Double-replica theory for evolution of genotype-phenotype interrelationship

Pham, Tuan Minh; Kaneko, Kunihiko

Published in:
Physical Review Research

DOI:
10.1103/PhysRevResearch.5.023049

Publication date:
2023

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Double-replica theory for evolution of genotype-phenotype interrelationship

Tuan Minh Pham and Kunihiko Kaneko

1The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100-DK, Denmark
2Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan

I. INTRODUCTION

Evolution under given fitness landscape in the space of genotypes has been studied extensively [1,2]. Here genotypes are changed (mutated) in the reproduction process, and those that have higher fitness, i.e., higher offspring-production rate, are selected to the next generation. The fitness, however, is not directly determined by the genes, but rather by phenotypes, that are the characteristics of a biological system and are also modulated by environmental effects, such as thermal noise [3]. Examples of phenotypes include the shape of folded proteins, a set of intracellular chemical concentrations, specific functions of an organism, and so forth. These phenotypes are shaped as a result of dynamical process, whose rule is determined by genes. The evolution of phenotypes is thus shaped by the genetic evolution.

In addition to the variations of phenotypes induced by genetic mutations during the evolution, phenotypes of isogenic individuals are also generally variable under noise, resulting in their stochastic dynamics. Cells involve stochastic gene expression dynamics, whereas protein folding dynamics to give the protein shape is under thermal noise [4–7]. Fitted phenotypic states hence are better preserved under noise, i.e., they keep robustness to noise, while robustness to mutation will also be required. The achievement of robustness of phenotypes to noise and to mutation is important to evolution, as was discussed recently [8–11]. Now, considering stochastic dynamics of phenotypes, a general formulation of the evolution of such genotype-phenotype mapping and phenotypic robustness is hence wanted.

Underlying such stochastic dynamics are the interactions among a vast number of elements that constitute a biological system. A cell consists of a huge variety of interacting molecules, and its constituent polymers (proteins) are composed of many monomers (residues). Statistical physics [12,13] provides an appropriate description of the states of such interacting elements under noise, and hence it can be adopted to yield a proper formulation of the mapping from genotype to phenotype as a dynamical process that shapes the phenotypes. To this kind of study, use of spin models is relevant, as it has been extensively analyzed [14–16]. Here phenotypes are regarded as spin configurations that are updated by a Hamiltonian with spin-spin interactions under thermal noise, whereas genotypes specify such spin-spin interactions. Individuals are subjected to selection pressure, where fitness, the number of selected offspring, is given by a function of configuration of a subset of spins, termed target spins. It is then important to identify possible phases
for genotype-phenotype mapping by using the set of order parameters, a concept rooted in statistical physics.

In the present paper, to address these problems in a systematic way, we formulate double replica methods both for spins (phenotypes) and couplings (genotypes), as well as both for target and nontarget parts. Even though we adopted spin-coupling representation here our formulation can generally be applied to other problems, in which the interactions among many degrees of freedom are also dynamical variables with their own dynamics. For the sake of demonstration, however, we here explain this approach by using specifically a spin-glass Hamiltonian model developed in [14–16]. These works uncovered that, within an intermediate range of phenotypic noise and under sufficiently strong selection pressure, the evolved spin-systems could attain high fitness and robustness to noise and mutation. A systematic way to elucidate the condition to achieve such robust fitted states with regards to the noise strength, selection pressure, and relative size of target spins, and to understand possible relationship between robustness to mutation and to noise, however, has not been developed yet.

One might expect an application of mean-field methods for disordered systems [17] in this model since a spin-glass Hamiltonian formulation was adopted by replacing random couplings among spins (phenotypes) by genotypes that are evolving [14–16]. Gradual change in the couplings might fit with partial annealing approach based on a finite number of replicas n. However, such study is restricted to the case in which the coupling dynamics are affected by a spin-spin correlation term [18–22], and is not directly applicable for our purpose, in which the coupling dynamics depend on the fitness determined by the spin configurations. Another theoretical method assumes the quench limit ($n \to 0$) for a replicated spin system [23], in which the couplings are treated effectively as “static” and hence is not suitable to investigate the evolution of both genotypes (couplings) and phenotypes (spin configurations).

In this paper we develop a mean-field approach that we term double replica theory. It describes the evolution of both genotypes and phenotypes by considering spins and links as two different replica species. With this formulation, we obtain fitness and replica overlaps for spins and couplings, which work as the order parameters. Using these order parameters we identify five regions in the temperature vs selection pressure phase diagram: two nonfitted paramagnetic phases, fitted and nonfitted spin glass phases, and a robust fitted phase. The last phase is the most biologically important, and can only be achieved under intermediate noise level (temperature) and sufficient selection pressure, whereas robustness can only arrive at the cost of lowering the fitness from its maximal value. Dependence of the robust fitted phase on the ratio of functional to nonfunctional parts has been analyzed in depth. As the former ratio is increased, the selection pressure to achieve this phase is drastically increased, whereas, if the phase is achieved, it can persist for slightly higher noise. This suggests the relevance of having sufficient nonfunctional parts in biological systems. In addition, correlation between robustnesses to noise and to mutation is formulated as a proportionality between susceptibilities to external field and to coupling change.

II. DOUBLE REPLICA THEORY

Following [15,16] we study the evolution of the relationship between phenotype and genotype by representing phenotypes as spin configurations, and genotypes as interaction matrix for spins. In a system of N spins, each spin i can take values $s_i \in \{-1, 1\}$ and is linked to exactly $N - 1$ other spins, thus forming a fully connected network. Here the evolution progresses through the change in genotype, whereas the selection is based on the phenotype, resulting in an evolution of the genotype-phenotype relation. Moreover, fitness is determined by a subset of target spins denoted by T. Those spins that do not contribute to the fitness are called nontarget. In general, the fitness Ψ is some field that acts on J_{ij} but whose value depends only on $s_i, s_j \in T$. How such dependence is explicitly described is model specific and will not limit the use of our approach. See Eq. (A1) in Appendix A for an example of Ψ given by the target spin configurations at equilibrium [15,16].

