 \) and is connected via unit weight edge to the core. Hence the diameter of each 0-cluster is bounded by \(3 \cdot \frac{k}{ε} < \frac{k}{2} \).

Now assume that the claim holds for \(i - 1 \) and let \(C ∈ C_i \). Assume first that \(C \) is a light cluster. From the construction, \(C \) contains at least \(kg^i/c \) vertices. The size of \(C \) is larger than the diameter by the induction hypothesis and the fact that we used only unit weight edges to join the light cluster. For the upper bound on the diameter, observe that the diameter of \(C \) was at most \(kg^i/c \) before the last \((i - 1)-\)cluster was added to the core of \(C \). At this point we add the final \((i - 1)-\)cluster, which has diameter at most \(kg^{i-1}/2 \). We conclude that the diameter of the core of \(C \) is at most \(kg^i/c + kg^{i-1}/2 \). Afterwards, we might add additional parts to \(C \). However, each such part has diameter strictly smaller then \(kg^i/c \) and are added with a unit weight edge to the core of \(C \). Thus each light cluster \(C \) has diameter at most \(\frac{1}{ε} kg^i + \frac{1}{2} kg^{i-1} + 2 \frac{1}{ε} kg^i ≤ kg^i \cdot \left(\frac{2}{ε} + \frac{1}{2g} \right) ≤ \frac{1}{2} kg^i \).

Next, consider a heavy cluster \(C \). Let \(\tilde{C} ⊆ C \) be the set of vertices that belonged to \(C \) before the construction of light clusters (i.e. the core of \(C \)). Let \(φ \) be the original \((i - 1)-\)cluster that formed \(C \). Then each \((i - 1)-\)cluster of \(\tilde{C} \) is at distance at most 2 from \(φ \) in \(K_i \). Thus, by the induction hypothesis, the diameter of \(\tilde{C} \) is at most \(5 \cdot \frac{1}{2} kg^{i-1} + 4 \cdot g^{i+1} = kg^i \cdot \left(\frac{5}{2g} + \frac{4g^i}{g} \right) ≤ kg^i/4 \), and its size is at least \(d \cdot kg^{i-1}/c = kg^i \cdot \frac{d}{c} = kg^i/3 \). During the construction of the light clusters we might add some “semi-clusters” to \(\tilde{C} \) of diameter strictly smaller then \(kg^{i-1}/c \) via unit weight edges. We conclude that the diameter of \(C \) is at most \(kg^i/4 + 2 \cdot kg^i/c = kg^i \cdot \left(\frac{4}{c} + \frac{2}{c} \right) = kg^i/3 \).

To conclude the first phase we will analyze its running time. Level \(i \) clustering is done in \(O(n_{i-1} + m_i) \) time, and updating \(T \) takes an additional \(O(n) \) time. In total all the first phase takes us \(O(kn + m) \) time.

Second phase Recall that we pick \(μ = \log(k/ε) \) and refer to Algorithm 2 for definitions and details. Here we only analyze the running time. We denote \(\tilde{m}_r = \sum_{i=0}^{r+1} μ^{-1} m_i \).

Creating \(S_0 \) (line 19) takes \(O(m + n \log n) \) times, computing \(H_0 \) takes \(O_r(m + n \log n) \) time (according to Lemma 5). Next we have \(\frac{k}{ε} \) step loop. For fixed \(r \), we create the vertex set \(V_r \).
(line 21) in $O(n_{(r-1)\mu})$ time, using T. Upon V_r, we create the graph S_r (line 23). This is done by first adding the edges of E_r, and all the edges in $\bigcup_{i=(r-1)\mu}^{(r+1)\mu-1} E_i$. We can maintain E_r during the first phase in no additional cost, thus creating S_r and modifying the weights will cost us $O(n_{(r-1)\mu} + \tilde{m}_r)$. Finally, we compute a spanner H_r of S_r using Lemma 5 (line 25) in $O_\epsilon(\tilde{m}_r + |V_r| \cdot \log |V_r|) = O_\epsilon(\tilde{m}_r + n_{(r-1)\mu} \log n)$ time. Then we add (the representatives of) the edges in H_r into E_{sp} (line 26) in $O_\epsilon(\tilde{m}_r + n_{(r-1)\mu})$ time. Thus, the total time invested in creating H_r is $O_\epsilon(\tilde{m}_r + n_{(r-1)\mu} \log n)$. The total time is bounded by

$$\sum_{r=0}^{\lceil k/\mu \rceil - 1} \text{Time}(H_r) = O_\epsilon(m + n) + O_\epsilon\left(\tilde{m}_r + n_{(r-1)\mu} \log n\right)$$

$$= O_\epsilon\left(m + \sum_{r=1}^{\lceil k/\mu \rceil - 1} \tilde{m}_r + \log n \cdot \sum_{r=1}^{\lceil k/\mu \rceil - 1} \frac{n}{k y^{(r-1)\mu}}\right) = O_\epsilon\left(m + n \log n\right).$$

Running time: Combining the first and second phases above, the total running time is $O(kn + m) + O(m + n \log n) = O(m + n \log n)$.

7 Proof of Theorem 6

We restate the theorem for convenience:

Theorem 6. Given a weighted undirected graph $G = (V, E, w)$ with m edges and n vertices, any positive integer k, any $\epsilon > 0$, and any positive integer $s = O(1)$, one can deterministically construct a $(2k - 1)(1 + \epsilon)$-spanner of G with $O_\epsilon(n^{1+1/k} \cdot \log k)$ edges; the running time is $O(m + n \log^{(s+1)} k \log k)$ and if $k \leq \log n/ \log^{(s+1)} n$, the running time is $O(m)$.

The basic idea in the algorithm of Theorem 6, is to partition the edges E of G into $O_\epsilon(\log k)$ sets E_1, E_2, \ldots, such that the edges in E_i are “well separated”. That is, for every $e, e' \in E_i$, the ratio between $w(e)$ and $w(e')$ is either a constant or at least k. By hierarchical execution of a modified version of [HZ96], with appropriate clustering, we show how to efficiently construct a spanner of size $O(n^{1+1/k})$ for each such “well separated” graph. Thus, taking the union of these spanners, Theorem 6 follows.

In Section 7.1 we describe the algorithm. In Section 7.2 we bound the stretch, in Section 7.3 the sparsity, and in Section 7.4 the running time. In Section 7.5 we introduce a relaxed version of the union/find problem (called prophet union/find), and construct a data structure to solve it. The prophet union/find is used in the implementation of our algorithm.

7.1 Algorithm

The following is our main building block. The description and the proof can be found in Section 12.1.

Lemma 9 (Modified [HZ96]). Given an unweighted graph $G = (V, E)$ and a parameter k, Algorithm 7 returns a $(2k - 1)$-spanner H with $O(n^{1+1/k})$ edges in $O(m)$ time. Moreover, it holds that

4 Just go from each $(r+1)\mu$-level cluster to all of its descendants and return each $(r-1)\mu$ cluster that had a heavy cluster as ancestor in the first μ steps.
We start by bounding the diameter of the clusters.

\[\text{Proof.} \]
We show the claim by induction on \(i \). For \(i = 0 \), the diameter is \(0 \). For general \(i \), in the unweighted graph \(G_{j,i-1} \), we created clusters of diameter at most \(2k - 2 \) for the non-singletons and \(3k \) for the singletons. Thus the diameter of \(\phi \) in \(H \) is bounded by the sum of \(3k \) edges in \(E_{j+(i-1)-c} \log k \), and \(3k + 1 \) diameters of \((i-1) \)-clusters. By the induction hypothesis

\[
\text{diam}_H(\phi) \leq 3k \cdot (1 + \epsilon)^{j+(i-1)-c_i \log k+1} + (3k + 1) \cdot \frac{1}{2} \cdot (1 + \epsilon)^{j+(i-1)-c_i \log k}.
\]

\[
\leq 3k \cdot (1 + \epsilon)^{j+(i-1)-c_i \log k} (1 + \epsilon + \epsilon)
\]

\[
= \frac{3k \cdot (1 + 2\epsilon)}{(1 + \epsilon)^{c_i \log k}} (1 + \epsilon)^{j+i-c_i \log k}.
\]

\[
\leq \frac{1}{2} \cdot (1 + \epsilon)^{j+i-c_i \log k}.
\]

where the last inequality follows as \((1 + \epsilon)^{c_i \log k} \geq \frac{18k}{c_i} \).

The rest of the proof follows by similar arguments as in Equation (1). See Figure 2 for illustration.
7.3 Sparsity

Again, we fix some $j \geq 0$. We will bound $|H_j|$ by $O(n^{1+1/k})$ using a potential function. For a graph G' with $n_{G'}$ vertices, set potential function $P(G') = 2 \cdot n_{G'} \cdot n^{1/k}$. That is, we start with a graph $G_{j,0}$ with $n_0 = n$ vertices and potential $P(G_{j,0}) = 2 \cdot n \cdot n^{1/k}$. In step i we considered the graph $G_{j,i}$. Let m_i denote the number of edges added to H_j in this step. We will prove that $P(G_{j,i}) - P(G_{j,i+1}) \geq m_i$ to conclude that

$$|H_j| = \sum_{i \geq 0} m_i \leq \sum_{i \geq 0} P(G_{j,i}) - P(G_{j,i+1}) = P(G_{j,0}) = 2 \cdot n^{1+\frac{1}{k}}.$$

Let S_1, \ldots, S_R be the partition created by Lemma 9, where S_1, \ldots, S_t are the non-singletons, and $V' = \cup_{r>t} S_r$ are the singletons. Let $C_1, \ldots, C_{R'}$ be the connected components in the induced graph $G_{j,i}[V']$. We will look on the clustering procedure iteratively, and evaluate the change in potential after each contraction.

