A meta-analysis of plant tissue O2 dynamics

Herzog, Max; Pellegrini, Elisa; Pedersen, Ole

Published in:
Functional Plant Biology

DOI:
10.1071/FP22294

Publication date:
2023

Document version
Publisher’s PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
A meta-analysis of plant tissue O₂ dynamics

Max Herzog A,*, Elisa Pellegrini A, B and Ole Pedersen A, C

ABSTRACT
Adequate tissue O₂ supply is crucial for plant function. We aimed to identify the environmental conditions and plant characteristics that affect plant tissue O₂ status. We extracted data and performed meta-analysis on >1500 published tissue O₂ measurements from 112 species. Tissue O₂ status ranged from anoxic conditions in roots to >53 kPa in submerged, photosynthesising shoots. Using information-theoretic model selection, we identified ‘submergence’, ‘light’, ‘tissue type’ as well as ‘light × submergence’ interaction as significant drivers of tissue O₂ status. Median O₂ status were especially low (<50% of atmospheric equilibrium) in belowground rhizomes, potato (Solanum tuberosum) tubers and root nodules. Mean shoot and root O₂ were ~25% higher in light than in dark when shoots had atmospheric contact. However, light showed a significant interaction with submergence on plant O₂, with a submergence-induced 44% increase in light, compared with a 42% decline in dark, relative to plants with atmospheric contact. During submergence, ambient water column O₂ and shoot tissue O₂ correlated stronger in darkness than in light conditions. Although use of miniaturised Clark-type O₂ electrodes has enhanced understanding of plant O₂ dynamics, application of non-invasive methods in plants is still lacking behind its widespread use in mammalian tissues.

Keywords: anoxia, flooding, hypoxia, internal O₂, internal oxygen, light, O₂ dynamics, oxygen dynamics, submergence, tissue O₂, tissue oxygen.

Introduction

Following the discovery of O₂ (‘fire air’) in 1771, scientists have attempted to elucidate the interaction of O₂ with plants. In photosynthetic organisms, O₂ is produced as a by-product of photosynthesis, as electrons removed from H₂O (generating O₂) pass through PSII and PSI for the generation of NADP(H), subsequently reducing CO₂ into organic carbon (Blankenship 2002). Accumulation of O₂ inside plant tissues results in a concentration gradient driving a diffusive flux of O₂. This flux may be to other parts of the plant (Armstrong 1979), the surrounding environment, or in some specialised wetland plants, even be driven by mass flow into other plant organs (Dacey 1980).

Plant O₂ dynamics are important for understanding processes crucial for plant functioning such as respiration, photosynthesis, and reactive O₂ species (ROS) production (Blokhina et al. 2003; Gibbs and Greenway 2003; Schmidt et al. 2018). As in most other organisms, O₂ in plants acts as electron acceptor in oxidative phosphorylation generating ATP (Millar et al. 2011). When O₂ is absent, plants can generate some ATP through glycolysis and anaerobic fermentation, although with much lower ATP yield per molecule of glucose (Bailey-Serres and Voesenek 2008). O₂ also leads to photorespiration, where Rubisco reacts with O₂ rather than with CO₂ to form RuBP in its oxygenase reaction. Photorespiration thus results in carbon loss, but also protects plants from photoinhibition (Kozaki and Takeba 1996). O₂ can generate ROS that are important molecules in cell signalling (Van Breusegem et al. 2008), but can also results in cell damage (Blokhina et al. 2003). More recently, the identification of an O₂ sensing mechanism in plants (Licausi et al. 2011), with an analogous O₂-sensing pathway described for animal tissues (Holdsworth and Gibbs 2020), expanded the knowledge on plant adaptations to low O₂. In addition, observations that O₂ acts as a signalling molecule in plant development.
(Weits et al. 2019) has advocated a shift in perceiving low O$_2$ as a plant stressor to also view low O$_2$ as a constitutive, ‘chronic’ condition regulating plant growth and development (Weits et al. 2021).

The occurrence of low O$_2$ status in plant tissues is often overlooked, most likely due to photosynthetic O$_2$ production (Ast et al. 2012). Plants are sessile organisms, which requires them to adapt to environmental changes in their surroundings, including changes in O$_2$ availability (Ast et al. 2012). Flooding has profound effects on the O$_2$ status of plant tissue. Complete or even partial submergence affects plant O$_2$ status due to the 10 000-time slower gas diffusion in water than in air, lower solubility of O$_2$ in water than in air, light attenuation by flood waters and microorganisms depleting flooded soils of O$_2$ (Voosenek et al. 2006). Studies have also demonstrated that biotic and abiotic factors such as pathogen infection, temperature, salinity, and light conditions affect plant tissue O$_2$ status (Kumari et al. 2017; Chung et al. 2019; Koch et al. 2022a, 2022b). Thus, the lack of an active O$_2$ distribution system in plants, presence of non-photosynthetic plant tissues, and a number of biotic and abiotic factors affecting tissue O$_2$, thereby resulting in substantial internal gradients in molecular O$_2$.

Some plants possess mechanisms to control tissue O$_2$ status, such as aerenchyma providing a low resistance pathway for internal O$_2$ transport (Armstrong 1979). Certain plants also show adaptations restricting O$_2$ transport across tissues. For example, O$_2$ diffusion barriers in N$_2$ fixing root nodules limit the diffusive flux of O$_2$ to the root nodule, as O$_2$ would otherwise irreversibly inactivate nitrogenases responsible for N$_2$ reduction (Hunt et al. 1988). Another example of O$_2$ controlling mechanisms is the deposition of lignin and suberin in the cell wall along the outer part of a root restricting O$_2$ loss from roots into anoxic soils (Colmer 2003).