Stochastic dynamics of phenotypes are considered as the evolution of spin configurations at a temperature T, according to a Hamiltonian $H_S = -\sum_{i,j} J_{ij} s_i s_j$ [24]. Here the couplings J_{ij} are regarded as fixed over the course of the spin evolution that follows a Glauber update because they are assumed to evolve on much slower timescale than that of the spins. Furthermore, the couplings are symmetric, i.e., $J_{ij} = J_{ji}$, and, initially, are independently and identically distributed by a Gaussian distribution with zero mean and the variance $\bar{J}^2 := \text{var}(J_{ij}) = N^{-1}$. The coupling matrix J includes interactions between target spins $J_{ij}^{(t)}$ for $i \in T$ and $j \in T$, those between nontarget spins $J_{ij}^{(o)}$ for $i \in T$ and $j \in T$, and those between target spin and nontarget spin $J_{ij}^{(t/o)}$ for $i \in T$ and $j \in T$. Let S_T and S_O denote the subsystems of target spins (with their interactions $J^{(t)}$) and the subsystem of nontarget spins (with the couplings $J^{(o)}$ among them), respectively. The Hamiltonian of the full system denoted by S can be decomposed into

$$H_S = \underbrace{- \sum_{i,j \in T} J_{ij}^{(t)} s_i s_j}_{H_T} - \underbrace{\sum_{i \notin T} J_{ij}^{(o)} s_i s_j}_{H_O} - \underbrace{\sum_{i \in T, j \notin T} J_{ij}^{(t/o)} s_i s_j}_{H_{T/O}},$$

(1)

where H_T and H_O are the Hamiltonians of the subsystems S_T and S_O, respectively, while $H_{T/O}$ describes the interactions between these subsystems.

Now we introduce the effective potential to obtain the distribution of J [25]. For it, we consider a continuous Langevin-type dynamics for the couplings,

$$\frac{dJ_{ij}}{d\tau} = -\frac{1}{N} \frac{\partial V}{\partial J_{ij}} + \frac{1}{\sqrt{N}} \xi_{ij}(\tau),$$

(2)

where $V = V(J)$ is the potential of all the couplings and ξ_{ij} is the white noise whose intensity equal to the potential and the noise term, respectively, ensure a correct relationship between the drift and diffusive parts of the Langevin equation. If the couplings were independent of each other, the potential would simply take the form of the potential of a free Brownian
However, in the presence of fitness we need an additional term. Here we assume that the fitness would be maximized if a global alignment is established among target spins, so that we introduce

$$\Psi = \frac{1}{N_t} \sum_{i \in T} s_i,$$

(4)

where N_t is the size of T. Under this fitness that favors the alignment of target spins, the couplings are necessarily subjected to a fitness field K [26]:

$$K = \frac{1}{\beta_j} \frac{\partial}{\partial J_{ij}} \ln \left(\sum_{\{s_i\}} \exp \left(\frac{\beta_j}{N_t} \sum_{i < j \in T} J_{ij} \left| \sum_{i \in T} s_i \right| \right) \right),$$

(5)

or equivalently, V needs to be modified from V_0 into

$$V = V_0 - \frac{1}{\beta_j} \ln \left(\sum_{\{s_i\}} \exp \left(\frac{\beta_j}{N_t} \sum_{i < j \in T} J_{ij} \left| \sum_{i \in T} s_i \right| \right) \right).$$

Without the evolution of genotypes, the Hamiltonians H_T, H_C, and H_{TC} dictate the spins to adapt to a set of fixed couplings J in order to minimize each term of Eq. (1) through the spin dynamics. Such adaptation results in an accordance between the state of $J^{(oo)}_{ij}$ and s_is_j for $i, j \in T$, that between the state of $J^{(oo)}_{ij}$ and s_is_j for $i \in T, j \notin T$, and that between the state of $J^{(oo)}_{ij}$ and s_is_j for $i \notin T, j \in T$. As long as this kind of accordance exits, it is insufficient to consider the evolving couplings with selection force given in Eq. (5) only. A link between two spins hence necessarily needs to adapt to the joint state of these spins. Due to the timescale separation between the phenotype and the genotype dynamics, the direction of change of genotypes is determined by the equilibrium correlation of the phenotypes, and since J_{ij} is symmetric, it needs to be

$$dJ_{ij}/d\tau \propto \langle s_is_j \rangle_T.$$

This is equivalent to having a potential of the form [27]

$$V_a = V - \frac{1}{\beta_j} \ln \left(\sum_{\{s_i\}} \exp \left(\frac{\beta_j}{N_t} \sum_{i < j \in T} J_{ij} s_i s_j \right) \right).$$

(6)

The stochastic process induced by Eq. (2) under this potential admits an equilibriumlike stationary joint distribution $P(J^{(oo)}, J^{(oo)}, J^{(oo)})$ of Boltzmann form (with associated temperature T_j), i.e.,

$$P(J^{(oo)}, J^{(oo)}, J^{(oo)}) = e^{-\beta_j V_a}/Z_{\text{total}},$$

where $Z_{\text{total}} = \sum_{(ij)} e^{-\beta_j V_a}$. Instead of calculating this distribution, we introduce our approximate approach, in which $J^{(oo)}_{ij}$ are assumed to always attain equilibrium well before $J^{(oo)}_{ij}$ and $J^{(oo)}_{ij}$ and hence can be adiabatically eliminated. As a consequence, only the weights of equilibrium configurations of $J^{(oo)}$ contribute to the stationary distributions:

$$P_T(J^{(oo)}_{ij}) = \lim_{t \to \infty} P_T(J^{(oo)}_{ij}, t),$$

$$P_C(J^{(oo)}) = \lim_{t \to \infty} P_C(J^{(oo)}, t),$$

where $P_T(J^{(oo)}_{ij}, t)$ and $P_C(J^{(oo)})$ are the time-dependent solutions of the corresponding Fokker-Planck equations with the effective potentials V_{t_T} for $J^{(oo)}_{ij}$ and V_{oo} for and $J^{(oo)}$, respectively [28]. To obtain the distribution only of $J^{(oo)}_{ij}$ and $J^{(oo)}$, we first replace $J^{(oo)}$ as the given matrix by that obtained self-consistently from the equilibrium distribution. For it we need to modify V_a in such a way that the influence of $J^{(oo)}_{ij}$ on $J^{(oo)}_{ij}$ ($J^{(oo)}_{ij}$) can be taken into account in the effective potential V_{t_T} (V_{oo}). The joint effect of H_{TC} and H_T on the dynamics of target spins suggests that the dependence of $J^{(oo)}_{ij}$ and $J^{(oo)}_{ij}$ on each other arises from any triad formed between $(i, j) \in T$ and $k \notin T$, i.e., via $J^{(oo)}_{ij}J^{(oo)}_{jk}$. This influence is represented by the frustration [17], which implies that an optimal spin configuration (s^*_i, s^*_j, s^*_k) can only be established if the relation $J^{(oo)}_{ij}J^{(oo)}_{jk} > 0$ holds [optimality in this context means that H_{TC} and H_T can be lowered simultaneously by (s^*_i, s^*_j, s^*_k)]. Since for any given pair of $(i, j) \in T$ there are $N - N_t$ triads Δ_k formed between it and a nontarget spin $k \notin T$, the total effect of frustration is given by

$$F^{(oo)}_{ij} = (N - N_t)^{-1} \sum_{k=1}^{N - N_t} J^{(oo)}_{ik} J^{(oo)}_{jk}. $$