Consider first the non-singletons. Fix some j, i. Let $r > t$ be the connected component C_r of $G_{j,i}[V']$ containing v. Furthermore it added at most $n^{1/k}$ such edges. Instead of analyzing the potential change from deleting S_r, we will analyze the change from processing the entire connected component C_r. Denote by \hat{m}_r the total number of edges added to the spanner from C_r. It holds that $\hat{m}_r \leq |C_r| \cdot n^{\frac{1}{k}}$. Let Y_r be the graph $G_{j,i}$ where we contract S_1, \ldots, S_t, and all the clusters created from $C_1, \ldots, C_{R'}$ (note that $Y_0 = X_r$ and $Y_{R'} = G_{j,i+1}$). Suppose C_r is divided into clusters A_1, \ldots, A_2. Then we have

$$P(Y_{r-1}) - P(Y_r) = 2 \cdot |Y_{r-1}| \cdot n^{1/k} - 2 \cdot |Y_r| \cdot n^{1/k} = 2 \cdot (|C_r| - z) \cdot n^{1/k}.$$

We prove that $P(Y_{r-1}) - P(Y_r) \geq \hat{m}_r$ by case analysis:

- $|C_r| = 1$. Then $z = 1$, which implies $\hat{m}_r = 0$.
- $|C_r| > 1$ and $z = 1$. Then $\hat{m}_r \leq |C_r| \cdot n^{1/k} \leq 2 \cdot (|C_r| - z) \cdot n^{1/k} = P(Y_{r-1}) - P(Y_r)$.
- $|C_r| > 1$ and $z > 1$. Necessarily for every q, $|A_q| \geq k \geq 3$. Hence

$$\hat{m}_r \leq |C_r| \cdot n^{1/k} = \sum_{q=1}^{z} |A_q| \cdot n^{1/k} < \sum_{q=1}^{z} (|A_q| - 1) \cdot n^{1/k}$$

$$= 2 \cdot (|C_r| - z) \cdot n^{1/k} = P(Y_{r-1}) - P(Y_r).$$

Finally,

$$P(G_i) - P(G_{i+1}) = \sum_{r=0}^{t-1} [P(X_r) - P(X_{r+1})] + \sum_{r=0}^{R'-1} [P(Y_r) - P(Y_{r+1})]$$

$$\geq \sum_{r=0}^{t-1} \hat{m}_r + \sum_{r=0}^{R'-1} \hat{m}_r = m_i.$$ (2)
7.4 Running Time

We can assume that the number of edges m is at least $n^{1+1/k} \log k$, as otherwise we can simply return the whole graph as the spanner. Assuming this, dividing the edges into the sets E_0, E_1, \ldots, and creating the graphs $G_0, \ldots, G_{c_l \log k-1}$ will take us $O(m + n \log k) = O(m)$ time (first create $\log k$ empty graphs, and then go over the edges, and add each edge to the appropriate graph). Fix j, and set m_j to be the number of edges in G_j. The creation of $H_{j,i}$, takes $O(|E_{j+c_l \log k}|)$ time (Lemma 9) which summed over all i is $O(m_j)$. Clustering can be done while constructing $H_{j,i}$ with a union/find data structure. Queries to this data structure are used to identify the clusters containing the endpoints of edges and union operations are used when forming clusters from sub-clusters. However, a union/find data structure will be too slow for our purpose since we seek linear time for almost all choices of k. In the next subsection, we present a variant of the union/find problem called prophet union/find; solving this problem suffices in our setting.

With the constant s from Theorem 6, we give a data structure for prophet union/find which for any fixed j spends time $O(m_j s + n \log^{(s)} n) = O(m_j + n \log^{(s)} n)$ on all operations. Summed over all j, this is $O(m + n \log^{(s)} n \log k)$.

We may assume that $n \log^{(s)} n \log k > m$ since otherwise the time bound simplifies to linear. Since we also assumed $m > n^{1+1/k} \log k$, we have

$$n \log^{(s)} n \log k > n^{1+1/k} \log k \iff \log^{(s)} n > n^{1/k} \iff \log n > \log^{(s+1)} n. \log k.$$

We conclude that the running time is linear if $k \leq \log n/\log^{(s+1)} n$. Now, assume $k > \log n/\log^{(s+1)} n$. Then $\log n < k \log^{(s+1)} n < k^2$, implying that $\log^{(s)} n = O((s-1)(k^2)) = O((s-1) \log k)$ and we get a time bound of $O(m + n \log^{(s-1)} k \log k)$, as desired.

7.5 Prophet Union/Find

Consider a ground set $A = \{x_1, \ldots, X_n\}$ of n elements, partitioned to clusters \mathcal{C}, initially consisting of all the singletons. We need to support two type of operations: find query, where we are given an element $x \in A$ and should return the cluster $C \in \mathcal{C}$ containing it, and union operation, where we are given two elements $x, y \in A$ where $x \in C_x, y \in C_y (C_x, C_y \in \mathcal{C})$, and where we should delete the clusters C_x, C_y from \mathcal{C} and add a new cluster $C_x \cup C_y$ to \mathcal{C}. The problem described above is called Union/Find. Tarjan [Tar75] constructed a data structure that processes m union/find operations over a set of n elements in $O(m \cdot \alpha(n))$ time, where α is the very slow growing inverse Ackermann function.

A trivial solution to the union/find problem will obtain $O(m + n \log n)$ running time, which is superior to [Tar75] for $m \geq n \log n$. Indeed, one can simply store explicitly for each element the name of the current cluster containing it, and given a union operation for $x, y \in A$, where $x \in A, y \in B$ and w.l.o.g. $|A| \geq |B|$, one can simply change the membership of all the elements in B to A. Each find operation will take constant time, while every vertex can update its cluster name at most $\lg n$ times (as each time the cluster name is updated, the cluster size is at least doubled). Thus in total, the running time is bounded by $O(m + n \log n)$.

We introduce a relaxed version of the union-find problem we call the Prophet union/find. Here we are given a ground set $A = \{x_1, \ldots, x_n\}$ of n elements, and a series $q_1, q_2, \ldots, q_m \in A^m$ of element queries known in advance. Then we are asked these previously provided set of queries, with union operations intertwined between the find operations. While the union operations are unknown in advance, they are of a restricted form: a union operation arriving after the query q_j, must be of the form $\{q_{j-1}, q_j\}$, that is a union of the clusters containing the two last find query elements. For a parameter s, we solve the Prophet union/find problem in $O(m \cdot s + n \log^{(s)} n)$ time.
Theorem 8. For any $s \leq \log^* n$, a series of m operations in the Prophet union/find problem over a ground set of n elements can be performed in $O(m \cdot s + n \log(s)n)$ time.

Proof. Set $a_0 = n$, $a_s = 1$, and for $i \in \{1, \ldots, s - 1\}$, set $a_i = \log^{(i)} n$. We will execute a modified version of the trivial algorithm described above. Specifically, at any point in time, we maintain a set A of elements partitioned to clusters C, where for each element we will store the name of the cluster it currently belongs to, and for each cluster we will store the number of elements it contains. Initially we are given a list q_1, \ldots, q_m of queries, which we will store as well. Further, for each element $x \in A$, we will store a linked list containing the indices of all the queries q_j such that $q_j = x$. Note that this preprocessing step is done in $O(m)$ time.

Given a find query q_j, which is simply a name of an element, we will return in $O(1)$ time the stored cluster name. Given a union operation arriving after the j-th query, we know that it is between the clusters C_{j-1}, C_j containing the elements q_{j-1} and q_j accordingly. We find the clusters and their sizes in $O(1)$ time. Assume w.l.o.g. that $|C_{j-1}| \leq |C_j|$. Let $t \in \{0, \ldots, s\}$ such that $|C_j| \in [a_t+1, a_t)$. There are two cases:

1. If $|C_{j-1}| + |C_j| < a_t$, we proceed as the trivial algorithm. Specifically, we go over the elements of C_{j-1}, update their cluster to be C_j, and update the size of the cluster C_j to be $|C_{j-1}| + |C_j|$.

2. Else, we have $|C_{j-1}| + |C_j| \geq a_t$; in this case, replace all the elements $C_{j-1} \cup C_j$ in A by a new element y. Specifically, add a new element y to A that will belong to a singleton cluster $C_y = \{y\}$ the size of which will be updated set to be $|C_{j-1}| + |C_j|$. Then make a linked list of queries for y by concatenating the linked lists of the elements in $C_{j-1} \cup C_j$. Finally, use the newly created linked list to go over all the find queries q_j, \ldots, q_m, and replace every appearance of an element from $C_{j-1} \cup C_j$ with y. Note that the we now have a valid preprocessed instance of the prophet union/find problem.

We finish with time analysis of the execution of the algorithm. Note that every find operation takes $O(1)$ time, as we explicitly store all the queries and their answers. There are two types of executions of the union operation above. Denote by A_t all the artificial elements created during the execution of the algorithm such that the number of ground elements they are replacing is in $[a_t, a_{t-1})$. Then $|A_t| \leq \frac{2}{a_t}$. Each element $y \in A_t$ actively participated (that is makes any changes) in at most $\log a_{t-1}$ union operations of the first type. This is because each time this happens, the size of the cluster containing y is (at least) doubled, and once it reaches the size of a_t, a union operation of the second type will occur, and y will be deleted. Note that processing y in each such union operation takes only $O(1)$ time (updating the name of the cluster it belongs to, and updating the size of the cluster). Thus it total, the time consumed by all the union operations of the first type is bounded by

$$O(1) \cdot \sum_{t=1}^{s} |A_t| \cdot \log a_{t-1} = O(1) \cdot \left[n \cdot \log a_{s-1} + \sum_{t=1}^{s-2} \frac{n}{a_t} \cdot a_t \right] = O(n \cdot s + n \cdot \log(s)n).$$

To bound the time consumed by union operations of the second type, note that each ground element $x \in A = A_s$, can go over at most s such transitions (implicitly). For every query q_j that initially was to x, we will pay $O(1)$ for each such transition (update the query and the linked list), and thus $O(s)$ overall. We conclude that all the changes due to the second type union operations consume at most $O(m \cdot s)$ time. The theorem now follows.

\[\Box\]
8 Deterministic Incremental Distance Oracles for Small Distances

In this section, we present a deterministic incremental approximate distance oracle which can answer approximate distance queries between vertex pairs whose actual distance is below some threshold parameter \(d \). This oracle will give us Theorem 5 and finish the proof of Theorem 4. In fact, we will show the following more general result. Theorem 5 follows directly by setting \(k = 1/\varepsilon \) in the theorem below.

Theorem 9. Let \(G = (V, E) \) be an \(n \)-vertex undirected graph that undergoes a series of edge insertions. Let \(G \) have positive integer edge weights and set \(E = \emptyset \) initially. Let \(\varepsilon > 0 \) and positive integers \(k \) and \(d \) be given. Then a deterministic approximate distance oracle for \(G \) can be maintained under any sequence of operations consisting of edge insertions and approximate distance queries. Its total update time is \(O(\varepsilon m^{1+1/k}(3 + \varepsilon)^{-k-1} d(k + \log d) \log n) \) where \(m \) is the total number of edge insertions; the value of \(m \) does not need to be specified to the oracle in advance. Given a query vertex pair \((u, v)\), the oracle outputs in \(O(k \log n) \) time an approximate distance \(\tilde{d}(u, v) \) such that \(\tilde{d}(u, v) \geq d(u, v) \) and such that if \(d(u, v) \leq d \) then \(\tilde{d}(u, v) \leq (2(3 + \varepsilon)^{k-1} - 1)d(u, v) \).

As discussed in Section 3, a main advantage of our oracle is that, unlike, e.g., the incremental oracle of Roditty and Zwick [RZ12], it works against an adaptive adversary. Hence, the sequence of edge insertions does not need to be fixed in advance and we allow the answer to a distance query to affect the future sequence of insertions. This is crucial for our application since the sequence of edges inserted into our approximate greedy spanner depends on the answers to the distance queries.

We assume in the following that \(m \geq n \); if this is not the case, we simply extend the sequence of updates with \(n - m \) dummy updates. We will present an oracle satisfying Theorem 9 except that we require it to be given \(m \) in advance. An oracle without this requirement can be obtained from this as follows. Initially, an oracle is set up with \(m = n \). Whenever the number of edge insertions exceeds \(m \), \(m \) is doubled and a new oracle with this new value of \(m \) replaces the old oracle and the sequence of edge insertions for the old oracle are applied to the new oracle. By a geometric sums argument, the total update time for the final oracle dominates the time for all the previous oracles. Hence, presenting an oracle that knows \(m \) in advance suffices to show the theorem.