As plant organs consume and produce O$_2$ simultaneously, O$_2$ status within the same plant may vary substantially from organ to organ. For example, in *Sacocornia fruticosa*, root O$_2$ status was only 39% of the O$_2$ level in photosynthesising shoot tissues (Pellegrini et al. 2017). Moreover, O$_2$ status may vary between adjacent tissues, such as the stele of maize (*Zea mays*) roots being only 50% of the level in the root cortex over a distance of only 100 μm (Armstrong et al. 1994). Thus, plant tissue O$_2$ status can be expected to be dynamic in space and time, depending on plant organ, tissue type, and environmental conditions.

Over time researchers have used and continue to use contrasting approaches to determine molecular O$_2$ within plant tissues. Data used in this review include the earliest measurements of O$_2$ in plant tissues made using gas analysers, where a discrete gas sample is brought in contact with an absorbent (Thoday 1913; Laing 1940; Scholander 1947; Armstrong and Gaynard 1976; Erdmann and Wiedenroth 1988; Jordan and Whigham 1988), or injected into gas chromatographs (Spalding et al. 1979; Tjeckema and Cartica 1982). More recently, the development of polarographic electrode sensors and O$_2$ optodes resulted in the development of microsensors allowing for O$_2$ measurements with better spatial and temporal resolution than gas sampling (Ast and Draaijer 2014). The development of these sensors has allowed for continuous O$_2$ measurements within tissues, in contrast to discrete measurements obtained by gas sampling.

As evident from the above, plant tissue O$_2$ status is likely to depend on plant organ, tissue type, developmental status, and environmental conditions. In the present study, we aimed at identifying factors controlling tissue O$_2$ status; e.g. important environmental conditions such as light and floods. For this, we extracted 1567 published measurements of vegetative plant tissue O$_2$ levels from the literature spanning 112 plant species, together with other parameters such as ambient O$_2$ levels, light conditions, and flooding status etc. We then conducted quantitative meta-analyses identifying factors controlling tissue O$_2$ status. We depict the overall patterns generated by this vast amount of data, but also highlight different plant strategies in maintaining O$_2$ homeostasis in subsequent, detailed analyses. While including the majority of plant tissues allowing for a general overview, we refer to other studies regarding details on O$_2$ status in seeds (Borisjuk and Rolletschek 2009) and fruits (Ho et al. 2014). We show that plant tissue O$_2$ status depend particularly on the types of plant tissue, light conditions, and plant submergence status. We also show that hypoxic conditions especially develop in dense tissues and some roots, while hyperoxic conditions are observed in submerged, photosynthesising tissues. Finally, we discuss the progress in methods to determine plant tissue O$_2$ status.

Analytical approach

Literature search

We performed a structured and systematic literature search to identify studies reporting O$_2$ measurements in vegetative plant tissues. The search was conducted using the Web of Science BIOSIS database applying Boolean operators, as explained in detail in the Supplementary materials. The search resulted in a final list of 129 studies published up to September 2022 used for this review. We extracted each observation of plant tissue O$_2$ status and entered it into a database alongside information of plant species, tissue type, light conditions, submergence status, treatment, O$_2$ measurement technique, tissue excisions status etc. if provided in the source. The list of studies used for data extraction is available in Supplementary materials. The database of plant tissue O$_2$ levels can be accessed from the Dryad data repository at https://doi.org/10.5061/dryad.cn5q8cv.

Data handling

The studies used for this review provide a wide range of ways to measure and report levels of plant tissue O$_2$. The following
steps describe how we performed data extraction for our meta-analysis.

1. O₂ levels reported as mm Hg, concentrations (mg L⁻¹, μmol L⁻¹), % of air equilibrium or % O₂ was converted into kPa O₂ as detailed in Supplementary materials.

2. When plants were subject to contrasting treatments (submergence, light/dark, pathogen infection etc.), reported values for each separate treatment were extracted.

3. When tissue O₂ was reported as tissue profiles (e.g. through a root cortex) the mean of these data points within each tissue was calculated and used for the analyses. When radial profiles were longitudinally distributed along an organ (stem/root), mean values from each radial profile were extracted separately.

4. When O₂ was reported in a time series (fx diurnally), the time series' maximum (usually daylight) and minimum (usually late night-time) values were extracted and used for analyses. On some occasions, fluctuating ambient night-time and daytime O₂ levels resulted in significant diurnal and/or nocturnal variations in tissue O₂ (Pedersen et al. 2016). In these cases, two to three values spread across the period were extracted (early, mid and end of night/day period) and used for the analyses. When O₂ was measured over long time series (days, weeks, months) reporting daily/weekly averages, all available data points were extracted (Eklund 2000). In the case of Sorz and Hietz (2008), we extracted all 103 data points but averaged the treatments and seasons.

In a few studies, tissue O₂ was sampled by extracting internal plant gasses in a liquid such as ambient flood water. Such studies where we suspected that air bubbles escaping from plants tissues had been in contact with surrounding medium (thus allowing for O₂ exchange) prior to measurements were discarded (e.g. Setter et al. (1987); Erdmann and Wiedenroth (1988); Stevens et al. (2002)). Studies where gas sampling was performed using syringes, preventing O₂ exchange with the surrounding medium, were included in the analyses.

For correlating submerged plant shoot tissue pO₂ with water column pO₂, we identified 26 studies simultaneously reporting shoot tissue and water column pO₂ levels. Corresponding values of tissue and water column pO₂ were then extracted. For diurnal measurement series, two to three values spread across the period were extracted. When water column levels were manipulated, shoot values for each steady state level of water column pO₂ were extracted. To allow for effects of internal gas transport to be evident in the meta-analysis, only measurements from intact plants were used for this analysis.

Statistical analysis

Data were analysed using GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA) or R (R Core Team 2022) for Windows statistical software. Normality of distributions was confirmed by visual inspections of residual plots and Shapiro–Wilk normality test, and homogeneity of variance by using F-test or Brown–Forsythe test (P > 0.05). When data failed these assumptions, data was transformed, or a non-parametric test was chosen. Further details on statistical tests are given in the respective figure captions.