(7)

Likewise, frustration among all N_t triads Δ_k formed between a given pair of nontarget spins $i \notin T$ and $j \notin T$ with $k \in T$ induces a force $F^{(oo)}_{ij}$ on the state of $J^{(oo)}_{ij}$:

$$F^{(oo)}_{ij} = N_t^{-1} \sum_{k=1}^{N_t} J^{(oo)}_{ik} J^{(oo)}_{jk}. $$

(8)

The proposed scheme just allows us to define the effective potential V_{t_T} for $J^{(oo)}_{ij}$ and V_{oo} for $J^{(oo)}$ as

$$V_{t_T} = V_a - \frac{1}{\beta_j} \ln \left(\sum_{\{J^{(oo)}_{ij}\}} \exp \left(\beta_j \sum_{i < j \in T} J^{(oo)}_{ij} F^{(oo)}_{ij} \right) \right),$$

$$V_{oo} = V_a - \frac{1}{\beta_j} \ln \left(\sum_{\{J^{(oo)}_{ij}\}} \exp \left(\beta_j \sum_{i < j \in T} J^{(oo)}_{ij} F^{(oo)}_{ij} \right) \right).$$

(9)

The stationary distributions induced by the diffusion process in Eq. (2) with these effective potentials have a Boltzmann form, $P_T(J^{(oo)}_{ij}) = e^{-\beta_j V_{t_T}}/Z_T$ and $P_C(J^{(oo)}) = e^{-\beta_j V_{oo}}/Z_C$, where Z_T and Z_C are the partition function of the genotypes $J^{(oo)}_{ij}$ and that of the genotypes $J^{(oo)}$, respectively [29]. Here we replace $J^{(oo)}$ by the replica matrix $\sigma^{(oo)}_{ij} := J^{(oo)}_{ij}$, to be obtained. (This stepwise scheme is valid, as we are concerned with the equilibrium property). Denoting $n := T_j/T_j$, we can compute Z_T and Z_C as
In writing these equations, we assume that the fitness acts only on $J_{ij}^{(o)}$ [30] and hence in Z_C we replace the fitness field K by a constant \tilde{K}, which eventually will be set to 0 by virtue of calculations of the observables for nontarget spins. Although a constant \tilde{E}_Q links approach does not correspond to the conventional quenched in general, none of these numbers are zero, our double-replica approach does not correspond to the conventional quenched limit because otherwise both target and nontarget configurations at equilibrium would determine the fitness. This restriction hence corresponds to a first-order approximation of the fitness’s effect, while a term that affects the dynamics of $J_{ij}^{(o)}$ and $J_{ij}^{(t)}$ is considered to be of higher order.

We here propose to interpret σ^k as the kth replica of another variable $\sigma_i \in \{-1, 1\}$ that is also located at the site i of the graph (generally $\sigma_i \neq s_i$). To distinguish these different types of replicas from each other, we call s^ϕ_i spin replicas and σ^k_i coupling replicas. Following this interpretation, apart from n that appears as the number of spin replicas s^ϕ_a, $a = \{1, \ldots, n\}$, in Z_T and Z_C [31], we thus have $N - N_t$ coupling replicas, σ^k_i, for $i \in T$ and $k = \{1, \ldots, N - N_t\}$, and N_t coupling-replicas, σ^k_i, for $i \notin T$ and $k = \{1, \ldots, N_t\}$ respectively. As, in general, none of these numbers are zero, our double-replica approach does not correspond to the conventional quenched limit in spin-glass models [17]. Once setting $K = 0$ and neglecting the terms corresponding to $F^{(\sigma\sigma\cdot\sigma)}$ and $F^{(\sigma\cdot\sigma\cdot\sigma)}$, we recover the model of Coolen et al. for neural systems with dynamic synapses [19]. In contrast to the use of a Hamiltonian for the couplings adopted in [23], here we have introduced the effective potential for couplings that, by using the timescale separation between the dynamics of genotypes and that of phenotypes, allows for the integration of the spin dynamics specified by the Hamiltonian (1) into the Langevin dynamics of the couplings through the second term in Eq. (6).

Here we characterize the equilibrium behavior of the model by the average fitness m, the overlap between different spin replicas b, q_{ab}, and the correlation between adjacent links Q. Additionally, we want to quantify the mean value of the couplings among the target spins only Φ. Let $\mathbb{E}[]$ and $\mathbb{E}^\phi[]$ denote ensemble averages over $P_T(J^{(1)})$ and $P_C(J^{(o)})$, respectively. These order parameters are given by

$$ m_a = \mathbb{E}^\phi[s^\phi_i]_{i \in T}, \quad q_{ab} = \mathbb{E}^\phi[s^\phi_i s^\phi_j]_{i \in T}, \quad (9a) $$

$$ Q_{kk'} = \mathbb{E}^\phi[J^{(t)}_{ik} J^{(t)}_{ik'}]_{i \neq k, k' \neq i \in T}, \quad (9b) $$

$$ \Phi = \mathbb{E}^\phi[J^{(t)}_{ik}], \quad (9c) $$

Similarly, for the nontarget spins we have

$$ \bar{m}_a = \mathbb{E}^\phi[s^\phi_i]_{i \notin T}, \quad \bar{q}_{ab} = \mathbb{E}^\phi[s^\phi_i s^\phi_j]_{i \notin T}, \quad (10a) $$

$$ Q_{kk'} = \mathbb{E}^\phi[J^{(o)}_{ik} J^{(o)}_{ik'}]_{i \notin T}, \quad (10b) $$

$$ \bar{\Phi} = \mathbb{E}^\phi[J^{(o)}_{ik}], \quad (10c) $$

In the thermodynamic limit, $N \to \infty$ and $N_t \to \infty$, while keeping $p = N_t/N$ fixed, using a replica symmetric ansatz for the variables $m_a = m$, $q_{ab} = q$ and $Q_{kk'} = Q$, $\bar{m}_a = \bar{m}$, $\bar{q}_{ab} = \bar{q}$ and $\bar{Q}_{kk'} = \bar{Q}$, as well as $M_{ab} = M$ and $\bar{M}_{ab} = M$, where $M_{ab} = \mathbb{E}^\phi[s^\phi_i s^\phi_j]_{i \notin T}$ and $\bar{M}_{ab} = \mathbb{E}^\phi[s^\phi_i s^\phi_j]_{i \notin T}$, we obtain the following free energy densities:

$$ f_T^{RS} = \frac{1}{2} \left\{ \phi + \frac{Q}{N - N_t} + \frac{(n - 1)q^2}{2n} + \frac{Q^2}{2} + M^2 \right\} $$

$$ - \frac{1}{\beta J} \ln \left[\sum_{\alpha = 0}^{N_t} \left(\sum_{k = 0}^{N - N_t} \binom{N - N_t}{k} J_{kk'} \right) \right] \quad (11a) $$

$$ f_C^{RS} = \frac{1}{2} \left\{ \bar{\phi} + \frac{\bar{Q}}{N_t} + \frac{(n - 1)\bar{q}^2}{2n} + \bar{Q}^2 + \bar{M}^2 \right\} $$

$$ - \frac{1}{\beta \tilde{J}} \ln \left[\sum_{\alpha = 0}^{N_t} \binom{N_t}{k} \bar{I}_{kk'} \right]. \quad (11b) $$