Before describing our oracle, we need some definitions and notation. For an edge-weighted tree \(T \) rooted at a vertex \(u \), let \(d_T(v) \) denote the distance from \(u \) to \(v \) in \(T \), where \(d_T(v) = \infty \) if \(v \notin V(T) \). Let \(r(T) = \max_{v \in V(T)} d_T(v) \). Given a graph \(H \) and \(W \subseteq V(H) \), we let \(\text{deg}_H(W) = \sum_{v \in W} \text{deg}_H(v) \) and give a subgraph \(S \) of \(H \), we let \(\text{deg}_H(S) = \text{deg}_H(V(S)) \). For a vertex \(u \) in an edge-weighted graph \(H \) and a value \(r \geq 0 \), we let \(B_H(u, r) \) denote the ball with center \(u \) and radius \(r \) in \(H \), i.e., \(B_H(u, r) = \{ v \in V(H) | d_H(u, v) \leq r \} \). When \(H \) is clear from context, we simply write \(B(u, r) \).

We use a superscript \((t)\) to denote a dynamic object (such as a graph or edge set) or variable just after the \(t \)th edge insertion where \(t = 0 \) refers to the object prior to the first insertion and \(t = m \) refers to the object after the final insertion. For instance, we refer to \(G \) just after the \(t \)th update as \(G^{(t)} \).

In the following, let \(\varepsilon, k, \) and \(d \) be the values and let \(G = (V, E) \) be the dynamic graph of Theorem 9. For each \(i \in \{0, \ldots, k-1\} \), define \(m_i = 2m^{i+1/k} \) and let \(d_i \) be the smallest integer power of \((1 + \varepsilon)\) of value at least \((3 + 2\varepsilon)^i d \). For each \(u \in V \) and each \(i \in \{0, \ldots, m\} \), let \(d_i^{(t)}(u) \) be the largest integer power of \((1 + \varepsilon)\) of value at most \(d_i \) such that \(\text{deg}_{G^{(t)}}(B^{(t)}(u, d_i^{(t)}(u))) \leq m_i \); note that \(d_i^{(t)}(u) \geq (1 + \varepsilon)^{-1} \). We let \(B_i^{(t)}(u) = B^{(t)}(u, d_i^{(t)}(u)) \) and let \(T_i^{(t)}(u) \) be a shortest path
tree from u in $B_i^{(t)}(u)$. Note that $T_i^{(t)}(u)$ need not be uniquely defined; in the following, when we say that a tree is equal to $T_i^{(t)}$, it means that the tree is equal to some shortest path tree from u in $B_i^{(t)}(u)$.

The data structure in the following lemma will be used as black box in our distance oracle. One of its tasks is to efficiently maintain trees $T_i^{(t)}(u)$.

Lemma 10. Let $U \subseteq V$ be a dynamic set with $U^{(0)} = \emptyset$ and let $i \in \{0, \ldots, k-1\}$ be given. There is a deterministic dynamic data structure which supports any sequence of update operations, each of which is one of the following types:

Insert-Edge(u, v): this operation is applied whenever an edge (u, v) is inserted into E.

Insert-Vertex(u): inserts vertex u into U.

Let t_{max} denote the total number of operations and for each vertex u inserted into U, let t_u denote the update in which this happens. The data structure outputs in each update $t \in \{1, \ldots, t_{\text{max}}\}$ a (possibly empty) set of trees $\overline{T}_i^{(t)}(u)$ rooted at u for each $u \in U^{(t)}$ satisfying either $t > t_u$ and $d_i^{(t)}(u) < d_i^{(t-1)}(u)$ or $t = t_u$ and $d_i^{(t)}(u) < d_i$. For each such tree $\overline{T}_i^{(t)}(u)$, $r(\overline{T}_i^{(t)}(u)) \leq (1+\varepsilon)d_i^{(t)}(u) \leq d_i$ and $\text{deg}_{G^{(t)}}(\overline{T}_i^{(t)}(u)) > m_i$. Total update time is $O(m) + O_t([-t_{\text{max}}m_i d_i \log n])$.

At any point, the data structure supports in $O(1)$ time a query for the value $d_i^{(t)}(u)$ and in $O(\log n)$ time a query for the value $d_{T_i^{(t)}(u)}(v)$ and for whether $v \in V(T_i^{(t)}(u))$, for any query vertices $u \in U$ and $v \in V$.

Proof. We assume in the following that each vertex of V has been assigned a unique label from the set $\{0, \ldots, n-1\}$.

In the following, fix a vertex $u \in V$ such that t_u exists, i.e., update t_u is the operation **Insert-Vertex**(u).

Before proving the lemma, we describe a data structure D_u which maintains the following for each $t \in \{t_u, \ldots, m\}$: a tree $T_i^{(t)}(u)$ rooted at u, a distance threshold $d_i^{(t)}(u)$, and distances $d_{T_i^{(t)}(u)}(v)$ for all $v \in V(T_i^{(t)}(u))$. We will show that D_u maintains the following two properties:

1. $T_i^{(t)}(u) = T_i^{(t)}(u)$ and $d_i^{(t)}(u) = d_i^{(t)}(u)$ for all $t \in \{t_u, \ldots, m\}$,

2. in each update $t \in \{t_u, \ldots, m\}$ where either $t > t_u$ and $d_i^{(t)}(u) < d_i^{(t-1)}(u)$ or $t = t_u$ and $d_i^{(t)}(u) < d_i$, D_u outputs a tree $\overline{T}_i^{(t)}(u)$ rooted at u such that $r(\overline{T}_i^{(t)}(u)) \leq (1+\varepsilon)d_i^{(t)}(u) \leq d_i$ and $\text{deg}_{G^{(t)}}(\overline{T}_i^{(t)}(u)) > m_i$. In all other updates, no tree is output.

After any update t, D_u supports in $O(1)$ time a query for the value $d_i^{(t)}(u)$ and in $O(\log n)$ time a query for the value $d_{T_i^{(t)}(u)}(v)$ and for whether a given vertex $v \in V$ belongs to $V(T_i^{(t)}(u))$.

D_u maintains a tree $T_i^{(t)}(u)$ rooted at u as well as a distance threshold $d_i^{(t)}(u)$; to simplify notation, we shall write $T_i^{(t)}$ instead of $T_i^{(t)}(u)$ and $d_i^{(t)}$ instead of $d_i^{(t)}(u)$. Later we show that $T_i^{(t)} = T_i^{(t)}(u)$ and $d_i^{(t)} = d_i^{(t)}(u)$. The tree $T_i^{(t)}$ is maintained by keeping a predecessor pointer for each vertex to its parent (with u having a nil pointer) and where each vertex $v \in T_i^{(t)}$ is associated with its distance $d_{T_i^{(t)}}(v)$ from the root u.

Since $d_i^{(t)}$ is maintained explicitly by D_u and since $d_i^{(t)} = d_i^{(t)}(u)$, it follows that D_u can answer a query for the value $d_i^{(t)}(u)$ in $O(1)$ time. To answer the other two types of queries, D_u maintains $V(T_i^{(t)})$ as a red-black tree keyed by vertex labels; this clearly allows both types of queries to be answered in $O(\log n)$ time.

27
Handling the update $t = t_u$ for D_u: For the initial update $t = t_u$, a tree $T_i^{(t)}(u)$ is computed by running Dijkstra’s algorithm from u in $G^{(t)}$ with the following modifications:

1. the priority queue initially contains only u with estimate 0; all other vertices implicitly have an estimate of ∞,
2. a vertex is only added to the priority queue if a relax operation caused its distance estimate to be strictly decreased to a value of at most d_i,
3. the algorithm stops when the priority queue is empty or as soon as $\text{deg}_{G^{(t)}}(T_i^{(t)}(u)) > m_i$.

If the algorithm emptied its priority queue, D_u sets $T^{(t)} \leftarrow T_i^{(t)}(u)$ and $d^{(t)} \leftarrow d_i$, finishing the update.

Next, consider update $t > t_u$. D_u ignores updates to U so we assume that update t is of the form Insert-Edge$(e^{(t)})$. Assume that D_u has obtained $T^{(t-1)}$ and $d^{(t-1)}$ in the previous update. To obtain $T^{(t)}$ and $d^{(t)}$, D_u regards $e^{(t)}$ as two oppositely directed edges. Note that for at most one of these edges $(v_1^{(t)}, v_2^{(t)})$, we have $d_{T^{(t-1)}}(v_1^{(t)}) + w(e^{(t)}) < d_{T^{(t-1)}}(v_2^{(t)})$. If no such edge exists, D_u sets $T^{(t)} \leftarrow T^{(t-1)}$ and $d^{(t)} \leftarrow d^{(t-1)}$, finishing the update. Otherwise, D_u applies a variant of Dijkstra’s algorithm. During initialization, this variant sets for each vertex $v \in V(T^{(t-1)})$, the starting estimate of v to $d_{T^{(t-1)}}(v)$ and sets its predecessor to be the parent of v in $T^{(t-1)}$; all other vertices implicitly have an estimate of ∞. The priority queue is initially empty. In the last part of the initialization step, the edge $(v_1^{(t)}, v_2^{(t)})$ is relaxed. The rest of the algorithm differs from the normal Dijkstra algorithm in the following way:

1. a vertex v is only added to the priority queue if a relax operation caused the estimate for v to be strictly decreased to a value of at most $d^{(t-1)}$,
2. the algorithm stops when the priority queue is empty or as soon as the the total degree in $G^{(t)}$ of vertices belonging to the current tree found by the algorithm exceeds m_i.

Let $T_i^{(t)}(u)$ be the tree found by the Dijkstra variant. If the priority queue is empty at this point, D_u sets $T^{(t)} \leftarrow T_i^{(t)}(u)$ and $d^{(t)} \leftarrow d^{(t-1)}$. Otherwise, D_u computes $T^{(t)}$ and $d^{(t)}$ in exactly the same manner as in the case above where $t = t_u$ and where the priority queue was not emptied; finally, D_u outputs $T_i^{(t)}(u)$.

Properties of D_u: We now show the two properties of D_u mentioned earlier. We repeat them here for convenience:

1. $T^{(t)}(u) = T_i^{(t)}(u)$ and $d^{(t)}(u) = d_i^{(t)}(u)$ for all $t \in \{t_u, \ldots, m\}$,
2. in each update $t \in \{t_u, \ldots, m\}$ where either $t > t_u$ and $d_i^{(t)}(u) < d_i^{(t-1)}(u)$ or $t = t_u$ and $d_i^{(t)}(u) < d_i$, D_u outputs a tree $T_i^{(t)}(u)$ rooted at u such that $r(T_i^{(t)}(u)) \leq (1+\varepsilon)d_i^{(t)}(u) \leq d_i$ and $\text{deg}_{G^{(t)}}(T_i^{(t)}(u)) > m_i$. In all other updates, no tree is output.
The first property is shown by induction on $t \geq t_u$. This is clear when $t = t_u$ so assume in the
following that $t > t_u$, that $T^{(t-1)} = T_i^{(t-1)}(u)$ and $d^{(t-1)} = d_i^{(t-1)}(u)$, and that update t is an
operation $\text{Insert-Edge}(e^{(t)})$. The first property will follow if we can show that $T^{(t)} = T_i^{(t)}(u)$
and $d^{(t)} = d_i^{(t)}(u)$.