Modelling

We evaluated the influence of environmental conditions, plant species and tissue type on plant O₂ status using an information-theoretic model selection approach. This explorative, data-driven approach is increasingly used when several predictors may be associated with a particular trait (Symonds and Moussalli 2011). The information-theoretic model selection approach differs from traditional null-hypothesis significance testing, where a hypothesis is first defined, and then accepted or rejected based on P-values (Symonds and Moussalli 2011). Each competing model predicts the outcome variable (in our case: plant tissue O₂ status) using predictors and their interactions (in our case, submergence, light, tissue type etc.). Thus, each competing model can be viewed as a different hypothesis of how predictors affect plant O₂. Ranking the competing models allowed us to estimate which model best explains tissue O₂ status. We used a type of regression analysis, Linear Mixed-effects Model (LMM), to estimate the model parameters and their importance in controlling plant O₂ status. The use of mixed model allowed us to include plant species as a random factor, taking the variability in plant tissue O₂ related to species specific factors (e.g. aerenchyma formation) into account.

We compared all the possible predictors and combinations of interaction and selected the best model using the Akaike Information Criterion (AIC) (Burnham and Anderson 2004). AIC values derive meaning from comparing with AIC of other generated candidate models. By penalising the number of model predictors, AIC allows for the selection of the ‘best’ model based on fit (e.g. large R²) but also model complexity, and thus presents a compromise between fit and complexity. For details on applied R packages, data categorisation and diagnostic plot (Fig. S1), see Supplementary materials.

Results and discussion

Our comprehensive analysis of 129 studies on 112 plant species, including 1567 reported tissue O₂ measurements, showed that tissue O₂ status ranged from anoxia¹ to more than

¹Below detection limits which is approximately 0.007 kPa for O₂ microelectrodes (Revsbech 1989).
2.5-fold atmospheric equilibrium. Our data-driven model selection identified ‘submergence’, ‘light’, ‘tissue type’ and ‘light × submergence’ as key parameters affecting plant tissue O₂ status, and we further conducted detailed meta-analyses allowing us to quantify the effects of ‘submergence’, ‘light’, and ‘tissue type’ on tissue O₂ status.

‘Submergence’, ‘light’, and ‘tissue type’ significantly affect plant tissue O₂ status

Our information-theoretic model selection identified ‘submergence’, ‘light’, ‘tissue type’ and ‘light × submergence’ interaction as the most important predictors of plant tissue status; i.e. these predictors had a relative variable importance of 1.0 in the only plausible linear mixed-effects model (Table 1). Meanwhile, the ‘tissue type × light’ interaction only had a relative variable importance of 0.8. This indicates that the ‘tissue type × light’ interaction was a weaker predictor of tissue O₂ than the other predictors.

Including species as a random factor increased the model fit. This is evident as marginal R² was 0.40 without species as a random factor, compared with conditional R² of 0.55 with the random factor included (Table 1). Following the data-driven identification of the predictors ‘submergence’, ‘light’, ‘tissue type’ and ‘light × submergence’ controlling plant tissue O₂ status, we continued by exploring our database of published O₂ status for patterns generated by these predictors.

Plant O₂ status depends on plant tissue type

Our meta-analysis showed that O₂ status declined significantly from leaves to stems, and from stems to roots; i.e. median O₂ status was 15.7 kPa in leaves, 13.1 kPa in stems and 9.8 kPa in roots, respectively (Fig. 1). We interpret the significantly higher O₂ status in leaves to be caused in three ways: (1) by leaves producing endogenous O₂ via photosynthesis when in light; (2) by leaf stomata being able to vent leaf gas spaces, thus allowing for leaf O₂ status to remain closer to atmospheric levels than in more dense tissues without stomata; and (3) by leaves normally being in close contact with the atmosphere, in contrast to roots or rhizomes, which are in direct contact with O₂ consuming soils or sediments. Indeed, violin-plots showed a relatively high number of anoxic conditions in root tissues compared with leaves (Fig. 1). It should be noted that distribution of O₂ levels in roots may be influenced by a high number of wetland and aquatic plants in the published data underlying this analysis. In detail, 78% of the observations originated from aquatic and wetland plant species and 21% from terrestrial plants. Plant species inhabiting wetland and aquatic systems possess root traits such as aerenchyma that enhance internal aeration and thus ensure

![Fig. 1. O₂ partial pressures (pO₂) in leaf, stem and root tissues. Numbers of replicate values (n): 322, 633 and 404 for leaf, stem, and root tissues, respectively. Letters denote significant difference between medians (non-parametric Kruskal–Wallis test with Dunn’s multiple comparisons, P < 0.05). Truncated violin plot shapes illustrate observation frequency, the solid line the median and dashed line the quartiles. Data from experiments where the O₂ level of the atmosphere/submergence medium around the shoot was manipulated (i.e. atmosphere or submergence solution around shoot was purged with N₂) was excluded in this figure.](image)

Table 1. Result of the information-theory based model selection.