From the extremum condition of these free energies we can compute all the model order parameters via a set of self-consistency equations. These equations as well as the functions $I_{kk'}$ and $\bar{I}_{kk'}$ are given in Appendix B [32]. The use of the replica symmetry is justified in most of the (T_r, T_s) parameter space from the stability analysis [33]. At low T_r and T_s the replica symmetry is broken, which we will not explore fully. Nevertheless we will discuss later how robustness of phenotypes, postulated for biological systems that reproduce similar offspring, is lost in that scenario. The replica-symmetric free energy densities allow us to derive

$$ \Phi = \left(\frac{1}{N_t} \right) \left[\Phi + m^2 + r^2 \right], \quad (12a) $$

$$ \bar{\Phi} = \left(\frac{1}{N_t} \right) \left[\bar{\Phi} + \bar{m}^2 + \bar{r}^2 \right], \quad (12b) $$

where r and \bar{r} are defined and computed in Appendix B.
phases that are typical for spin-glass systems, namely, \(q \) and \(t \)-ferro. Such difference arises from the nonzero correlation among target spins \(\Phi \) and spin glass, which is similar to that of the Sherrington-Kirkpatrick model. The phase diagrams of double-replica theory in the same way as the SK model. The phase diagrams of SK model are always zero, as the nontarget spin subsystem remains frustrated all the time, while the spin overlap \(\tilde{q} \) can undergo a transition from paramagnet to spin glass, in the same way as the SK model. The phase diagrams of these quantities are given in Appendix D. Combining the behavior of the order parameters altogether, we obtain the model phase structure in Fig. 2. It contains five distinct regions. At low genotypic selection pressure \(T_J \geq e^{-1} \), only the first spin-glass \(\text{SP1} \) and the paramagnet \(\text{P1} \) phases with zero fitness are observed. However, as the genotypic selection pressure increases other phases emerge. At sufficiently low \(T_J \), a robust fitted phase denoted by \(\text{R} \) \((m, q > 0) \) emerges in an intermediate range of \(T_s \) (here \(\tilde{m} = \tilde{q} = \tilde{Q} = 0 \)). Adjacent to this phase on the side of high phenotypic noise is the second paramagnet phase \(\text{SP2} \) where the fitness value is low \((m = q = 0) \) but there exists some structure in the genotypes such that \(Q > 0 \). On the other hand, for lower \(T_s \), the system is in the second spin-glass phase \(\text{SP2} \) with high fitness but nonrobust genotypes \((m \approx q \approx 1, Q = 0) \). In particular, the transition from \(\text{R} \) to \(\text{SP2} \) is marked by a replica symmetry breaking (RSB) which indicates the loss of stability of the replica symmetric (RS) solutions [34]. The broad distribution of gene-gene correlations in the RSB phase implies that the genotype of offsprings is not preserved, in contrast to the RS phase. In the biological context, this means that replication is no longer stable so that genotypes are not conserved over generations.

Overall, the phase diagram agrees with what was observed numerically in [15,16]. However, thanks to the explicit account of the coupling replicas, so that \(Q \) can be treated as an order parameter upon which the free energy density depends, we discover the existence of the second paramagnet phase \(\text{P2} \) that was not reported before. This phase can be interpreted as a precursor region, in which genotypes are structured in such a way that supports ferromagnetic ordering among target spins, and hence have potentiality to acquire a high fitness, but due to the high fluctuation induced by \(T_J \), this fitness cannot be maintained. Furthermore, by considering separately the effective dynamics of the target and nontarget subsystems, \(S_T \) and \(S_C \), our approach can differentiate the phase \(\text{SP1} \) from \(\text{SP2} \). The previous approach [23] only stressed the distinct arrangement of target spins in the \(\text{SP2} \) region.
where the subsystem of target spins becomes ferromagnetic whereas that of nontarget ones remains spin glass. Our present approach shows that this is no longer true for a high value of T_J. Upon increasing T_J, this ferromagnetic ordering is destroyed by genotypic fluctuations. The same structure of the phase diagrams is also observed for $N = 50$, $N_t = 5$ and $N = 200$, $N_t = 20$; see Appendix C for the phase diagram obtained in these cases, where βJ is rescaled according to N (and N_t). Accordingly, it is shown that the selection pressure needed to achieve robustness increases with the number of spins N_t at a fixed fraction N_t/N. In addition, the present analysis allows one to obtain quantitative dependence of genotypic and phenotypic robustness on the fraction of targets. The phase diagram in Fig. 2 includes global information of the system including weak selection region without achieving nonzero fitness, m, of target, whereas there is biological interest if $m > 0$, $Q > 0$. For a sufficiently low given T_J (i.e., high selection pressure), the phase is bounded by $T_s = [T_s^{(1)}, T_s^{(2)}]$. Below $T_s^{(1)}$, Q goes to zero, and above $T_s^{(2)}$, m goes to zero, whereas these transition points depend on T_J.

IV. STRUCTURE OF THE ROBUST FITTED PHASE

The most relevant region in the phase diagram is the robust fitted phase R, which is characterized by both the high fitness ($m > 0$) and robustness ($Q > 0$). For a sufficiently low given T_J (i.e., high selection pressure), the phase is bounded by $T_s = [T_s^{(1)}, T_s^{(2)}]$. Below $T_s^{(1)}$, Q goes to zero, and above $T_s^{(2)}$, m goes to zero, whereas these transition points depend on T_J. We first investigate the dependence on p of the R region by fixing T_J. In Figs. 4(a) and 4(b) we fixed $T_J = 0.005$. First, for a wide range of $p \in [0.04, 0.5]$, the temperature $T_c^{(1)}$ of the latter transition in (b) does not depend on p (see Appendix D for the zoom-in of a small dip of m at this point). On the other hand, $T_c^{(2)}$ slightly increases with increasing p in (a), indicating that the fitness of the high p case is relatively more robust to noise than the low p case.

