Accretion product formation in the self-reaction of ethene-derived hydroxy peroxy radicals

Murphy, Sara E.; Crounse, John D.; Møller, Kristian H.; Rezgui, Samir P.; Hafeman, Nicholas J.; Park, James; Kjaergaard, Henrik G.; Stoltz, Brian M.; Wennberg, Paul O.

Published in: Environmental Science: Atmospheres

DOI: 10.1039/d3ea00020f

Publication date: 2023

Document version Publisher's PDF, also known as Version of record

Document license: CC BY

Accretion product formation in the self-reaction of ethene-derived hydroxy peroxy radicals†

Sara E. Murphy, John D. Crounse, Kristian H. Møller, Samir P. Rezgui, Nicholas J. Hafeman, James Park, Henrik G. Kjaergaard, Brian M. Stoltz and Paul O. Wennberg

In this study we revisit one of the simplest RO₂ + RO₂ reactions: the self-reaction of the ethene-derived hydroxy peroxy radical formed via sequential addition of ‘OH and O₂ to ethene. Previous studies of this reaction suggested that the branching to ‘accretion products’, compounds containing the carbon backbone of both reactants, was minimal. Here, CF₃O− GC-CIMS is used to quantify the yields of ethylene glycol, glycolaldehyde, a hydroxy hydroperoxide produced from RO₂ + HO₂, and a C₆O₉H₁₀ accretion product. These experiments were performed in an environmental chamber at 993 hPa and 294 K. We provide evidence that the accretion product is likely dihydroxy diethyl peroxide (HOC₂H₄OOC₂H₄OH =ROOR) and forms in the gas-phase with a branching fraction of 23 ± 5%. We suggest a new channel in the RO₂ + RO₂ chemistry leading directly to the formation of HO₂ (together with glycolaldehyde and an alkoxyl radical). Finally, by varying the ratio of the formation rate of RO₂ and HO₂ in our chamber, we constrain the ratio of the rate coefficient for the reaction of RO₂ + RO₂ to that of RO₂ + HO₂ and find that this ratio is 0.22 ± 0.07, consistent with previous flash photolysis studies.

1 Introduction

Non-methane hydrocarbons are emitted to the atmosphere by both anthropogenic and biogenic processes at a rate of approximately 1.5 gigatons per year, making their chemistry an essential driver of tropospheric composition.¹ In the atmosphere, these compounds are oxidized by reaction with ‘OH, NO₂, Cl·, or O₃, often followed by addition of O₂ to form organic peroxy radicals (RO₂).¹⁻² RO₂ undergo a myriad of bimolecular and unimolecular reactions, including reactions that lead to radical termination or radical propagation. Some RO₂ reactions lead to the formation of highly oxidized organic molecules (HOMs) and subsequent particle formation and/or growth. To predict the effects of peroxy radical reactions on tropospheric chemistry, accurate measurements of the rates and products of their uni- and bimolecular reactions are required.

The diverse RO₂ reaction pathways yield products with differing effects on atmospheric chemistry and air quality. In environments with elevated NO⁺, RO₂ react to form alkyl nitrates (RONO₂) (Reaction (1b)). Reaction (1a) generally propagates the radical chemistry leading to the formation of ozone (Reaction (2)):1,4

\[\text{RO}_2 + \text{NO}^+ \rightarrow \text{RO}^- + \text{NO}_2 \]
(1a)

\[\rightarrow \text{RONO}_2 \]
(1b)

\[\text{NO}_2 \rightarrow \text{NO} + \text{O}_3 \]
(2)

In low NOₓ environments, RO₂ undergo unimolecular3 or bimolecular reactions with HO₂ or other RO₂. For β-
hydroxyperoxy radicals, reaction with HO$_2$ leads to the formation of hydroperoxides (ROOH) (Reaction (3a)) or other products such as RO$^\cdot$ (Reaction (3b)) or a carbonyl, which in the case of the title reaction will be an aldehyde (R\cdotH=C=O) (Reaction (3c)):

$$\text{RO}_2^\cdot + \text{HO}_2 \rightarrow \text{ROOH} + \text{O}_2 \quad (3a)$$

$$\rightarrow \text{RO}^\cdot + \cdot\text{OH} + \text{O}_2 \quad (3b)$$

$$\rightarrow \text{R}^\cdot \text{H} = \text{O} + \text{HO}_2^\cdot + \cdot\text{OH} \quad (3c)$$