<table>
<thead>
<tr>
<th>Model number</th>
<th>Model dependent variable</th>
<th>Intercept</th>
<th>Submergence</th>
<th>Light</th>
<th>Tissue type</th>
<th>Light × submergence</th>
<th>Tissue type × light</th>
<th>df</th>
<th>R²C</th>
<th>R²m</th>
<th>AIC</th>
<th>ΔAIC</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 48</td>
<td>Sqrt(pO₂)</td>
<td>3.351</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>12</td>
<td>0.5485</td>
<td>0.4030</td>
<td>3198</td>
<td>0.00</td>
<td>0.694</td>
</tr>
<tr>
<td></td>
<td>RVI</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Model 16</td>
<td>Sqrt(pO₂)</td>
<td>3.330</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>10</td>
<td>0.5390</td>
<td>0.3983</td>
<td>3201</td>
<td>2.75</td>
<td>0.176</td>
</tr>
<tr>
<td></td>
<td>RVI</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The two best models are shown, but only model 48 was statistically plausible (ΔAIC < 2). The models explained tissue O₂ status in relation to predictors ‘light’ (i.e. light or dark conditions), ‘submergence’ (i.e. shoot completely submerged, partially submerged, or shoot completely in air), ‘tissue type’ (root, stem or leaf) and interactions. Only studies clearly describing light, submergence and tissue types were included (101 studies). Data from experiments where tissues were excised or the O₂ level of the atmosphere/submergence medium around the shoot was manipulated (i.e. atmosphere or submergence solution around shoot was purged with N₂) was excluded. This filtering resulted in the inclusion of data from 92 species, and ‘plant species’ was included as random factor. Tissue O₂ partial pressures (pO₂) were square root transformed prior to the analysis. Intercept, df, marginal R²m (variance explained by fixed factors) and conditional R²C (variance explained by both fixed and random factors), Akaike information criterion (AIC) and ΔAIC values, model weight (Weight) and relative variable importance (RVI) are reported. ‘+’ indicates if a predictor was included in the respective model.
adequate tissue O\(_2\) supply for root functioning, whereas terrestrial plants typically lack such traits leading to O\(_2\) depletion in flooded soils (Armstrong 1979). The distribution of O\(_2\) levels reported in Fig. 1 should therefore be treated with caution when inferring a ‘true’ distribution of O\(_2\) in all plants.

The broad categorisation of tissue type into leaf, stem and root in Fig. 1 does not do justice to the vast range in morphology and function of different tissue types within these main categories. For example, the category of roots encompasses diverse tissues such as root tips in anoxic soils, mangrove pneumatophores (acting as pathways for atmospheric O\(_2\) inlet), aquatic adventitious roots and other contrasting root tissues. For example, two very high root tissue O\(_2\) levels (43.2 and 32.5 kPa, Fig. 1) were from chlorophyll containing, photosynthesising aquatic adventitious roots of *Meionectes brownii* (Rich et al. 2013). In addition to the broad categories in Fig. 1, we therefore also categorised measurements from leaf, shoot and root tissues into several subcategories (Fig. 2).

In the leaf tissues subcategories O\(_2\) levels were relatively similar compared with the vast variation in stem and root tissues; i.e. median O\(_2\) status only ranged from 11.4 to 16.8 kPa (Fig. 2a). The only significant difference was found between median leaf blades (16.8 kPa) and leaf petioles (15.2 kPa). There was no significant difference between the remaining leaf categories (leaf sheath, flower, and bud tissues), most likely due to a low number of O\(_2\) observations in these tissues \((n < 14)\) compared with leaf blades and petioles \((n > 102)\).

Tissue O\(_2\) status of stems showed larger variation than leaf tissue and was significantly influenced by stem tissue type. Hence, O\(_2\) status in stem tissues was lower in thick, belowground, and predominantly respiring tissue types, compared with porous and photosynthesising tissue types (Fig. 2b). In stems, median O\(_2\) status in tissues such as culms, peduncles, stolons and stems of herbaceous plants (14.9 kPa, designated as ‘stems’ in Fig. 2b) and tree stems (13.1 kPa) were significantly higher, than in rhizomes (9.4 kPa) and the dense storage organ of *Solanum tuberosum* (7.6 kPa, designated as potato tuber in Fig. 2b). Thick and dense tissues showing high resistance across the diffusion path are prone to internal O\(_2\) gradients, especially if respiratory demand for O\(_2\) is large (Armstrong 1979; Colmer and Greenway 2005). Indeed, 32 g potato tubers experienced relatively low central O\(_2\) status of 1.5 kPa compared with 7 kPa in 8 g small tubers (Geigenberger et al. 2000). Another example of low internal O\(_2\) status in dense stem tissues results from radial profiling across dense succulent stem tissues of submerged *Halosarcia pergranulata* using an O\(_2\) microsensor (Pedersen et al. 2006). Here, internal O\(_2\) declined to 1.5 kPa compared with 21 kPa in the submergence solution. Respiration rates also affect plant tissue O\(_2\), exemplified in potatoes stored at 22–25°C showing

![Fig. 2. O\(_2\) partial pressures (pO\(_2\)) in (a) leaf, (b) stem and (c) root tissue. In (b) ‘Stem tissues’ encompass stems, culms, stem internodes, peduncles, or stolon tissues but not rhizomes, storage organs (tubers and corns) and woody tree stems. Tree stems are woody stems of beech (*Fagus sylvatica*), Norway spruce (*Picea abies*), olive (*Olea europaea*), red maple (*Acer rubrum*), eastern hemlock (*Tsuga canadensis*), Northern red oak (*Quercus rubra*), black poplar (*Populus nigra*) and American ash (*Fraxinus americana*). Numbers of replicate values \((n)\): leaf blade/lacunae (102), leaf sheath (13), leaf petiole (125), flower (11), leaf/flower bud (14), ‘Stem’ (306), tree stem (97), potato tubers (28), rhizome (135), root axis (320), aquatic roots (8), pneumatophore (9), root nodule (15). Letters denote significant difference between medians (non-parametric Kruskal–Wallis test with Dunn’s multiple comparisons, \(P < 0.05\)). Truncated violin plot shapes illustrate observation frequency, the solid line the median and dashed line the quartiles. Data from experiments where the O\(_2\) level of the atmosphere/submergence medium around the shoot was manipulated (i.e. atmosphere or submergence solution around shoot was purged with N\(_2\)) was excluded in this figure.](image-url)
less than half of the tissue O₂ compared with potatoes stored at 5–11°C (Stiles 1960). In summary, stem tissue O₂ was particularly low in thick, dense, or predominantly respiring tissues such as succulent tissues or belowground rhizomes.