If the Dijkstra variant was not executed then no edge was relaxed which implies that
$T_i^{(t)} = T_i^{(t-1)}(u) = T_i^{(t)}(u)$ and $d_i^{(t)} = d_i^{(t-1)}(u) = d_i^{(t)}(u)$, as desired.
Otherwise, consider first the case where $d_i^{(t)}(u) = d_i^{(t-1)}(u)$. Then $d_i^{(t-1)} = d_i^{(t)}(u)$ so the
priority queue of the Dijkstra variant must be empty at the end of update t. Combining this with the
observation that any vertex v whose distance from u in $G^{(t)}$ is smaller than in $G^{(t-1)}$ must be
on a u-v path containing $e^{(t)}$, it follows that the Dijkstra variant computes $T_i^{(t)} = T_i^{(t)}(u)$
and $d_i^{(t)} = d_i^{(t-1)} = d_i^{(t)}(u)$, as desired. For the case where $d_i^{(t)}(u) < d_i^{(t-1)}(u)$, the priority
queue of the Dijkstra variant is not emptied; it follows by definition of $T_i^{(t)}(u)$ and $d_i^{(t)}(u)$ that also in
this case, $T_i^{(t)} = T_i^{(t)}(u)$ and $d_i^{(t)} = d_i^{(t)}(u)$.

To show that D_u satisfies the second of the properties above, consider an update $t \geq t_u$.
Assume first that $t = t_u$. Then $T_i^{(t)}(u)$ is output if and only if $d_i^{(t)}(u) < d_i$; this follows since
$d^{(t)} = d_i^{(t)}(u)$, since $d^{(t)} = d_i$ when $T_i^{(t)}$ is not output, and since $d^{(t)} < d_{T_i^{(t)}(u)}(v_{\text{max}}) \leq d_i$
when $T_i^{(t)}$ is output. If $d_i^{(t)}(u) < d_i$, then Dijkstra’s algorithm stopped without emptying
its priority queue which implies that $\text{deg}_{G^{(t)}}(T_i^{(t)}(u)) > m_i$; furthermore, by the choice of
$d_i^{(t)}$, $r(T_i^{(t)}(u)) = d_{T_i^{(t)}(u)}(v_{\text{max}}) \leq (1+\varepsilon)d^{(t)} = (1+\varepsilon)d_i^{(t)}(u)$, as desired. The inequality
$(1+\varepsilon)d_i^{(t)}(u) \leq d_i$ holds since $d_i^{(t)}(u) < d_i$ implies that $d_i^{(t)}(u) \leq d_i/(1+\varepsilon)$.

The case $t > t_u$ is quite similar. We may assume that this update inserts $e^{(t)}$ into $G^{(t)}$.
If $d_i^{(t)}(u) = d_i^{(t-1)}(u)$ then as shown above, no tree is output in update t. Now, assume that
$d_i^{(t)}(u) < d_i^{(t-1)}(u)$. Then the Dijkstra variant did not empty its priority queue so it outputs tree
$T_i^{(t)}(u)$. Clearly, $\text{deg}_{G^{(t)}}(T_i^{(t)}(u)) > m_i$ and since $d_i^{(t-1)} = d_i^{(t-1)}(u)$, the same argument as in the
case where $t = t_u$ gives $r(T_i^{(t)}(u)) \leq (1+\varepsilon)d_i^{(t)}(u)$. The inequality $(1+\varepsilon)d_i^{(t)}(u) \leq d_i$
holds since $d_i^{(t)}(u) < d_i^{(t-1)}(u)$ implies that $d_i^{(t)}(u) \leq d_i^{(t-1)}(u)/(1+\varepsilon) \leq d_i/(1+\varepsilon)$. This shows the second
of the two properties for D_u mentioned above.

Bounding update time of D_u: We now bound the update time for D_u where we ignore
the cost of updates t where $e^{(t)}$ is not incident to $T_i^{(t-1)}(u)$; when we use D_u in the final data
structure D below, D will ensure that Insert-Edge will only be applied to edges if they are incident to
$T_i^{(t-1)}(u)$ and we show that this suffices to ensure the two properties of D_u.

Consider an update t_u. Observe that our two Dijkstra variants (the one described in the case
$t = t_u$ and the one described in the case $t > t_u$) are terminated as soon as the total degree in $G^{(t)}$
of vertices extracted from the priority queue exceeds m_i. Ignoring the cost of the initialization
step of the second variant, it follows from a standard analysis of Dijkstra’s algorithm that
both variants run in time $O(m_i \log n)$. To bound the time for the initialization step of the second
variant, note that the desired starting estimates and predecessor pointers are present in
$T^{(t-1)}$ and this tree is available at the beginning of the update. Hence, the work done in the
initialization step thus only involves relaxing a single edge $(v_1^{(t)}, v_2^{(t)})$. With this implementation,
the cost of the initialization step does not dominate the total cost of the update.

The number of updates $t > t_u$ for which $d_i^{(t)}(u) < d_i^{(t-1)}(u)$ is at most $\log_{1+\varepsilon} d_i = O_{\varepsilon}(i + \log d)$. As
shown above, the time spent in each such update is $O(m_i \log n)$ which over all such updates is
$O_{\varepsilon}(m_i \log n(i + \log d))$ time.

Now, consider a maximal range of updates $\{t_1, t_1 + 1, \ldots, t_2\} \subseteq \{t_u, t_u + 1, \ldots, t_{\text{max}}\}$ where
$d_{i}(t_{2})(u) = d_{i}(t_{1})(u)$ and consider an update $t \in \{t_{1}+1, t_{1}+2, \ldots, t_{2}\}$. Assuming that the Dijkstra variant is executed, it must empty its priority queue in this update. Let $V_{1}(t_{i})(u) = V(T_{1}(t_{i})(u)) \setminus V(T_{1}(t_{i}-(1))(u))$ and let $V_{2}(t_{i})(u)$ be the set of vertices $v \in V(T_{1}(t_{i})(u)) \cap V(T_{1}(t_{i}-(1))(u))$ such that $d_{i}(t_{1})(u)(v) < d_{i}(t_{i}-(1))(u)(v)$. Since the Dijkstra variant only adds a vertex of $T_{1}(t_{i}-(1))(u)$ to the priority queue if the distance estimate of the vertex is strictly decreased, we can charge the running time cost of the Dijkstra variant to $deg_{G(1)}(V_{1}(t_{i})(u)) \cup V_{2}(t_{i})(u)) \log n$. In the following, we bound $deg_{G(1)}(V_{1}(t_{i})(u)) \log n$ and $deg_{G(1)}(V_{2}(t_{i})(u)) \log n$ separately over all $t \in \{t_{1}+1, t_{1}+2, \ldots, t_{2}\}$ and all maximal ranges $\{t_{1}, t_{1}+1, \ldots, t_{2}\}$.

Let one such range $\{t_{1}, t_{1}+1, \ldots, t_{2}\}$ be given. Since $V(T_{1}(t_{i}-(1))(u)) \subseteq V(T_{1}(t_{i})(u))$ for all $t \in \{t_{1}+1, t_{1}+2, \ldots, t_{2}\}$, we get

$$\sum_{t \in \{t_{1}+1, t_{1}+2, \ldots, t_{2}\}} deg_{G(1)}(V_{1}(t_{i})(u)) \log n \leq deg_{G(1)}(V_{1}(t_{i})(u)) \log n \leq m_{i} \log n.$$

for each range $\{t_{1}, t_{1}+1, \ldots, t_{2}\}$ which over all ranges $\{t_{1}, t_{1}+1, \ldots, t_{2}\}$ is $O_{e}(m_{i} \log n(i + \log d))$.

Next, we bound the sum of $deg_{G(1)}(V_{2}(t_{i})(u)) \log n$ over all $t \in \{t_{1}+1, t_{1}+2, \ldots, t_{2}\}$ and all ranges $\{t_{1}, t_{1}+1, \ldots, t_{2}\}$. Let $\{t_{1}, t_{1}+1, \ldots, t_{2}\}$ and $v \in V$ be given. For each $t \in \{t_{1}+1, t_{1}+2, \ldots, t_{2}\}$, where $v \in V_{2}(t_{i})(u)$, we have $d_{i}(t_{1}+1)(u)(v) < d_{i}(t_{i}-(1))(u)(v)$. Since edge weights are integers, the sum of degrees of v over all such t is at most $(d_{i}(t_{1}+1)(u)(v) - d_{i}(t_{i}-(1))(u)(v)) deg_{G(1)}(v) \log n$. Observe that $v \in V_{2}(t_{i})(u)$ for some $t \in \{t_{1}+1, t_{1}+2, \ldots, t_{2}\}$ implies that $v \in V(T_{1}(t_{i})(u))$. Summing over all v thus gives

$$\sum_{t \in \{t_{1}+1, t_{1}+2, \ldots, t_{2}\}} deg_{G(1)}(V_{2}(t_{i})(u)) \log n \leq \sum_{v \in V(T_{1}(t_{i})(u))} (d_{i}(t_{1}+1)(u)(v) - d_{i}(t_{i}-(1))(u)(v)) deg_{G(1)}(v) \log n \leq d_{i}(t_{1})(u)m_{i} \log n.$$

Note that since $d_{i}(t_{i}+1)(u) < d_{i}(t_{1})(u)$, we have $m_{i} d_{i}(t_{i}+1)(u) \leq d_{i}(t_{1})(u)/(1 + \varepsilon)$. Summing over all ranges $\{t_{1}, t_{1}+1, \ldots, t_{2}\}$ thus gives a geometric sum of value $O_{e}(m_{i} d_{i} \log n)$.

We conclude that D_{u} requires time $O_{e}(m_{i} \log n(d_{i} + i + \log d)) = O_{e}(m_{i} d_{i} \log n)$ over all updates t consisting of the insertion of an edge $e(t)$ which is incident to $T_{1}(t_{i}-(1))(u)$.

The final data structure: We have shown that D_{u} satisfies the two properties stated at the beginning of the proof and that the total update time over updates t for which $e(t)$ is incident to $T_{1}(t_{i}-(1))(u)$ is $O_{e}(m_{i} d_{i} \log n)$. We are now ready to give a data structure D satisfying the lemma.

Initially, D sets $U(0) = \emptyset$. If update t is an operation of the form $\text{Insert-Vertex}(u)$, D initializes a new structure D_{u}. For each $v \in V$, D keeps the set $U(t)(v)$ of those vertices $u \in U(t)$ for which v belongs to the tree $T_{1}(t)(u)$ maintained by D_{u}. This set is implemented with a red-black tree keyed by vertex labels. We extend each data structure D_{u} so that when a vertex v joins (resp. leaves) $T_{1}(t)(u)$, u joins (resp. leaves) $U(t)(v)$. This can be done without affecting the update time bound obtained for D_{u} above.