In Fig. 4(c) $1 - Q$ is almost constant against T_c in the R phase. This constant value was found to increase with the number of nontarget spins. Note that $Q \sim 1$ implies that the offspring of genotypes are preserved. The increase in $1 - Q$ thus means the increase in redundancy of genotypes, as is supported by a larger number of non-targets. Such a redundancy has another meaning in the context of spin-glass systems, where it is indeed equal to the local frustration in the $(t-o-t)$ triads with positive $J^{(tt)}$.

In contrast, apart from the two critical points $T_c^{(1)}$ and $T_c^{(2)}$, the fitness m does not depend on p. It follows a unique curve, independent of p. Even though the increase in genetic
heterogeneity $1 - Q$ for more nontargets may perturb the
target spin configuration, the fitness m remains unchanged
even for smaller p.

Then, we estimate the critical value of T_r below which the
R phase can exist. While this critical value denoted by
$T_{r}^{(0)}$ can depend on T_{r}, as seen in Figs. 2 and 3, it can be
approximately identified with the upper part of the P_2 phase
from the phase diagram. In Fig. 4(d) $T_{r}^{(0)}$ is shown to decrease
with p. This result together with that in Fig. 4(a) mean that
the higher p is, the higher the selection pressure that is needed
to achieve robustness, but once it is achieved, a system with
larger p is more robust with respect to phenotypic noise than
one with smaller p.

Finally, we examine the fitness as function of T_r at fixed
$T_r = 1.3$ for various p in Fig. 4(e). While fitness decreases
with T_r, its behavior with the increase in p is nonmonotonic.
This behavior is further shown in Fig. 4(f) where the critical
genotypic noise $T^{(m)}_r$ at which the fitness becomes nonzero
is plotted versus p. Similar behavior is observed for other
$T_r \in \{T_{r}^{(1)}, T_{r}^{(2)}\}$. The result supports $p = 0.5$ as the maximal
value of $T^{(m)}_r$, suggesting the existence of an optimal fraction
of target spins to acquire high fitness in this intermediate range
of T_r [35].

V. MUTATIONAL SUSCEPTIBILITY AND PHENOTYPIC
SUSCEPTIBILITY IN THE ROBUST FITTED PHASE

Correlation between variances of phenotypes due to ge-
netic changes and to noise has been discussed in both
experiments and simulations, and relationships to robustness
have been discussed both theoretically [10,14,36–39] and
experimentally [40–43]. In statistical physics, this issue can
be analyzed in terms of susceptibility, as it is proportional
to environmental perturbations [46], does not exist in the RSB
phase, as the second term in Eq. (13) is no longer proportional
to χ_m. Therefore, approximately, $M \propto \chi_m$. This proportionality between the
two susceptibilities, implying a correlation between pheno-
typic changes due to genetic variation and those in response
to environmental perturbations [46], does not exist in the RSB
phase, as the second term in Eq. (13) is no longer proportional
to χ_m.

VI. DISCUSSION

In the paper we propose an approach towards biological
evolution due to the interrelationship between genotype and
phenotype where fitness is determined solely by the latter
but not by the former. Though the emergence of structured
genotypes from initially random couplings under this rela-
tion has been numerically reported, apart from a study which
imposed a specific condition on the couplings [23], this has
not been studied analytically yet. We here are able to tackle
this problem thanks to what we termed double-replica theory.
Within this framework we obtain the phase diagram, that is
classified not only by the fitness but also by the overlap in
dual replicas. The diagram is not only in good agreement with
previous studies (including paramagnet, t-ferro, and robust fit-
ted phases, all existing at sufficiently low T_r), but also contains
additional phases. These include the first spin-glass phase SP_1
and the second paramagnet phase P_2. The former corresponds
to a system with both target and nontarget spins residing in a
spin-glass phase (at low selection pressure), while the latter
corresponds to a paramagnetic phase for all spins but retains
genetic correlations encoding target and nontarget couplings
(at high selection pressure and high T_r). Here, even though the
genotypes favor a high value of fitness, due to large fluctuations
induced by T_r, such a value can not be maintained over
generations. The existence of the phase suggests that even
though the average fitness is zero due to large noise, there
exists a genetic precursor to generate individuals with nonzero
fitness. The relevance of this scenario to evolutionary biology
needs to be explored in future, though.

The system can only acquire high fitness at some $T_r \leq T_r^{(2)}$, where the fitness increases discontinuously. If T_r is too low,
then RSB will happen, leading to a phase without genetic overlap, where biologically required robustness of genotypes is lost. Hence a lower bound of $T_s > T_c^{(1)}$ is necessary to have RS and robustness, accordingly.

From this approach, the target-fraction dependence of genotypic and phenotypic robustness can also be understood quantitatively. Such dependence is quantified via the behavior of the fitness m and genetic redundancy $1 - Q$ in the robust region bounded by $T_c^{(1)}$ and $T_c^{(2)}$. Here we find that a genetically homogeneous population can only be robustly reproduced under a sufficiently high selection pressure and under a sufficient level of phenotypic noise (temperature). As the fraction of target spins is increased, the robust fitted phase is slightly expanded to a higher temperature, whereas higher selection pressure is needed to achieve it. The existence of an optimal fraction for attaining high fitness under intermediate phenotypic noise is suggested. This may explain why, in biological systems, such as in proteins, the fraction of units that are responsible for function is generally limited, and a sufficient fraction of nonfunctional units is needed, providing redundancy. While it is hard to obtain an accurate estimation of the functional sites in real proteins, rough estimates suggest they are of the order of 10–20% [47]. It hence will be interesting to discuss this range of functional regions, in relationship with evolvability and robustness as discussed here.

In the present theory, the proportionality between the standard thermodynamic susceptibility and mutational susceptibility is derived in the robust fitted phase. As the susceptibility measures the change of fitness due to varying conditions, a correlation between responses to environmental perturbations and that by genetic changes is suggested. Such correlation, or evolutionary fluctuation-response relationship [10,14,36–39] has been observed in experimental data from the evolution of protein dynamics and bacterial protein expressions, whereas we can derive it here under the replica symmetry assumption. As argued in [14], such correlation can only be achieved in the replica symmetric region where the original high-dimensional dynamics of the phenotypes are reduced to a low-dimensional manifold due to evolution towards robustness. The variations of fitness due to noise and that due to mutation then happen to occur along the same low-dimensional manifold, resulting in a correlation between them. If RSB occurs, such restriction of the phenotypic dynamics no longer exits, because in this case changes of fitness upon varying the environmental conditions will vary arbitrarily from realization to realization of the J_{ij}’s dynamics. As a result, the system will have random, uncorrelated responses to noise and to mutations.