In stark contrast to potato tubers and succulent stems, median O₂ was significantly higher in the other stem categories. Plant stems may contain lysigenous or schizogenous aerenchyma, facilitating gas exchange via interconnected air spaces that enhance O₂ diffusion due to the 10 000-fold higher diffusion coefficients in gas than in liquid phase (Armstrong 1979). Since diffusion is a very slow process over long distances, some specialised wetland plants can induce ‘internal winds’ (pressure driven, convective gas flow) within connected air spaces allowing for effective O₂ transport over long distances (Dacey 1980). For example, O₂ in submerged culms of the sedge *Eleocharis sphacelata* remained close to atmospheric levels of 20 kPa down to 2.7 m of water depth during daytime where convective flow was operating, compared with <10 kPa during the night where convective flow is absent (Sorrell and Tanner 2000). This was a result of pressurised flow of gas from influx culms to efflux culms of up to 5.8 mL min⁻¹, supplying immersed tissues with atmospheric O₂.

Root tissue O₂ showed even higher range in median O₂ status than leaf and stem tissues. Median O₂ reached 15.2 kPa in pneumatophores but was 0 kPa in root nodules (Fig. 2c). In root nodules, symbiotic bacteria convert N₂ gas into ammonia to be used in amino acid biosynthesis. Since the process of nitrogen fixation is highly O₂ sensitive, root nodules have evolved mechanisms such as leghaemoglobin to regulate free O₂ inside the nodule (Downie 2005). Indeed, the few observations of significant O₂ inside root nodules belong to experiments where nodules were inoculated with mutant bacteria strains, some of which were unable to infect plant cells (Masepohl et al. 1993; Romanov et al. 1995). In contrast, the median O₂ level in pneumatophores was significantly higher (15.2 kPa) than in the root axis or root nodules. Pneumatophores are lateral roots known from plants growing in anoxic mudflats such as mangroves (e.g. *Avicennia marina*), where they exhibit negative geotropism thereby growing upward. When reaching the sediment surface, O₂ can pass through small bark openings (lenticles) and diffuse into the belowground root system. Other root tissues showing high O₂ status were photosynthesising aquatic roots (Rich et al. 2011). Here, O₂ status were as high as 43.2 kPa (median of 14.2 kPa, Fig. 2c). O₂ may build up to such high levels in submerged, photosynthesising tissues due to physical restrictions in gas diffusion preventing photosynthetic O₂ to diffuse out of the tissues and into the surrounding water.

O₂ gradients within plant tissues

Obtaining O₂ status with high spatial resolution has also revealed that O₂ status vary significantly not only between but also within tissue types. Such data has mainly been obtained using Clark-type O₂ microelectrodes. With a tip diameter of down to 3 μm (Weits et al. 2019) the electrode can be positioned in delicate tissues such as roots, even in field conditions. Our meta-analysis of literature data from studies reporting 40 paired root measurements of stele and cortex O₂ status, reveal that mean O₂ status in the root stele was 66% of the cortex O₂ status (Fig. 3). The root stele is known to be more metabolically active compared with cortex tissues; e.g. for banana (*Musa spp.*) roots, a 6-fold difference in respiration rate was found (Aguilar et al. 2003). In addition to displaying high respiration rates, stele tissues only contain relatively few air spaces that further increases the O₂ demand per volume of root tissue. In contrast, the root cortex may contain large air spaces caused by aerenchyma formation, allowing for longitudinal flow of O₂ from the shoot or atmosphere toward the root tip (Armstrong 1979). Thus, the resistance to O₂ diffusion increases in the dense stele compared with the cortex. The high respiration rates and low diffusivity in dense tissues result in the lower O₂ status within root steles, as supported by modelling results (Armstrong et al. 2000).

In addition to root tissues, shoot tissues may also exhibit internal O₂ gradients. Molecular O₂ inside the shoot apical meristem of *Arabidopsis thaliana* (3.6–8.4 kPa) compared with the surrounding stem tissue (13–19 kPa) regulated leaf production, with hypoxia inhibiting proteolysis of an N-degron-pathway (Weits et al. 2019). The observed gradient in the shoot apex of 15 kPa developed over a distance less than 50 µm. Meanwhile, O₂ within the 2-mm thick leaf petioles of *Rumex palustris* was much more homogeneous, probably owing to the large number of internal gas spaces (aerenchyma content of >20%) and underwater photosynthesis of the green petioles (Mommer et al. 2004). Corresponding to a longitudinal decline of O₂ in roots (discussed below), profiles along the leaf petioles of *R. palustris* exhibited ~3 kPa.

Fig. 3. O₂ partial pressures (pO₂) in root cortex and stele tissues reported in the literature. Values were extracted from 13 published studies where O₂ microsensors were driven through both tissues (i.e. matched pairs). * indicates statistical significant difference between means (paired t-test on square-root transformed data, P < 0.0001, n = 40). Truncated violin plot shapes illustrate observation frequency, the solid line the median and dashed line the quartiles. Mean pO₂ was 6.2 kPa in the cortex and 4.1 kPa in the stele, respectively.
longitudinal O_2 decline from a position close to the O_2 source (leaf) to O_2 sink (roots) (Mommer et al. 2004).

Plant tissues also show significant longitudinal variation in internal O_2 status. In roots, the degree of longitudinal O_2 diffusion from the shoot (O_2 source) via the root base to the root tip (O_2 sink) is crucial for plant functioning when roots grow in O_2 free media such as soils with excess water (Armstrong 1979). Plant adaptations and acclimation enabling a continuous supply of shoot-derived molecular O_2 to the metabolically active root tip have therefore been thoroughly studied. Key traits such as aerenchyma formation (constitutive as well as inducible) and induction of barriers to radial O_2 loss, which prevent O_2 leaking from the root axis into anoxic soils, allow for continued root aeration despite the anoxic soil environment (Colmer 2003).