If an update t is of the form $\text{Insert-Edge}(e(t))$ where $e(t) = (v_{1}(t), v_{2}(t))$, D identifies the set $U(t-1)(v_{1}(t)) \cup U(t-1)(v_{2}(t))$ and updates D_{u} with the insertion of $e(t)$ for each u in this set. This suffices to correctly maintain all data structures D_{u} since for each $u \in U(t-1) \setminus U(t-1)(v_{1}(t)) \cup U(t-1)(v_{2}(t))$, we have $T_{1}(t)(u) = T_{1}(t-1)(u)$ and $d_{i}(t)(u) = d_{i}(t-1)(u)$, implying that D_{u} need not be
updated. Hence, \(D \) handles updates in the way stated in the lemma and has total update time \(O(m) + O_{s}(\lvert U^{(\text{max})}\rvert m_{i}d_{i}\log n) \), as desired.

Answering a query for values \(d_{T}^{(u)}(v) \) or \(d_{i}(u) \) or for whether \(v \in V(T_{i}(u)) \) is done by querying \(D_{u} \). Since \(D_{u} \) can be identified in \(O(1) \) time, the query time bounds for \(D \) match those for \(D_{u} \). This completes the proof. \(\square \)

8.1 The distance oracle

We are now ready to present our incremental distance oracle. Pseudocode for the preprocessing step is done with the procedure \texttt{Initialize}(\(V, k \)) in Algorithm 3. Inserting an edge \((v_{1}, v_{2})\) with integer weight \(w > 0 \) is done with the procedure \texttt{Insert}(\(v_{1}, v_{2}, w(v_{1}, v_{2}) \)) in Algorithm 4 and a query for the approximate distance between two vertices \(u \) and \(v \) is done with the procedure \texttt{Query}(\(u, v \)) in Algorithm 5.

The high level intuition of our construction is that we maintain increasingly smaller subsets of vertex sets denoted \(A_{i} \), where \(A_{0} \) is the entire vertex set \(V \); see Figure 3. For each vertex \(v \), we grow a ball up to a threshold size, and we let the centers of a maximal set of disjoint balls be promoted to the next level \(A_{i+1} \), where the same procedure happens. An implication is that \(A_{i+1} \) is much smaller than \(A_{i} \) and we can thus afford to grow larger balls as \(i \) grows, i.e. we let the ball threshold size grow with \(i \).

In order to bound stretch, we need balls to have roughly the same radius. To ensure this, we partition balls centered at vertices of \(A_{i} \) into classes such that balls in the \(j \)th class all have radius within a constant factor of \((1 + \varepsilon)^{j}\). For each class, we keep a maximal set of disjoint balls as described above and \(A_{i+1} \) is the union of centers of these balls over all classes. In class \(j \), each vertex \(v \), which is the center of a ball not belonging to this maximal set points to a representative vertex \(n_{i,j}(v) \). This representative vertex is picked in the intersection with another ball in class \(j \) centered at a vertex of \(A_{i+1} \). Every vertex \(w \) in this other ball has a pointer \(r_{i,j}(w) \) to the center. These pointers are used as navigation in the distance query algorithm when identifying a vertex \(u_{i+1} \in A_{i+1} \) from a vertex \(u_{i} \in A_{i} \); see Figure 3. The fact that the two balls centered at \(u_{i} \) resp. \(u_{i+1} \) have roughly the same radius is important to ensure that the stretch only grows by at most a constant factor in each iteration of the query algorithm.

<table>
<thead>
<tr>
<th>Algorithm 3: Initialize</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textbf{input} : (V,k)</td>
</tr>
<tr>
<td>1 (A_{0} \leftarrow V)</td>
</tr>
<tr>
<td>2 Initialize (D_{0}) as an instance of the data structure of Lemma 10</td>
</tr>
<tr>
<td>3 for (i = 1 \rightarrow k-1) do</td>
</tr>
<tr>
<td>4 (A_{i} \leftarrow \emptyset)</td>
</tr>
<tr>
<td>5 Initialize (D_{i}) as an instance of the data structure of Lemma 10</td>
</tr>
<tr>
<td>6 for (j = 0 \rightarrow \log_{1+e}d_{i}) do</td>
</tr>
<tr>
<td>7 (W_{i,j} \leftarrow \emptyset)</td>
</tr>
<tr>
<td>8 Associate with each (v \in V) uninitialized variables (n_{i,j}(v)) and (r_{i,j}(v))</td>
</tr>
<tr>
<td>9 for (u \in V) do</td>
</tr>
<tr>
<td>10 (D_{0}.\text{Insert-Vertex}(u))</td>
</tr>
</tbody>
</table>

The following lemmas are crucial when we bound update and query time as well as stretch. For \(i = 0, \ldots, k-1 \) and \(j = 1, \ldots, \log_{1+\varepsilon}d_{i} \), let \(T_{i,j} \) be the dynamic set of trees \(T_{i,j}(u) \) obtained so far for which the test in line 11 of \texttt{Insert} succeeded. Note that for any \(j \) in line 9 of \texttt{Insert},
Algorithm 4: Insert

input: $v_1, v_2, w(v_1, v_2)$

1. Add (v_1, v_2) to E with weight $w(v_1, v_2)$
2. $U_0, \ldots, U_{k-1} \leftarrow \emptyset$
3. for $i = 0 \rightarrow k - 1$ do
 4. $T_i \leftarrow D_i.\text{Insert-Edge}(v_1, v_2)$
 5. $A_i \leftarrow A_i \cup U_i$
 6. for $u \in U_i$ do
 7. $T_i \leftarrow T_i \cup D_i.\text{Insert-Vertex}(u)$
 8. for $T_i(u) \in T_i$ do
 9. $j \leftarrow 1 + \log_{1+\varepsilon} d_i(u)$
 10. $T_{i,j}(u) \leftarrow T_i(u)$
 11. if $V(T_{i,j}(u)) \cap W_{i,j} = \emptyset$ then
 12. $W_{i,j} \leftarrow W_{i,j} \cup V(T_{i,j}(u))$
 13. for $v \in V(T_{i,j}(u))$ do
 14. $r_{i,j}(v) \leftarrow u$
 15. $U_{i+1} \leftarrow U_{i+1} \cup \{u\}$
 16. else
 17. $n_{i,j}(u) \leftarrow \text{an arbitrary vertex of } W_{i,j} \cap V(T_{i,j}(u))$

Algorithm 5: Query

input: u, v

output: Estimated distance between u and v

1. $u_0 \leftarrow u$
2. $s_0 \leftarrow 0$
3. for $i = 0 \rightarrow k - 1$ do
 4. if $v \in V(T_i(u_i))$ then
 5. return $s_i + d_{T_i(u_i)}(v)$
 6. if $d_i(u_i) = d_i$ then
 7. return ∞
 8. if $u_i \in A_{i+1}$ then
 9. $u_{i+1} \leftarrow u_i$
 10. $s_{i+1} \leftarrow s_i$
 11. else
 12. $j \leftarrow 1 + \log_{1+\varepsilon} d_i(u_i)$
 13. $w \leftarrow n_{i,j}(u_i)$
 14. $u_{i+1} \leftarrow r_{i,j}(w)$
 15. $s_{i+1} \leftarrow s_i + d_{T_{i,j}(u_i)}(w) + d_{T_{i,j}(u_{i+1})}(w)$
Figure 3: A high-level overview of the distance oracle construction. The vertices v_1, \ldots, v_5 are centers of disjoint (grey) balls and are thus promoted to A_{i+1}, while $W_{i,j}$ is the union over the vertices of the disjoint balls. The grey balls have radius roughly $(1 + \varepsilon)^j$, and we keep a set of balls for every $j \in \{1, \ldots, \log_{1+\varepsilon} d_i\}$. A query from a center u_i of a non-disjoint ball has an associated vertex w in an intersecting grey ball, which in turn has a pointer to the ball center $u_{i+1} = r_{i,j}(w)$.
1 ≤ j = \log_{1+\varepsilon}((1+\varepsilon)d_i(u)) ≤ \log_{1+\varepsilon} d_i \text{ by Lemma 10 so } W_{i,j} \text{ is well-defined and initialized to } \emptyset \text{ in procedure Initialize.}

Lemma 11. After each update, the following holds. For any \(i = 0, \ldots, k - 2 \) and any \(j = 1, \ldots, \log_{1+\varepsilon} d_i \), \(W_{i,j} \) is the disjoint union of \(V(T_{i,j}(u)) \) over all \(T_{i,j}(u) \in T_{i,j} \). Furthermore, \(A_{i+1} = \bigcup_j \{ u | T_{i,j}(u) \in T_{i,j} \} \).

Proof. For every \(u \) added to \(U_{i+1} \) in procedure **Insert**\((v_1, v_2, w(v_1, v_2)) \), \(V(T_{i,j}(u)) \cap W_{i,j} = \emptyset \) just before the update in line 12 and line 12 is the only place where \(W_{i,j} \) is updated. All vertices of \(U_{i+1} \) are added to \(A_{i+1} \) in line 5 of iteration \(i + 1 \) and this is the only place where \(A_{i+1} \) is updated.

Lemma 12. After each update, \(|A_i| = O_\varepsilon((m^{1−i/k})(i + \log d)) \) for \(i = 0, \ldots, k - 1 \).

Proof. The lemma is clear for \(i = 0 \) since \(|A_0| = n \leq m \). Now, let \(i \in \{ 1, \ldots, k - 2 \} \) be given. We will bound \(|A_{i+1}| \). Consider any \(j \in \{ 1, \ldots, \log_{1+\varepsilon} d_i \} \). Since the total degree of vertices in \(G \) is at most \(2m \) and since the sets \(V(T_{i,j}(u)) \) are pairwise disjoint for all \(T_{i,j}(u) \in T_{i,j} \) by **Lemma 11**, it follows from **Lemma 10** that the number of roots of these trees is less than \(2m/m_i \). **Lemma 11** then implies that \(|A_{i+1}| = O((m/m_i) \log_{1+\varepsilon} d_i) = O_\varepsilon((m^{1−(i+1)/k})(i + \log d)) \). This shows the lemma.

Lemma 13. After each update, the following holds. Let \(i \in \{ 0, \ldots, k - 2 \} \) and \(u \in A_i \setminus A_{i+1} \) be given and let \(j = 1 + \log_{1+\varepsilon} d_i(u) \) and \(w = n_{i,j}(u) \). If \(d_i(u) < d_i \) then \(w \in V(T_{i,j}(u)) \cap V(T_{i,j}(r_{i,j}(w))) \) and \(r_{i,j}(w) \in A_{i+1} \).

Proof. By **Lemma 10**, since \(d_i(u) < d_i \), there must have been some update to \(D_i \) that output a tree \(T_i(u) \); consider the last such tree. Then \(d_i(u) \) has not changed since then and so \(T_i(u) \) must be that tree. Since \(u \notin A_{i+1} \), we must have \(V(T_{i,j}(u)) \cap W_{i,j} \neq \emptyset \) so \(w \in V(T_{i,j}(u)) \cap W_{i,j} \). Since \(w \in W_{i,j} \), we have \(w \in V(T_{i,j}(r_{i,j}(w))) \). At some point, \(r_{i,j}(w) \) was added to \(U_{i+1} \) and hence to \(A_{i+1} \). Since vertices are never removed from \(A_{i+1} \), the lemma follows.