In our formulation by assuming that the entire system reaches an equilibrium, we approximate the effect of the slowly evolving $\mathbf{J}^{(00)}$ that couple the subsystem S_T to S_D on these subsystems’ own dynamics by the equilibrium correlations $\langle J^{(0)} J^{(00)} \rangle$. Such correlations are then incorporated separately into each of the dynamics of the $\mathbf{J}^{(0)}$ and $\mathbf{J}^{(00)}$ couplings by modifying the effective potentials of these dynamics, thus making the dynamics of these two different sets of coupling independent of each other. In an equilibrium statistical physics formulation, this leads to the necessity of introducing another type of replica, so-called coupling replicas, into the partition functions, besides the first (standard) spin replicas that take care of the effect of the phenotypes on the evolution of genotypes. This scheme hence allows us to treat the model in a standard mean-field manner. On one hand, being of mean-field nature, our approach can not provide a formal argument to support the hypothesis of [14] about the emergent dimensional reduction from phenotype-genotype coevolution. On the other hand, the correlation between the mutational and environmental susceptibilities in the robust fitted phase suggests the existence of a funnel-like landscape [48,49] that reinforces the dynamics to reside in a low-dimensional manifold by a global attraction.

Despite of its abstraction, our model may have some other implications on the proteins that acquire function through evolution. First, the presented correlation between robustness to noise and to mutation has been discussed previously in RNA [9] and in proteins [39]. Further quantitative analysis will be needed to establish the mechanism of such a general phenomenon. Second, the observed consistency between a global attraction to the robust fitted state in the replica symmetric phase and the funnel picture in protein folding dynamics suggests the importance of replica analysis in studying the protein free-energy landscape.

The current choice of fitness for the sake of simplicity, however, limits the possibility of having different global maxima in the fitness landscape. One can enrich the model behavior by determining fitness either by a combination of N_{fin} different target spin configurations or by a set of gauge-equivalent configurations.

In the present framework, since the couplings are symmetric, we constructed the effective potential of the coupling dynamics based partly on the existence of an energy landscape. For those models in other contexts [50,51] having such a landscape picture, we expect a straightforward application of our approach. Furthermore, the present double-replica theory can be extended to those stochastic dynamical systems that are not governed by Hamiltonian dynamics as well. In this case, instead of the effective potential and its associated partition function, one would need to characterize the ensemble of trajectories in the combined space of phenotypes and genotypes, using the moment generating function [52,53]. While we so far have solely used Hamiltonian dynamics as the main example of our approach, such an extension would allow for the applications to coevolution of gene-expression patterns and the gene-regulatory networks [10], that of species abundances and their ecological networks [54], and that of neuronal activities and network shaped by neural dynamics (learning) [55,56].

ACKNOWLEDGMENTS

We acknowledge support from Novo Nordisk Foundation (0065542) and would like to thank A. Sakata, K. Hukushima, Y. Kabashima, and Q.-Y. Tang for stimulating discussions.

APPENDIX A: DETAILS OF THE SHK MODEL

In the following we call the model originally introduced in [15,16] as the SHK model. In this model, phenotypes are spin configurations, and genotypes are the interaction matrix for spins. In a system of N spins, each spin i can take values $s_i \in \{-1, 1\}$ and is linked to exactly $N-1$ other spins,
thus forming a fully-connected network. Moreover, fitness is determined by a subset of target spins denoted by \(T \). Those spins that do not contribute to the fitness are called nontarget. The fitness \(\Psi \) at a noise level \(T_s \) is determined by the spin configurations at equilibrium as

\[
\Psi(s) = \frac{1}{N_t} \left\langle \sum_{i \in T} s_i \right\rangle_{T_s},
\]

where \(\left\langle \cdot \right\rangle_{T_s} \) is the thermal average according to an equilibrium distribution over spin configurations only. This distribution is computed from the partition function of a spin-glass Hamiltonian \(H_s = -\sum_{i<j} J_{ij} s_i s_j \) in which the couplings \(J_{ij} \) are regarded as fixed over the course of the spin dynamics because they are assumed to evolve on much slower timescale than that of the spins. Here the couplings are symmetric, i.e., \(J_{ij} = J_{ji} \), and are independently and identically distributed by a Gaussian distribution with zero mean and the variance \(J^2 := \text{var}(J_{ij}) = N^{-1} \). The model Hamiltonian of the full system is given by

\[
H = -\sum_{i<j} J_{ij} s_i s_j.
\]

Once the spins have relaxed to an equilibrium at a temperature \(T_s \), via a Glauber update specified by \(H_s \), the couplings are next updated with probability \(\text{Pr}[J \to \tilde{J}] = \min \left\{ 1, \exp(\Delta \Psi) \right\} \), where \(\Delta \Psi = \Psi(\tilde{J}) - \Psi(J) \) and \(\beta_J = 1/T_s \) is the genotypic selection pressure. These two dynamics are implemented consecutively one after another until the entire system equilibrates. Implementing this way, the model captures the evolution of feedback process between the phenotype and genotype, where the phenotype dynamics are represented by the stochastic dynamics of spins \(s \) according to the energy landscape \(H_s \) for given genotype \(J \), whereas the evolution of genotype is given by the stochastic change of \(J \) according to the fitness \(\Psi(s) \) determined by the phenotype. In contrast to more common theories of evolution, this model hence explicitly considers the co-evolution of these coupled landscapes.

APPENDIX B: REPLICA SYMMETRIC ANSATZ SOLUTION AND THE EXPRESSION OF \(I_k \) AND \(I_k^* \)

The partition functions are given in terms of the target and the nontarget free energy densities, \(f_T(\mathbf{m}, q, r, Q, M) \) and \(f_O(\tilde{m}, \tilde{q}, \tilde{r}, \tilde{Q}, \tilde{M}) \), respectively, by

\[
Z_T = \int D\mathbf{m} \, Dq \, Dr \, DQ \, DM \, e^{-\beta_H N \Psi_f(\mathbf{m}, q, r, Q, M)},
\]

\[
Z_O = \int D\tilde{m} \, D\tilde{q} \, D\tilde{r} \, D\tilde{Q} \, D\tilde{M} \, e^{-\beta_H N (1-p) \Psi_f(\tilde{m}, \tilde{q}, \tilde{r}, \tilde{Q}, \tilde{M})}.
\]
where
\[f_T = \frac{1}{2} \left\{ \sum_{a,b} q_{ab}^2 \frac{n}{k^2} + \sum_{k} \frac{Q_{k,k'}^2}{(N-t)^2} + \frac{1}{n(N-t)} \sum_{a,k} M_{ak}^2 \right\} - \frac{1}{\beta_J} \ln \sum_{\{s,z; \sigma^z\}} \epsilon^L, \]
B2a