To evaluate the effect on root aeration of a barrier to radial O_2 loss and aerenchyma formation, one can compare O_2 status of roots grown in a stagnant, deoxygenated nutrient solution mimicking a flooded soil (Wiengweera et al. 1997) with roots grown in aerated nutrient solution (mimicking a drained soil). Most wetland species will further induce aerenchyma and a barrier to radial O_2 loss only in the former condition. For example, in Zea nicaraguensis, root apical O_2 status was 8.7 kPa in roots formed in stagnant, deoxygenated nutrient solutions compared with 0.47 kPa in roots from aerated nutrient solution when measured in roots in a severely hypoxic solution (Pedersen et al. 2021). In the roots formed in stagnant, deoxygenated nutrient solution, a barrier to radial O_2 loss was induced, and root aerenchyma was 1.4-fold of that under aerated conditions (Pedersen et al. 2021). Thus, in this concrete example, aerenchyma and the barrier to radial O_2 loss resulted in better O_2 status of the roots formed in the stagnant, deoxygenated nutrient solution.

In order to isolate the effect of the barrier to radial O_2 loss on root aeration without shoot-derived O_2 and varying root lengths impeding interpretations, a recent study reported radial O_2 intrusion into submerged root segments of rice (Oryza sativa) (Peralta Ogorek et al. 2021). Here, maximum O_2 status within the root segments with a weak barrier to radial O_2 loss differed 54-fold from roots with a tight barrier, when incubated with 21 kPa O_2 in the surrounding water (Peralta Ogorek et al. 2021). The strong effect of the barrier to radial O_2 loss on root O_2 status underlines the importance of species-specific adaptations and/or acclimations for O_2 status in plant tissues.

In conclusion, both root and shoot tissues may show substantial radial and longitudinal internal O_2 gradients. The gradients depend on tissue density, respiration activity, plant adaptations and/or acclimations such as aerenchyma and radial O_2 loss barrier formation, and environmental conditions.

O_2 status in submerged plant tissues – the importance of light

Submergence is a compound stress to plants, brought on by several effects. For one, the 10 000–fold slower gas diffusion in liquid compared with gas impedes the diffusive supply from the environment of O_2 for respiration and CO$_2$ for photosynthesis (Jackson and Drew 1984). As floodwaters absorb and scatter incoming light, photosynthesis may be hampered even further (Colmer et al. 2011). Build up of the volatile phytohormone ethylene may induce leaf senescence as chlorophyll is degraded (Voesenek and Bailey-Serres 2015). Thus, the capacity for underwater photosynthesis and therefore O_2 production generally declines with time of submergence for terrestrial vegetation (Colmer et al. 2011). Indeed, our data-driven model-selection approach identified both ‘submergence’ and ‘submergence × light’ interaction as factors that significantly affect plant tissue O_2 status (Table 1). It should be noted that the identification of ‘submergence’ over other environmental conditions could be due to a relatively large number of studies focusing on plant tissue O_2 in submerged plants (52% of observations used for model selection), compared with plants subject to drought, nutrient limitations, or pathogen infections. Nevertheless, the effect of submergence on plant tissue O_2 per se was validated by the model selection. To further quantify the effect of light and submergence on plant tissue O_2 status, we filtered data from the literature where O_2 was measured inside intact plants during complete submergence or with atmospheric contact (drained with shoot in air, waterlogged with shoot in air, or partial submerged shoot), and in light or dark conditions. We excluded data from experiments where the O_2 level of the atmosphere/submergence medium around the shoot was manipulated (i.e. atmosphere or submergence solution around the shoot was purged with N$_2$), as this would otherwise mask any light or submergence effects. This analysis underlined the vast importance of light particularly for shoot tissues (Fig. 4). Shoots in air contained 24% less O_2 in dark than in light, most likely owing to the lack of photosynthetic O_2 under dark conditions. The effect of light on tissue O_2 was also evident in root tissues, where mean O_2 status declined from 10.6 kPa in roots of plants in light to 7.9 kPa in roots of plants under dark conditions.

The effect of complete submergence on shoot tissue O_2 status was strongly light dependent. In the presence of light, submergence resulted in a significant increase (44%) in shoot tissue O_2 status, compared with shoots with air contact (Fig. 4a). In contrast, when the entire shoot was submerged in dark conditions, submergence resulted in a significant decline (42%) in O_2 status. Hence two-way ANOVA showed a significant ‘light’ and ‘submergence × light’ interaction. We interpret the submergence-induced increase of shoot tissue in light as a build up of O_2 deriving endogenously from underwater photosynthesis, or to a lesser extent, from floodwaters containing high levels of O_2. O_2 produced in shoot tissues by underwater photosynthesis is likely to build up as stomatal closure, physical boundary layers and slow outward diffusion of O_2 into the aquatic environment hampers gas exchange between the shoot and its surroundings (Sand-Jensen et al. 2005; Pedersen et al. 2006, 2016).
In contrast, in shoots with atmospheric contact, O_2 deriving from photosynthesis would be vented into the surrounding air. The importance of light on plant tissue O_2 *in situ* is nicely exemplified by diurnal leaf O_2 and irradiance measurements in seagrass (*Thalassia testudinum*) (Koch et al. 2022a). Here, a decline in daytime irradiance of $\sim 1000 \mu\text{mol photons m}^{-2}\text{s}^{-1}$ from passage of clouds resulted in a rapid decrease in leaf O_2 status from 45 to 27 kPa.