8.2 Bounding time and stretch

After replacing \(\varepsilon \) with \(\varepsilon/2 \), the following lemma gives the update time bound claimed in **Theorem 9**.

Lemma 14. A total of \(O_\varepsilon(m^{1+1/k}(3 + 2\varepsilon)^{k−1}d(k + \log d) \log n) \) time is spent in all calls to procedure **Insert**.

Proof. It is easy to see that each execution of lines 9 to 17 in procedure **Insert** can be implemented to run in time \(O(|V(T_i(u))|) \). Hence, the total time spent in all calls to **Insert** is dominated by the total update time of data structures \(D_i \), for \(i = 0, \ldots, k - 1 \). Note that after each update, \(A_i \) is the current set of vertices added to \(D_i \). Letting \(A_i^{(\text{max})} \) be the set \(A_i \) after the last update, it follows from **Lemmas 10** and **12** that \(D_0, \ldots, D_{k-1} \) have total update time

\[
O(km) + \sum_{i=0}^{k-1} O_\varepsilon(|A_i^{(\text{max})}|m_i d_i \log n) = \sum_{i=0}^{k-1} O_\varepsilon(m^{1+1/k}d_i(i + \log d) \log n)
\]

\[
= \sum_{i=0}^{k-1} O_\varepsilon(m^{1+1/k}(3 + 2\varepsilon)i(d(i + \log d) \log n))
\]

\[
= O_\varepsilon(m^{1+1/k}(3 + 2\varepsilon)^{k−1}d(k + \log d) \log n),
\]

where the last bound follows from a geometric sums argument. □
Finally, we bound query time and stretch with the following lemma; replacing ε with $\varepsilon/2$ gives the bounds of Theorem 9.

Lemma 15. Procedure \texttt{Query}(u, v) outputs in $O(k \log n)$ time a value $\tilde{d}_G(u, v)$ such that $d_G(u, v) \leq \tilde{d}_G(u, v)$ and such that if $d_G(u, v) \leq d$ then $\tilde{d}_G(u, v) \leq (2(3 + 2\varepsilon)^{k-1} - 1)d_G(u, v)$.

Proof. To bound the stretch, we will first show the following loop invariant: at the beginning of the ith execution of the for-loop of procedure \texttt{Query}(u, v), $u_i \in A_i$ and $s_i \leq ((3 + 2\varepsilon)^i - 1)d_G(u, v)$. This is clear when $i = 0$ so assume that $i > 0$ and that the loop invariant holds at the beginning of the ith iteration. We need to show that if the beginning of the $(i + 1)$th iteration is reached, the loop invariant also holds at this point.

We may assume that the tests in lines 4 and 6 fail since otherwise, the $(i + 1)$th iteration is never reached. If $u_i \in A_{i+1}$ then at the beginning of the $(i + 1)$th iteration, we have $u_{i+1} = u_i \in A_{i+1}$ and $s_{i+1} = s_i \leq ((3 + 2\varepsilon)^i - 1)d_G(u, v) < ((3 + 2\varepsilon)^{i+1} - 1)d_G(u, v)$, as desired.

Now, assume that $u_i \notin A_{i+1}$. Then $u_i \in A_i \setminus A_{i+1}$. Since the tests in lines 4 and 6 fail, we have $d_i(u) < d_G(u_i, v)$ and $d_i(u) < d_i$. Since s_i is the weight of some u-to-u_i-path in G, we have $d_G(u, u_i) \leq s_i$. Lemma 13 now implies that $u_{i+1} = r_{i,j} \in A_{i+1}$ and

$$s_{i+1} \leq s_i + 2(1 + \varepsilon)d_i(u) < s_i + 2(1 + \varepsilon)d_G(u_i, v) \leq s_i + 2(1 + \varepsilon)(d_G(u_i, u) + d_G(u, v))$$

$$\leq (3 + 2\varepsilon)s_i + 2(1 + \varepsilon)d_G(u, v) \leq ((3 + 2\varepsilon)^{i+1} - 1)d_G(u, v),$$

as desired.

We can now show the stretch bounds. First observe that $m_{k-1} = 2m$. Since at any time, the total degree of vertices in G is at most $2m$, it follows that $d_{k-1}(u) = d_{k-1}$ for all $u \in V$. Hence, \texttt{Query} outputs a value in some iteration.

The bound $d_G(u, v) \leq \tilde{d}_G(u, v)$ is clear if $\tilde{d}_G(u, v) = \infty$ and it also holds if $\tilde{d}_G(u, v)$ is output in line 4 since $s_i + d_{T_i(u)}(v)$ is the weight of some path in G.

Next, we give the upper bound on stretch. If the test in line 4 succeeds in some iteration i, it follows from the the loop invariant that

$$\tilde{d}_G(u, v) = s_i + d_{T_i(u)}(v) \leq 2s_i + d_G(u, v) \leq 2((3 + 2\varepsilon)^i - 1)d_G(u, v) + d_G(u, v)$$

$$\leq (2(3 + 2\varepsilon)^{k-1} - 1)d_G(u, v),$$

as desired.

Now, assume that the test in line 4 fails in some iteration i, i.e., assume that $v \notin V(T_i(u_i))$. Then $d_G(u_i, v) > d_i(u_i)$. If the test in line 6 succeeds in iteration i then $d_G(u_i, v) > d_i(u_i) = d_i \geq (3 + 2\varepsilon)^i d$. The loop invariant and the observation above that $d_G(u, u_i) \leq s_i$ imply that

$$d_G(u, v) \geq d_G(u_i, v) - d_G(u_i, u) > (3 + 2\varepsilon)^i d - s_i \geq (3 + 2\varepsilon)^i d + d_G(u, v) - (3 + 2\varepsilon)^i d_G(u, v).$$

Hence, $(3 + 2\varepsilon)^i d_G(u, v) > (3 + 2\varepsilon)^i d$ which gives $d_G(u, v) > d$. Since the upper bound on stretch is only required when $d_G(u, v) \leq d$, outputting $\tilde{d}_G(u, v) = \infty$ in line 6 is thus valid.

It remains to bound query time. Consider any iteration i. By Lemma 10, performing the tests in lines 4 and 6 and computing distances in line 15 can be done in $O(\log n)$ time. Over all iterations, this is $O(k \log n)$.

\hfill \Box

9 A note on the lightness of other spanners

To motivate the problem of computing light spanners efficiently, we will in this section consider notable spanner constructions and show that they do not provide light spanners. More precisely,
we consider the three celebrated spanner constructions of Baswana and Sen [BS07], Roditty and Zwick [RZ11], and Thorup and Zwick [TZ05], respectively, and we show that they do not provide light spanners.

We first consider the algorithm from [RZ11]. This algorithm creates a spanner by considering the edges in non-decreasing order by weight similar to the greedy algorithm. It maintains an incremental distance oracle of an unweighted version of the spanner, and adds an edge \((u, v)\), if there is no path between \(u\) and \(v\) of at most \(2k - 1\) edges. Consider now running this algorithm on the graph of Figure 4 consisting of a cycle of \(n = 2k + 1\) edges where 2k of them have weight 1 and the last has an arbitrarily large weight \(W\). In this case the algorithm of [RZ11] would add every edge to the spanner, since \(u\) and \(v\) are only connected by a path of length \(2k + 1\) when the edge \((u, v)\) is considered (disregarding the weight of \((u, v)\)). This gives us a lightness of \(\Omega(W/n)\). Since \(W\) can be arbitrarily large it follows that no guarantee in terms of \(k\) and \(n\) can be given on the lightness.

A key part of the algorithm of [BS07] is to arrange the vertices in \(k\) layers \(\emptyset = A_k \subseteq A_{k-1} \subseteq \cdots \subseteq A_0 = V\) and clustering the vertices of each layer. Each layer is formed by randomly sampling the clusters of the previous layer with probability \(n^{-1/k}\). Consider a vertex \(w\) and let \(A_i\) be the first layer where \(w\) is not sampled. If \(w\) is not adjacent to any cluster in \(A_i\), then the smallest-weight edge from \(w\) to each of the clusters of \(A_i\) is added to the spanner. Thus, in the example of Figure 4, if neither \(u\) nor its neighbours are sampled, then the edge \((u, v)\) is added to the spanner. This happens with probability at least \(\left(1 - n^{-1/k}\right)^2\) and thus we cannot even give a guarantee on the expected lightness of the spanner, as \(W\) could be very large compared to this probability.

![Figure 4: Example of a bad input graph to the algorithms of [BS07] and [RZ11]: A cycle of \(2k + 1\) edges with one very heavy edge. This bad instance implies \(\Omega(W)\) lightness for both algorithms.
](image)

The spanner of [TZ05] also creates sets of vertices \(\emptyset = A_k \subseteq A_{k-1} \subseteq \cdots \subseteq A_0 = V\), where each \(A_i\) is formed by sampling the vertices of \(A_{i-1}\) independently with probability \(n^{-1/k}\). For each vertex of \(v \in (A_i \setminus A_{i+1})\) they define the cluster of \(w\) to be the set of all vertices in \(V\) which are closer to \(w\) than to any vertex in \(A_{i+1}\). The spanner they construct is simply the union of the shortest path trees of each cluster with root in \(w\). In particular, for the vertices \(w \in A_{k-1}\) we include the shortest path tree of the entire graph with root in \(w\). We wish to show that at least one of these shortest path trees have lightness \(\Omega(n)\) with constant probability.

To see this consider the graph of Figure 5. In this graph we have a complete graph \(K\) on \(n/2\)
vertices with weights 1 and a cycle C on $n/2$ vertices with weights 1. For each vertex $u \in K$ and each vertex $v \in C$ there is an edge (u, v) of large weight W. Clearly the weight of the MST for this graph is $W + n - 2$, however the shortest path tree from any vertex $u \in K$ has weight $nW/2 + n/2 - 1 = \Omega(nW)$. Since we expect half of the vertices of A_{k-1} to be from K we see that the spanner has expected lightness at least $\Omega(|A_{k-1}| \cdot n) = \Omega(n^{1+1/k})$ in this graph. We also note that no edge of the spanner can have weight larger than that of the MST. This follows because every edge of the spanner is part of some shortest-path tree and if its weights was larger, we could simply replace it in the shortest-path tree by the entire MST. Thus the lightness is also bounded from above by $O(kn^{1+1/k})$.

![Figure 5: Example of a bad input graph for the spanner of [TZ05]. K is the complete graph on $n^{1/k}$ vertices, where every edge has weight 1. This bad instance implies $\Omega(n^{1+1/k})$ lightness for [TZ05].](image)

10 Proof of Lemma 5

We build upon (the first variant of) the algorithm from [ES16], while we get an improved bound using the assumption of the small aspect ratio. The basic component of the algorithm is the spanner of Halperin and Zwick (see Theorem 10). For simplicity we will assume that $a = 1$. The construction-proof stays the same for general a.