\[f_0 = \frac{1}{2} \left\{ \bar{K} \sum_{a} \tilde{m}_a^2 + \bar{K} \sum_{k} \frac{\tilde{r}_k^2}{t^2} + \sum_{a,b} \frac{q_{ab}^2}{n^2} + \sum_{k,k'} \frac{Q_{k,k'}^2}{t^2} + \frac{1}{n t} \sum_{a,k} M_{ak}^2 \right\} - \frac{1}{\beta_J} \ln \sum_{\{s,z; \sigma^z\}} \epsilon^L. \]
B2b

\[L = \frac{\beta_J}{4n} \left[\sum_{i \in T} s_i - \frac{\beta_J}{2} \sum_{i \in T} s_i \left(\sum_{a=1}^n \frac{m_a^2}{n} + \sum_{k} \frac{r_k^2}{N-N_i} \right) \right] + \frac{\beta_J}{n} \left(\frac{\tilde{\bar{K}}}{n} \sum_{a=1}^n \tilde{m}_a^2 + \frac{\bar{K}}{n} \sum_{k} \tilde{r}_k \sigma^k \right) + \frac{1}{n} \sum_{a,b} q_{ab} \frac{\sigma^a \sigma^b}{n^2} + \frac{1}{n} \sum_{k,k'} \frac{Q_{k,k'} \sigma^k \sigma^{k'}}{n(N-N_i)^2} + \frac{1}{n} \sum_{a,k} M_{ak} \frac{\sigma^a \sigma^k}{n(n(N-N_i))}. \]
B3a

\[\bar{L} = \beta_J \left(\frac{\tilde{\bar{K}}}{n} \sum_{a=1}^n \tilde{m}_a^2 + \frac{\bar{K}}{n} \sum_{k} \tilde{r}_k \sigma^k + \frac{1}{n} \sum_{a,b} q_{ab} \frac{\sigma^a \sigma^b}{n^2} + \frac{1}{n} \sum_{k,k'} \frac{Q_{k,k'} \sigma^k \sigma^{k'}}{n(N-N_i)^2} + \frac{1}{n} \sum_{a,k} M_{ak} \frac{\sigma^a \sigma^k}{n(n(N-N_i))} \right). \]
B3b

Denoting \(D x \, Dy = e^{-\beta J (N-2k)^2 \frac{n}{m^2} + \beta J \frac{r}{m^2}} \), and \(A(m, r) = \frac{\beta_J}{2} \frac{(N-2k)^2}{n} - \frac{\beta_J}{2} \frac{(N-2k)^2}{m^2} \), we have
\[I_{k,z} = \int Dx \, Dy \exp \left\{ A_z + \frac{N-N_i-N}{N-N_i} \left(y \sqrt{\beta_J Q} + \beta_J r \frac{1}{N_i} \right) \right\} \left[\cosh \left(\beta \Omega \frac{[N_i - 2z]}{N_i} \right) + \frac{\sqrt{\beta_J Q}}{n} + \frac{\beta_J M}{n} \frac{N - N_i - 2k}{N_i} \right] \].
B4a

\[\tilde{I}_k = \int Dx \, Dy \exp \left\{ \frac{N_i - 2k}{N_i} \left(y \sqrt{\beta_J Q} + \beta_J \tilde{K} \tilde{r} \right) \right\} \left[\cosh \left(\beta \Omega \frac{[N_i - 2z]}{N_i} + \frac{\sqrt{\beta_J Q}}{n} + \frac{\beta_J M}{n} \frac{N - N_i - 2k}{N_i} \right) \right] \].
B4b

The argument of the \(\cosh(\cdot) \) function is denoted by
\[\Omega = \beta_J \frac{[N_i - 2z]}{N_i} + \frac{x \sqrt{\beta_J Q}}{n} + \frac{\beta_J M}{n} \frac{N - N_i - 2k}{N_i}, \quad \tilde{\Omega} = \beta_J \tilde{m} + \frac{x \sqrt{\beta_J Q}}{n} + \frac{\beta_J M}{n} \frac{N - N_i - 2k}{N_i}. \]
B5

The replica symmetric free energy densities given in the main text yield the extremum condition after setting \(\tilde{K} = 0 \):
\[m = \sum_{z=0}^{N_i} \left(\frac{N_i}{z} \right) \sum_{k=0}^{N-N_i-2k} \frac{(N-N_i-2k)!}{N-N_i-2k} \int Dx \, Dy \exp \left\{ A_z + \frac{N-N_i-2k}{N-N_i} \left(y \sqrt{\beta_J Q} + \beta_J r \right) \right\} \left[\cosh(\Omega) \right]^n \tanh(\Omega) \],
\[q = \sum_{z=0}^{N_i} \left(\frac{N_i}{z} \right) \sum_{k=0}^{N-N_i-2k} \frac{(N-N_i-2k)!}{N-N_i-2k} \int Dx \, Dy \exp \left\{ A_z + \frac{N-N_i-2k}{N-N_i} \left(y \sqrt{\beta_J Q} + \beta_J r \right) \right\} \left[\cosh(\Omega) \right]^n \tanh(\Omega) \]^2, \]
\[Q = -1 - \frac{1}{N-N_i} + \frac{\sum_{z=0}^{N_i} \left(\frac{N_i}{z} \right) \sum_{k=0}^{N-N_i-2k} \frac{(N-N_i-2k)!}{N-N_i-2k} I_{k,z}}{\sum_{z=0}^{N_i} \left(\frac{N_i}{z} \right) \sum_{k=0}^{N-N_i-2k} \frac{(N-N_i-2k)!}{N-N_i-2k} I_{k,z}} \],
\[\tilde{m} = \sum_{k=0}^{N_i} \left(\frac{N_i}{k} \right) \int Dx \, Dy \exp \left\{ \frac{N_i - 2k}{N_i} y \sqrt{\beta_J Q} \right\} \left[\cosh(\Omega) \left(x, \tilde{m}, \tilde{q}, \tilde{M} \right) \right]^n \tanh(\Omega) \left(x, \tilde{m}, \tilde{q}, \tilde{M} \right), \]
\[\tilde{q} = \sum_{k=0}^{N_i} \left(\frac{N_i}{k} \right) \int Dx \, Dy \exp \left\{ \frac{N_i - 2k}{N_i} y \sqrt{\beta_J Q} \right\} \left[\cosh(\Omega) \left(x, \tilde{m}, \tilde{q}, \tilde{M} \right) \right]^n \tanh(\Omega) \left(x, \tilde{m}, \tilde{q}, \tilde{M} \right) \]^2, \]
\[\tilde{Q} = -1 - \frac{1}{N_i} + \frac{\sum_{k=0}^{N_i} \left(\frac{N_i}{k} \right) \sum_{k=0}^{N_i-2k} \frac{(N_i-2k)!}{N_i-2k} I_k}{\sum_{k=0}^{N_i} \left(\frac{N_i}{k} \right) \sum_{k=0}^{N_i-2k} \frac{(N_i-2k)!}{N_i-2k} I_k}, \quad \tilde{F} = \frac{\sum_{k=0}^{N_i} \left(\frac{N_i}{k} \right) \sum_{k=0}^{N_i-2k} \frac{(N_i-2k)!}{N_i-2k} I_k}{\sum_{k=0}^{N_i} \left(\frac{N_i}{k} \right) \sum_{k=0}^{N_i-2k} \frac{(N_i-2k)!}{N_i-2k} I_k}, \]
\[\tilde{M} = \sum_{k=0}^{N_i} \left(\frac{N_i}{k} \right) \int Dx \, Dy \exp \left\{ \frac{N_i - 2k}{N_i} y \sqrt{\beta_J Q} \right\} \left[\cosh(\Omega) \left(x, \tilde{m}, \tilde{q}, \tilde{M} \right) \right]^n \tanh(\Omega) \left(x, \tilde{m}, \tilde{q}, \tilde{M} \right). \]
of the Hessian T at $t = (1)$.