The submergence-induced increase in shoot tissue O_2 observed in Fig. 4a could also be due to high levels of O_2 in floodwaters. High levels (>30 kPa) of O_2 in natural floodwaters have been observed in marine (Pedersen et al. 2016) and freshwater (Rich et al. 2013) ecosystems. To test how floodwater O_2 levels affect plant tissue O_2, we performed a correlation analysis of data from studies simultaneously measuring plant and floodwater O_2 levels (Fig. 5). Correlation between shoot tissue O_2 levels and water column O_2 levels was significant in both cases but stronger in the dark ($r = 0.6808$, Spearman, $P < 0.0001$) than in light ($r = 0.1925$, Pearson, $P = 0.0384$). The weaker correlation in light than in the dark indicates that production of O_2 in underwater photosynthesis provides the plant with an alternative O_2 source. As net underwater photosynthesis produces excess endogenous O_2, the plant is less likely to experience the same O_2 level as the surrounding water column. In contrast, plants submerged in the dark rely on their immediate surroundings as O_2 source, and hence the correlation is stronger under dark conditions than in the light. Since plant respiration consumes O_2, points cluster below the line of equality in the dark (Fig. 5), but not in light where photosynthesis can elevate tissue O_2 to above water column O_2.

Interestingly, three measurements from the small isostid *Lobelia dortmanna* (Møller and Sand-Jensen 2011) showed anoxic conditions in the shoot but high levels of floodwater O_2 (21–22 kPa) (Fig. 5). The reason why floodwater O_2 did not diffuse into the leaves of *L. dortmanna* most likely relates to its strategy for CO_2 acquisition. *L. dortmanna* is found in oligotrophic soft water lakes, where underwater photosynthesis is often carbon limited. Thick leaf cuticles therefore reduce permeability to CO_2 (and O_2), helping *L. dortmanna* to acquire sediment-derived CO_2 for underwater photosynthesis via its root system. In the experiments by Møller and Sand-Jensen (2011), the sediment was enriched with organic matter, resulting in sediment O_2 depletion. Due to the lack of a barrier to radial O_2 loss in the root, and continuous internal air lacunae, O_2 was readily lost from the plant to the sediment. Meanwhile, the thick leaf cuticle restricted O_2 exchange with oxygenated floodwater. These observations nicely underline how plant tissue O_2 dynamics follow general trends but may deviate if habitats require special adaptations.

Continuous O_2 measurements using microelectrodes have revealed severe hyperoxia of >40 kPa O_2 (Sand-Jensen et al. 2005; Pedersen et al. 2006, 2016; Rich et al. 2013; Koch et al. 2022a) in submerged wetland and aquatic plants. The highest

![Fig. 4](image-url).

Fig. 4. O_2 partial pressures (pO$_2$) in (a) shoot tissues and (b) root tissues during complete submergence (‘shoot submerged’, filled bars) or the shoot in air (‘shoot in air’, i.e. drained conditions, waterlogging and partial submergence, open bars) in light or dark conditions. Data were extracted from 117 studies where O_2 was measured inside intact plants (i.e. excluding studies where O_2 was measured within excised tissues) and where the shoot was clearly stated as being in light or dark conditions. Data was excluded when the O_2 level of the atmosphere/submergence medium around the shoot was manipulated (i.e. atmosphere or submergence solution around the shoot was purged with N$_2$). (a) Letters denote statistically significant differences between means ($P < 0.05$, Tukey post hoc test; $n = 201, 226, 106$ and 221 for columns from left to right) following 2-way ANOVA showing a significant light ($P < 0.0001$) and submergence × light interaction ($P < 0.0001$). (b) Letters denote statistically significant differences between means ($P < 0.05$, Tukey post hoc test; $n = 115, 48, 56$ and 31 for columns from left to right) following 2-way ANOVA showing a significant light ($P < 0.0001$), submergence ($P = 0.0001$) and submergence × light interaction ($P = 0.0078$). Bars show mean and error bars s.e.m.
non-manipulated plant tissue O₂ level reported in the literature (53.1 kPa) was measured in *Thalassia hemprichii* subjected to submergence by tidal waters and high radiation (2000 μmol photons m⁻² s⁻¹) (Pedersen et al. 2016). Hyperoxia in submerged vegetation coincides with high irradiation and may even intermit with night time hypoxia (Sand-Jensen et al. 2005; Pedersen et al. 2006, 2016). High levels of O₂ may result in the formation of ROS and increased photorespiration; however, the degree of tissue damage and plant mechanisms to tolerate hyperoxia remain much less studied than for hypoxia.

In our meta-analysis of tissue O₂ status, we have attempted to summarise the current state of knowledge on plant O₂ dynamics. Much knowledge on plant tissue O₂ dynamics has been gained due to ongoing development of new O₂ measuring techniques. In the following, we therefore present an overview of the progress in determining plant tissue O₂ status. We then use this overview to identify future opportunities to obtain further insight of plant O₂ dynamics.

Measuring O₂ in plant tissues: past, present, and future approaches

The earliest measurements of O₂ in plant tissues made use of various forms of gas analysers. Gases sampled from tissues using syringes (or by crushing in mercury) was drawn into a glass chamber, which was then brought into contact with an O₂ absorbing solution, allowing for the decrease in gas volume to be monitored (Thoday 1913; Scholander 1947). The earliest methods to our knowledge was the Bonnier-Mangin microtechnique (Thoday 1913) with adaptations by Scholander (1947), used as late as 1994 on tomato (*Solanum lycopersicum*) and potato tubers (Nery and Calbo 1994). Other studies (Laing 1940) applied the Henderson-Haldane gas analyser, widely used in human physiology research, for measuring O₂ in aquatic plants. Finally, gas sampled from tissues with syringes has been analysed using gas chromatographs (Spalding et al. 1979; Tjepkema and Cartica 1982). To our knowledge, the results obtained using gas analysers have not been subject to a direct comparison with other methods such as microsensors.