Fix $\rho = 1 + \epsilon$. We start by computing the MST T. We divide the edges into $\log_\rho \Delta$ buckets. For $j \in [1, \log_\rho \Delta]$, let $E_j = \{ e \in E \mid w(e) \in [\rho^{j-1}, \rho^j) \} \setminus T$. We will construct separate spanner for each bucket. We will use the $(i, \frac{\epsilon}{2})$-clustering as described in Section 4. That is, for every j, we will have set of at most $n_j = \frac{4n}{\epsilon \rho^{j+1}}$ cluster, each with diameter bounded by $\epsilon \rho^{j-1}$ (in the MST metric). Then, for each j, we contract each cluster and construct an unweighted graph G_j with clusters as its vertices, where there is an edge between two clusters φ_v, φ_u, iff there are vertices $v \in \varphi_v$ and $u \in \varphi_u$ such that $(u, v) \in E_j$. Next we will construct a spanner H_j for G_j using Theorem 10. For each edge $\tilde{e} \in H_j$ we will add the edge $e \in E_j$ that created \tilde{e} to our final spanner H (if there multiple such edges, we add an arbitrary one). Our final spanner H contains the MST edges and the representatives of all the edges in $\bigcup_j H_j$.

37
Stretch As the diameter of every j-cluster is only an ε fraction of the weight of edges in E_j, bound on the stretch proof follows by similar arguments as in Equation (1). See Figure 2 for illustration.

Number of edges by Theorem 10

$$|H| \leq |T| + O(1) \cdot \sum_{j=1}^{\log_\mu \Delta} |n_j|^{1+\frac{j}{\rho}} = O(1) \cdot \left[\sum_{j=1}^{\log_\mu \Delta} \left(\frac{n}{\varepsilon \rho^{j-1}} \right)^{1+\frac{j}{\rho}} \right]$$

$$= O_\varepsilon(n^{1+\frac{1}{\rho}}) \cdot \left[\sum_{j=0}^{\infty} \left(\frac{1}{\rho} \right)^{1+\frac{j}{\rho}} \right] = O_\varepsilon(n^{1+\frac{1}{\rho}} \cdot \log \Delta) .$$

Lightness as all the edges in H_j have weight at most ρ_j,

$$|w(H)| \leq w(T) + O(1) \cdot \sum_{j=1}^{\log_\mu \Delta} |n_j|^{1+\frac{j}{\rho}} \cdot \rho^j = O_\varepsilon(n^{1+\frac{1}{\rho}}) \cdot \left[\sum_{j=1}^{\log_\mu \Delta} \left(\frac{1}{\rho^{j-1}} \right)^{1+\frac{j}{\rho}} \cdot \rho^j \right]$$

$$= O_\varepsilon(n^{1+\frac{1}{\rho}}) \cdot \left[\sum_{j=0}^{\log_\mu \Delta} \left(\frac{1}{\rho} \right)^{1+\frac{j}{\rho}} \right] = O_\varepsilon(n^{1+\frac{1}{\rho}} \cdot \log \Delta) ,$$

Thus the lightness bounded by $O_\varepsilon(n^{\frac{1}{\rho}} \cdot \log \Delta)$.

Running time Computing the MST takes $O(n \log n)$ times. Following the analysis of Section 4, the construction of the vertices for all the graphs $G_1, \ldots, G_{\log_\rho \Delta}$ will take $O \left(\sum_{j=1}^{\log_\rho \Delta} |n_j| \right) = O \left(n \sum_{j=0}^{\log_\rho \Delta} \frac{1}{\rho^j} \right) = O_\varepsilon(n)$ time. Adding the edges to the graphs will take additional $O(m + n \log n)$ time. Computing the spanners H_j (using Theorem 10) takes $\sum_j O(|E_j|) = O(m)$ time. All in all, a total of $O_\varepsilon (m + n \log n)$ time.

11 Missing proofs from the analysis

11.1 Stretch

In this section we bound the stretch of the spanner constructed in Algorithm 2 by $(1+O(\varepsilon))(2k-1)$. Consider some edge $(v,u) = e \in E$. If $w(e) \leq \frac{k}{\varepsilon} = g^\mu$, then e is treated by H_0, the spanner constructed in line 19 of Algorithm 2. Otherwise, let $i \geq \mu$ and $r \geq 1$ be such that $w(e) \in [g^i, g^{i+1}) \subseteq [g^{\mu r}, g^{(r+1) \mu})$. For any j, let φ^j_v (resp. φ^j_u) denote the j-level clusters containing v (resp. u).

If $\varphi^j_v = \varphi^j_u$, by Claim 1 $d_{E_\varphi}(v,u) \leq \text{diam}_{E_{\varphi}}(\varphi^j_v) \leq \frac{k g^j}{2} \leq \frac{k}{2} w(e)$ and we are done.

Otherwise, if φ^j_v or φ^j_u are light i-clusters, then during the first phase, we add an edge e' (of weight at most $w(e)$) between φ^{i-1}_v and φ^{i-1}_u. In particular

$$d_{E_\varphi}(v,u) \leq \text{diam}_{E_{\varphi}}(\varphi^{i-1}_v) + w(e') + \text{diam}_{E_{\varphi}}(\varphi^{i-1}_u)$$

$$\leq \frac{k g^{i-1}}{2} + w(e') + \frac{k g^{i-1}}{2} \leq (k/g + 1)w(e) .$$

Finally consider the case where φ^j_v and φ^j_u are heavy i-clusters. Recall the auxiliary graph S_r constructed during the second phase. Its vertices were $V_{(r-1)\mu}$. In particular it contained an edge e' from $\varphi^{(r-1)\mu}_v$ to $\varphi^{(r-1)\mu}_u$, where $w(e') \leq w(e)$. Note that the diameter of each $(r-1)\mu$ cluster is bounded by $\frac{k g^{(r-1)\mu}}{2} = \frac{g^{i'}}{2}$, while in the used modified weight function $w_\varepsilon(e')$ the minimal weight is $g^{i'}$. Following similar arguments to those in Equation (1) there is a path in E_{φ} of length $(1 + O(\varepsilon))(2k - 1) \cdot w(e)$ from v to u. See Figure 2 for illustration.

38
11.2 Proofs of Lemma 7 and Lemma 8

For \(i \)-level cluster \(C \) (heavy or light), set \(\text{diam}(C) \) to be the maximum value between the diameter (in \(H \)) of the cluster \(C \) (in the time it was created) and \(\frac{1}{k}kg^i \).

We start with proving some properties of the clusters:

Claim 3. Let \(C \) be an \(i \)-level heavy cluster. Let \(C \) be the set of the \(i-1 \) clusters contained in \(C \), then \(\sum_{C' \in C} \text{diam}(C') - \text{diam}(C) \geq \frac{|C|g^{i-1}}{2e} \cdot k. \)

Proof. By the definition of \(\text{diam} \), and Claim 1

\[
\sum_{C' \in C} \text{diam}(C') - \text{diam}(C) \geq \frac{|C|g^{i-1}}{2e} - \frac{g'k}{2} \geq \frac{|C|g^{i-1}k - dg'k}{2e} - \frac{g'k}{2} = \frac{|C|g^{i-1}k}{2e}. \quad \Box
\]

Claim 4. Let \(C \) be an \(i \)-light cluster. Let \(C \) be the set of the \(i-1 \) clusters contained in \(C \), then \(\text{diam}(C) \leq \sum_{C' \in C} \text{diam}(C') + |C| - 1. \)

Proof. This is straightforward as the cluster \(C \) was created from \(C \) using only MST unit weight edges. \quad \Box

Claim 5. Let \(C \) be an \(i \)-cluster and \(C \) be the set of the \(j \)-clusters contained in \(C \) for some \(j < i \). Consider the graph \(G[C] \) where we contract all the \(j \)-clusters and keep only the edges used to create clusters. Then \(w(MST(G[C])) = O \left(\sum_{C' \in C} \text{diam}(C') \right) \).

Proof. Denote by \(C_r \) the set of \(r \)-level clusters contained in \(C \). Let \(E'_r \) be the set of edges used to create the clusters \(C_{r+1} \) from \(C_r \). Note that \(|E'_r| < |C_r| \), and that the weight of an edge \(e \in E'_r \) is bounded by \(g^{r+2} \). Moreover, \(E' = \bigcup_{r=j+1}^{i} E'_r \) spans \(G[C] \), and thus we can bound \(w(MST(G[C])) \) by \(w(E') \). It holds that

\[
w(E') = \sum_{r=j+1}^{i} w(E'_r) = \sum_{r=j+1}^{i} |C_r| \cdot g^{r+2} = \sum_{r=j+1}^{i} \sum_{C' \in C_r} g^{r+2} \leq \sum_{r=j+1}^{i} \sum_{C' \in C_r} \frac{g^{r+2}}{k} \cdot \text{diam}(C').
\]

By Claim 3 and Claim 4, \(\sum_{C' \in C_r} \text{diam}(C') = O \left(\sum_{C' \in C_j} \text{diam}(C') \right) \). We conclude

\[
w(E') \leq O \left(\sum_{r=j+1}^{i} \sum_{C' \in C_r} \frac{1}{k} \cdot \text{diam}(C') \right) = O \left(\sum_{C' \in C_j} \text{diam}(C') \right). \quad \Box
\]

We now ready to prove Lemma 7.

Proof of Lemma 7. Recall that we used modified weights \(w_r(e) = \max \left\{ kg^{(r-1)\mu}/\epsilon, w(e) \right\} \). The contribution of this change to the weight of \(M_r \), bound by \(|V_r| - 1 \) \(kg^{(r-1)\mu}/\epsilon \). Thus we can ignore it, and bound \(w(M_r) \) (original weight) instead of \(w_r(M_r) \) (modified weight).

Denote by \(C_i \) the set of \(i \)-level clusters. Let \(H_r \) be the set of maximal heavy clusters in \(\bigcup_{i=r\mu-1}^{(r+1)\mu} C_i \) (i.e. heavy clusters that does not contained in any other heavy cluster up to level \((r + 1) \mu \)). Note that \(H_r \) form a partition of \(V_r \). We will call the sets in \(H_r \) bugs. We will construct a spanning tree \(T \) of \(S_r \). Trivially, \(w(T) \) is upper bound on \(w(M_r) \). \(T \) consist of spanning tree \(T_C \) for every \(C \in H_r \), and in addition a set of cross-bug edges \(T' \).