We present the phase diagram for the order parameters of the non-target spins in Fig. 6 and that for the third-largest eigenvalue of N. We show this kind of dependence of the phase diagram for $N = 50$ and $N = 200$ in Fig. 5. Overall, the structure of the phase diagram remains the same as that obtained for $N = 100$ in Fig. 3(a) of the main text. The difference in the exact location of the highest value of T above which Q drops from a high value to zero is well explained by our estimation shown as a dashed horizontal line.

We present the phase diagram for the order parameters of the non-target spins in Fig. 6 and that for the third-largest eigenvalue of the Hessian A_3 in Fig. 7. Without any effect of fitness acting on them, nontarget spins have only zero magnetization [Fig. 6(a)] and the averaged value Φ of the coupling among them J^{oo} is equal to zero [Fig. 6(d)]. Nevertheless, due to the effect of random couplings, J^{oo}, a spin-glass ordering can appear at low T_r and T_a as seen in Fig. 6(c). As we expect a dependence of the drop in fitness at $T_r(1)$, which is denoted by $\Delta m = 1 - m$, on the fraction of target spins, we first show a zoom-in of the behavior of m at T_r close to $T_r(1)$ in Fig. 8(a). We then find that at the critical number of target spins N_t, this change has a minimal value Δm_{min} so that $\Delta m - \Delta m_{\text{min}}$ can be depicted as function of $1 - p$ in Fig. 8(b). Once subtracted Δm from Δm_{min}, we find a linear relationship exists between $\Delta m - \Delta m_{\text{min}}$ and $1 - Q$. Such relationship is demonstrated Fig. 8(c). We finally measure how much fitness changes under a transition from robust to paramagnet phase at $T_r(1)$. We denote this kind of drop by m^* in Fig. 8(d), where we find a decrease of m^* with increasing p, implying that fitness is more robust at higher p.

Requiring that the couplings should remain bounded as
Here we used the identities
\[\langle s_i s_j \rangle_{\mathcal{T}_i} = \frac{1}{\rho_i \rho_j} \ln Z_1 \]
and
\[\langle s_i s_k \rangle_{\mathcal{T}_i} = \frac{1}{\rho_i \rho_k} \ln Z_1 \]
where the partition function of the target spins’ subsystem and that of the non-target spins’ subsystem are
\[Z_1 := \sum_{(s_i)_{\neq i}} e^{-H_{\mathcal{T}_i}(\mathcal{J}^{(1)})} \]
and
\[Z_1 := \sum_{(s_i)_{\neq i}} e^{-\beta H_{\mathcal{T}_i}(\mathcal{J}^{(1)})} \]
respectively.

Requiring that the couplings should remain bounded as \(\tau \to \infty \), we need to introduce a decay term \(-\lambda_{ij} J_{ij} \) to the couplings dynamics. In order to keep the genotypic selection pressure the same for all the couplings regardless of their types, we choose
\[-\lambda_{ij} J_{ij}^{(1)} = -\sqrt{p} J_{ij}^{(1)} \]
and
\[-\lambda_{ij} J_{ij}^{(2)} = -\sqrt{1-p} J_{ij}^{(2)} \]
where \(p = N_i/N \) is the fraction of target spins.

Note that \(Z_{\mathcal{T}_i} \) and \(Z_{\mathcal{O}} \) are different from the partition functions of the target spins’ subsystem \(Z_1(\mathcal{J}^{(1)}) \) and that of the non-target spins’ subsystem \(Z_0(\mathcal{J}^{(2)}) \) given in [27].

This can already be seen directly from Eq. (5) as the expression inside the curly braces does not depend on \(J_{ij}^{(1)} \) and \(J_{ij}^{(2)} \).

Though \(n \) appears as an integer number here, we will analytically continue to real positive \(n \) in subsequent steps of calculations.

Here \(I_1 = I_1(m, q, Q, r, M) \) and \(I_2 = I_2(\bar{m}, \bar{q}, \bar{Q}, \bar{r}, \bar{M}) \) with \(r, M, \bar{r}, \bar{M} \) are other variables that the free energy densities depend on. Since these observables for target and non-target spins have their behavior correlated to that of \((m, q, Q) \) and \((\bar{m}, \bar{q}, \bar{Q}) \), respectively, they do not provide additional information about the structure of the model phase diagram.

The eigenvalue of the Hessian changes its sign on the border between these phases; see Appendix D. Note that though we do not calculate the full hierarchy of replica symmetry breaking (RSB) à la Parisi, but as long as RSB happens this nonrobustness is true for the full RSB solution.

This optimality, however, does not happen in the spinglass phase \(\text{SP2} \) with low temperature \(T_r \), since the selection pressure needed to achieve nonzero fitness crucially depends on \(p \). In fact as \(p \) is increased, higher pressure (i.e., lower \(T_r \)) is needed to achieve nonzero \(m \) of targets, i.e., to transition from \(\text{SP1} \) to \(\text{SP2} \).

More precisely, in [14] \(\Psi_i = (\text{sign}(m) s_i)_{\mathcal{T}_i} \).

From the replica-symmetric free energy density \(f_{\text{RS}}^{\text{SP}} \) we get \(\chi_{\text{RS}} = \beta(1 + (n - 1)q) \), while \(M \) can not be obtained directly within this ansatz.

B. Lehner, Genes confer similar robustness to environmental, stochastic, and genetic perturbations in yeast, PLoS ONE 5, 1 (2010).