The development of microsensors allowed for O₂ measurements with improved spatial and temporal resolution (Revsbech 1989). The most popular sensors are miniaturised, stiff and narrow (down to 3 μm tip diameter) Clark-type sensors, ideal for penetrating plant tissue and measuring O₂ within plants (Pedersen et al. 2020). Optical O₂ sensors (O₂ optodes) can also be positioned within plant tissues, especially if built into a syringe. Foils coated with O₂-sensitive fluorescent dyes and optical O₂ sensor nanoparticles are often used for mapping O₂ on plant surfaces and their surroundings (Rudolph et al. 2012; Brodersen et al. 2014; Koren et al. 2015). However,
optical O₂ sensor nanoparticles have only seen limited application inside plants tissues due to their size of up to 600 nm (Schmälzlin et al. 2005; Shaw and Honeychurch 2022). Because of microsensor popularity in plant research, >70% of the 1567 observations of plant tissue O₂ used in this study were obtained using an O₂ microsensor. For a more detailed review on use of microsensors in plant biology, see Pedersen et al. (2020).

While the abovementioned methods allow for direct O₂ measurements within plant tissues, more indirect methods have also been applied. Measurements of radial O₂ loss from roots using cylindrical platinum electrodes have been used to model root internal O₂ status (Armstrong and Wright 1975); see also Jiménez et al. (2021) for a recent review on methods on measurement of radial O₂ loss from roots. Another indirect measurement of tissue O₂ status is related to the expression of genes strongly upregulated upon low O₂ (referred to as hypoxic reporters) (Mustroph et al. 2010).

In the present meta-analysis, we identified ‘tissue type’, ‘submergence’, ‘light’ and ‘light × submergence’ interaction as important environmental factors for plant O₂ status. When conducting meta-analysis, researchers should consider the risk of ‘publication bias’, a term originating from health sciences describing information suppression mechanisms (Dickersin 2005). This includes language bias or accession bias (selective inclusion of studies that are accessible, and published in English), and outcome bias (selective reporting of statistically significant results) among others (Dickersin 2005). The latter would translate to studies reporting surprisingly low or high plant tissue O₂ levels, or significant treatment effects of for example plant submergence, being more likely to reach publication than negative results, either due to bias at the investigator or editorial level. The concern that O₂ measurements of experiments revealing no treatment effects are under-reported cannot be excluded. However, considering the large number of studies across time, space, species, and methodology describing significant effects of light and submergence on plant tissue O₂ levels, we consider their potential importance as validated by this study. We also believe that our data gives an impression of the range and variability in plant tissue O₂ levels, although random sampling both at community, species and tissue level would be required to achieve a distribution resembling the ‘true’ distribution of O₂ in all plants.

Methods to conduct non-invasive O₂ measurements at high spatial and temporal resolution should promote expansion of plant tissue O₂ research from predominantly studying the effect of submergence into other areas. Areas already under investigation include studying plant O₂ levels in relation to plant development (Weits et al. 2019), pathology (Kumari et al. 2017) and plant signalling (Weits et al. 2021). It has been noted that unravelling tissue O₂ dynamics in plants still lacks behind the mammalian field (Ast et al. 2012; Schmidt et al. 2018). This is underlined by the search term ‘tissue hypoxia’ in the Web of Science BIOSIS Previews database resulting in 34,970 records belonging to the ‘Mammalia’ taxa compared with 1041 in ‘Plantae’ (performed in November 2022). In mammals, cancer research resulted in the development of methods such as positron emission tomography (PET), genetically encoded sensors, and ¹⁸F NMR for non-invasive O₂ measurements (Schmidt et al. 2018). Challenges in translating these methods to plant biology include plant tissue autofluorescence (Ast et al. 2012). However, PET scans of plants tissues used to study carbon dynamics illustrate the possible future application of this technique in plant science (Mincke et al. 2021).

Conclusion

Based on the extraction of 1567 recorded tissue O₂ levels from 112 plant species, we found that plant tissue O₂ status differs significantly between tissue types. In general, average O₂ status is lower in non-photosynthetic and belowground tissues such as roots (9.8 kPa) and rhizomes (9.4 kPa), compared with the leaf lamina (16.8 kPa) and stems (14.9 kPa). However, exceptions exist as exemplified by photosynthesising aquatic roots and mangrove pneumatophores showing relatively high O₂ status compared with other root tissues. Environmental conditions that significantly affected plant O₂ status were light conditions and submergence. Interestingly, light interacted significantly with submergence on plant tissue O₂ status so that while submergence under light caused shoot O₂ status to increase by 44% compared with non-submerged shoots, submergence in the dark reduced shoot tissue O₂ by 42%. Thus, restricted gas exchange during submergence in light caused shoot tissues to accumulate photosynthetic O₂, while the O₂ status declined towards hypoxic conditions upon submergence in the dark. Tissue O₂ under submergence correlated stronger with floodwater O₂ in dark than in light, where shoot tissues could photosynthesise and thus render plant tissues less dependent on floodwater O₂. While the development of O₂ microsensors has resulted in increased insight into plant tissue O₂ dynamics, the field lacks behind the knowledge of O₂ dynamics in mammalian tissues. We therefore predict that the use of non-invasive techniques in the future will shed further light on plant tissue O₂ dynamics.

Supplementary material

Supplementary material is available online.

References

Data availability. The data that support this study are available in Dryad at https://doi.org/10.5061/dryad.cnp5hqc8v.

Conflicts of interest. The authors declare no conflicts of interest.

Declaration of funding. This study was supported by the Danish International Development Agency, DANIDA (grant No. 19-03-KU to MH, OP), the Independent Research Fund Denmark (grant No. 8021-00120B; to OP), and MSCA IF H2020 grant (grant number 839542 to EP).

Acknowledgements. We thank Lucas León Peralta Ogorek for comments on a draft manuscript and Kenneth Thoro Martinsen for statistical advice. We also thank the two anonymous reviewers for constructive criticism of this manuscript.

Author affiliations
^The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen 2100, Denmark.
^Department of Food, Agricultural, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine, Italy.
^School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.