First consider \(C \in H_r \). Let \(C_C \) be all the \((r-1) \mu \) clusters contained in \(C \). By Claim 5, there is a spanning tree \(T_C \) of weight \(O \left(\sum_{C' \in C_C} \text{diam}(C') \right) \) that connects between all the clusters in \(C \). Note that all edges in \(T_C \) contained in \(E_r \), and thus in \(S_r \).
Next, let \(T' \) be a set of edges between bugs of maximal cardinality, such that there is no cycles in \(T' \cup \bigcup_{C \in H_r} T_C \). Set \(T = T' \cup \bigcup_{C \in H_r} T_C \), note that \(T \) is a spanning forest of \(S_r \). As each \(C \in H_r \) is already connected, necessarily \(|T'| \leq |H_r| - 1 \). The weight of each edge \(e \in T' \) is at most \(g^{(r+1)\mu} = kg^{\mu r}/\epsilon \), while for every \(C \in H_r \), \(\max\{\text{diam}(C)\} \geq \frac{kg^{r}}{\epsilon} \). Hence \(w(T') \leq |H_r| \cdot \frac{k}{\epsilon} \cdot g^{\mu r} \leq \frac{\epsilon}{c} \cdot \sum_{C \in H_r} \max\{\text{diam}(C)\} \). Using Claim 3 and Claim 4

\[
w(T) \leq w(T') + \sum_{C \in H_r} w(T_C) = \frac{c}{\epsilon} \cdot \sum_{C \in H_r} \max\{\text{diam}(C)\} + \sum_{C \in H_r} O \left(\sum_{C' \in \mathcal{C}_C} \max\{\text{diam}(C')\} \right) = O \left(\sum_{C \in H_r} \sum_{C' \in \mathcal{C}_C} \max\{\text{diam}(C')\}\right)/\epsilon = O \left(\sum_{\varphi \in V_r} \max\{\text{diam}(\varphi)/\epsilon\} \right).
\]

Define a potential function \(D_i = \sum_{\varphi \in \mathcal{C}_i} \max\{\text{diam}(\varphi)\} + |\mathcal{C}_i| \). According to Claim 4, and Claim 3, \(D_i \) is not-increasing.

Claim 6. For every \(r \geq 1 \), \(D_{(r-1)\mu} - D_{(r+1)\mu} = \Omega \left(|V_r| \cdot kg^{(r-1)\mu} \right) \).

Proof. Consider some \(i \)-level heavy cluster \(C \). Let \(\mathcal{C} \) be all the \(i-1 \) clusters contained in \(C \). Let \(\mathcal{D} \) be the potential function on the graph induced by \(C \). Then by Claim 3,

\[
\mathcal{D}_i = \max\{\text{diam}(C)\} + 1 \leq \sum_{C' \in \mathcal{C}} \max\{\text{diam}(C')\} - \frac{|\mathcal{C}| \cdot g^{(r-1)\mu}}{2\epsilon} + 1
\]

\[
\leq \frac{1}{2} \sum_{C' \in \mathcal{C}} \max\{\text{diam}(C')\} + 1 \leq \frac{1}{2} \left(\sum_{C' \in \mathcal{C}} \max\{\text{diam}(C')\} + |\mathcal{C}| \right) = \frac{1}{2} \cdot D_{i-1}.
\]

Let \(V_r \) be all the \((r-1) \mu \) clusters contained in \(C \). For \(i > (r-1) \mu \)

\[
\mathcal{D}_i \leq \frac{1}{2} \cdot D_{i-1} \leq \frac{1}{2} \cdot D_{(r-1)\mu} = D_{(r-1)\mu} - \frac{1}{2} \left(\sum_{\varphi \in V_r} \max\{\text{diam}(\varphi)\} + |V_r| \right)
\]

\[
\leq D_{(r-1)\mu} - \frac{1}{2} \cdot \left(\sum_{\varphi \in V_r} \left(g^{(r-1)\mu} \frac{k}{\epsilon} + 1 \right) \right) = D_{(r-1)\mu} - \Omega \left(|V_r| \cdot kg^{(r-1)\mu}k \right).
\]

By applying this on all the maximal heavy clusters and get the claim. \(\square \)

Now we ready to prove Lemma 8.

Proof of Lemma 8. Fix some \(r \). Note that the minimal weight of an edge in \(S_r \) is \(kg^{(r-1)\mu}/\epsilon \), while by Lemma 7, \(w_r(M_r) \leq O \left(|V_r| \cdot kg^{(r-1)\mu}/\epsilon \right) \). Using Lemma 5,

\[
w(H_r) \leq w_r(H_r) \leq O_{\epsilon} \left(\left| V_r \right|^{\frac{1}{2}} \cdot \log \left(\frac{k}{\epsilon} \right) \right) \cdot w_r(M_r) = O_{\epsilon} \left(n^{\frac{1}{2}} \cdot \log k \cdot |V_r| \cdot kg^{(r-1)\mu} \right).
\]
The total weight of the spanners added during the second phase is bounded by

\[\sum_{r=1}^{\lceil k/\mu \rceil - 1} w(H_r) = O\left(n^{\frac{1}{k^2}} \cdot \log k \cdot \sum_{r=1}^{\lceil k/\mu \rceil - 1} |V_r| \cdot ky^{(r-1)\mu}\right)
\]

\[= O\left(n^{\frac{1}{k^2}} \cdot \log k \cdot \sum_{r=1}^{\lceil k/\mu \rceil - 1} D_{(r-1)\mu} - D_{(r+1)\mu}\right)
\]

\[= O\left(n^{\frac{1}{k^2}} \cdot \log k \cdot (D_0 + D_1)\right)
\]

\[= O\left(n^{1+\frac{1}{k^2}} \cdot \log k\right) , \]

where the last step follows as \(D_1, D_0 \leq D_{-1} = |V| = n \), as all the \(-1\)-clusters are simply vertices of \(G \). \(\square \)

12 Halperin Zwick spanner

In this section we state and analyze the spanner construction of [HZ96].

Theorem 10 ([HZ96]). For any unweighted graph \(G = (V, E) \) and integer \(k \geq 1 \), a \((2k - 1)\)-spanner with \(O(n^{1+1/k}) \) edges can be built in \(O(m) \) time.

Algorithm 6: HZ-Spanner

\[(G = (V, E), k) \]

1. \(H = (V, \emptyset) \). \(V' = V \). \(n = |V| \). Throughout the algorithm, \(G' \) denotes \(G[V'] \)
2. while \(V' \neq \emptyset \) do
3. Let \(v \in V' \) be arbitrary vertex.
4. Let \(r \in \mathbb{N} \) be minimal such that \(|B_{G'}(v, r)| \cdot n^{\frac{1}{k^2}} \geq |B_{G'}(v, r + 1)|\).
5. Let \(T \) be a BFS tree in \(B_{G'}(v, r + 1) \), rooted at \(v \)
6. \(H \leftarrow H \cup T \)
7. \(V' \leftarrow V' \setminus B_{G'}(v, r) \)
8. return \(H \)

Proof. We analyze Algorithm 6. Note that in line 4, necessarily \(r \leq k - 1 \) as otherwise

\[|B_G(v, r)| \geq |B_G(v, k)| > |B_G(v, k - 1)| \cdot n^{\frac{1}{k^2}} > \cdots > |B_G(v, k - i)| \cdot n^{\frac{1}{k^2}} > |B_G(v, 0)| \cdot n^{\frac{1}{k^2}} = n . \]

To bound the stretch of \(H \), consider an edge \(e = (x, y) \). Let \(v_x, r_x \) (resp. \(v_y, r_y \)) such that \(x \) (resp. \(y \)) was removed from \(V' \) as part of \(B_{G'}(v_x, r_x) \) (resp. \(B_{G'}(v_y, r_y) \)). If \(v_x = v_y \), then \(d_H(x, y) \leq r_x + r_y \leq 2(k - 1) \). Otherwise, assume w.l.o.g that \(v_x \) was removed before \(v_y \). As \(y \) is neighboring vertex of \(B_{G'}(v_x, r_x) \), necessarily there is a vertex \(z \in B_{G'}(v_x, r_x) \), such that we added \((z, y)\) to \(H \). By triangle inequality

\[d_H(x, y) \leq d_H(x, z) + d_H(z, y) \leq 2 \cdot r_x + 1 \leq 2k - 1 . \]

To bound the sparsity, note that when deleting \(B_{G'}(v, r) \), we add \(|B_{G'}(v, r + 1)| - 1 \leq |B_{G'}(v, r)| \cdot n^{\frac{1}{k^2}} \) edges. Thus by charging \(n^{\frac{1}{k^2}} \) on each deleted vertex, we can bound the total number of edges by \(O(n^{1+\frac{1}{k^2}}) \).

The runtime is straightforward, as we consider each edge at most twice. \(\square \)
12.1 Modified [HZ96] Spanner

Algorithm 6 picks an arbitrary vertex in line 3 and grow a ball around it. Our spanner in Theorem 6 uses Algorithm 6 as sub-procedure. However, we will need additional property from the spanner. Specifically, we will prefer to pick a vertex with at least \(n^{1/k} - 1 \) active neighbors.

The modified algorithm presented in Algorithm 7. We denote by \(\deg_{G'}(v) \), the degree of \(v \) in \(G' \).

Algorithm 7: Modified-HZ-Spanner \((G = (V,E), k)\)

1. \(H = (V, \emptyset). V' = V. n = |V|. \) Throughout the algorithm, \(G' \) denotes \(G[V'] \)
2. while \(V' \neq \emptyset \) do
3. If possible, pick \(v \in V' \) such that \(\deg_{G'}(v) \geq n^{1/k} - 1 \). If not, pick arbitrary vertex \(v \in V' \).
4. Let \(r \in \mathbb{N} \) be minimal such that \(|B_{G'}(v, r)| \cdot n^{1/k} \geq |B_{G'}(v, r + 1)| \).
5. Let \(T \) be a BFS tree in \(B_{G'}(v, r + 1) \), rooted at \(v \)
6. \(H \leftarrow H \cup T \)
7. \(V' \leftarrow V' \setminus B_{G'}(v, r) \)
8. return \(H \)

Lemma 9 (Modified [HZ96]). Given an unweighted graph \(G = (V,E) \) and a parameter \(k \), Algorithm 7 returns a \((2k - 1)\)-spanner \(H \) with \(O(n^{1+1/k}) \) edges in \(O(m) \) time. Moreover, it holds that

1. \(V \) is partitioned into sets \(S_1, \ldots, S_{R} \), such that at iteration \(i \) of the loop, \(S_i \) was deleted from \(V' \).
2. For every \(i \), \(\text{diam}_H(S_i) \leq 2k - 2 \).
3. When deleting \(S_i \), Algorithm 7 adds less then \(|S_i| \cdot n^{1/k} \) edges. All these edges are either internal to \(S_i \) or going from \(S_i \) to \(\bigcup_{j > i} S_j \).
4. There is an index \(t \), such that for every \(i \leq t \), \(|S_i| \geq n^{1/k} \), and for every \(i > t \), \(|S_i| = 1 \) (called singletons).

Proof. The stretch and sparsity follows from Theorem 10 as we only specify (the prior arbitrary) order of choosing vertices in line 3. Property 2 follows as the radius chosen in line 4 bounded by \(k - 1 \). Properties 1, 3, 4 are straightforward from line 3 of Algorithm 7. Thus we only need to bound the running time.

It will be enough to provide an efficient way to pick vertices in line 3. We will maintain \(\deg(v) \) for every vertex \(v \), and a set \(A \) of all the vertices with degree at least \(n^{1/k} \). The degrees are computed in the beginning of the algorithm, and all the relevant vertices inserted to \(A \). Then, in iteration \(i \), after deleting \(S_i \), we go over each deleted vertex, decrease the degree of each neighboring vertex, and update \(A \) accordingly. Using \(A \), the decision in line 3 can be executed in constant time. The maintenance of \(A \) and the degrees can be done in \(O(m) \) time, as we refer to each edge at most constant number of times.

References

[BFN19] Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum spanning tree with constant average distortion. *Journal of Computer and System Sciences*, 2019. 4, 5, 6