The RO$^\cdot$ self- and cross-reactions include both radical propagating channels ((4a), (4b)) and radical terminating channels ((4c), (4d)). Reactions (4a), (4c), and (4d) have been observed or proposed previously,

$$\text{RO}_2^\cdot + \text{RO}_2^\cdot \rightarrow \text{RO}^\cdot + \text{RO}^\cdot + \text{O}_2 \quad (4a)$$

$$\rightarrow \text{RO}^\cdot + \text{R}^\cdot \text{H} = \text{O} + \text{O}_2 \quad (4b)$$

$$\rightarrow \text{ROH} + \text{R}^\cdot \text{H} = \text{O} + \text{O}_2 \quad (4c)$$

$$\rightarrow \text{ROOR} + \text{O}_2 \quad (4d)$$

The rates and products of Reaction (1) in simple peroxy radical systems have been studied in detail and are generally well known,

$$\text{RO}^\cdot + \text{HO}_2 \rightarrow \text{ROOH} + \text{O}_2 \quad (3a)$$

while those of Reaction (3) are more uncertain. Reaction (3a) is the dominant channel for most simple organic peroxy radical reactions. In more substituted RO$^\cdot$ radicals, such as Reaction (3b) and (3c), become non-negligible.

The dynamics of Reaction (4) are complex as these pathways require significant electronic rearrangement and/or hydrogen shifts.

$$\text{RO}_2^\cdot + \text{RO}_2^\cdot \rightarrow \text{RO}^\cdot + \text{RO}^\cdot + \text{O}_2 \quad (4a)$$

$$\rightarrow \text{RO}^\cdot + \text{R}^\cdot \text{H} = \text{O} + \text{O}_2 \quad (4b)$$

$$\rightarrow \text{ROH} + \text{R}^\cdot \text{H} = \text{O} + \text{O}_2 \quad (4c)$$

$$\rightarrow \text{ROOR} + \text{O}_2 \quad (4d)$$

The primary product of this reaction, 2-hydroxy-3-butanone, is produced during the oxidation period in several of our experiments. The rate coefficient for the reaction of HO$^\cdot$ with O$_2$ to ethene:

$$\text{C}_2\text{H}_4 + \cdot\text{OH} \rightarrow \text{HOCH}_2\text{CH}_2\text{O}_2 \quad (5)$$

In the presence of ethene, the production of HO$^\cdot$ via photolysis of H$_2$O$_2$ in a 800 L FEP Teflon environmental chamber leads to the production of ethylene glycol (EG), glycolaldehyde (GA), dihydroxyl diethyl peroxide (ROOR), and a hydroxy hydroperoxide, HOCH$_2$CH$_2$OOH. All experiments were performed at 993 ± 10 hPa pressure and 294 ± 1 K.

'OH is produced via the photolysis of H$_2$O$_2$. Eight Sankyo Denki G40T10 254 nm lamps illuminated for 2 min yield a mean photolysis frequency for Reaction (6) of 3.0 ± 0.5 × 10$^{-4}$ s$^{-1}$:

$$\text{H}_2\text{O}_2 \rightarrow ^\cdot\text{OH} + \cdot\text{OH} \quad (6)$$

To determine the fraction of ethene reacted, we measured the 'OH exposure ([OH] × time) from the decay of 2,3-butanediol during the oxidation period in several of our experiments. The primary product of this reaction, 2-hydroxy-3-butane, is not made elsewhere in our reaction system. The rate coefficient for the reaction of 'OH with 2,3-butanediol has been reported by Bethel et al. using the relative rate method to be 2.4 ± 0.6 × 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$. Bethel et al. measured this rate coefficient relative to that of 'OH + n-octane, for which they assumed a value of 8.67 ± 0.17 × 10$^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$. Current recommendations suggest that the rate coefficient of 'OH with n-octane at 298 K is somewhat slower [8.11 × 10$^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$] so we use 2.25 ± 0.6 × 10$^{-11}$ cm3 molecule$^{-1}$ s$^{-1}$ for the 'OH + 2,3-butanediol rate constant in this analysis. Approximately 500 ppbv of butanediol was injected
during these experiments. When 2,3-butanediol was not injected, we used a photochemical kinetic box model to determine the \(^\cdot \)OH exposure. For the experiments with added butanediol, the modeled and measured \(^\cdot \)OH exposure agree to within 30%. The total \(^\cdot \)OH exposure during our experiments was between 0.8 \(\times 10^9 \) to 4.3 \(\times 10^9 \) molecules cm\(^{-3} \). To minimize secondary chemistry, the lights were turned off before 10% of the initial ethene had reacted, usually after 2 minutes. Specific experimental conditions for each experiment used in this analysis are given in Appendix B of the ESI (Table S1).†

The branching fractions for Reaction (4) are determined from the formation of the products. Note that in this study, we use the following definitions, where \(j \) is the total number of possible pathways of Reaction \(X \), \(\alpha_{si} \) is the branching fraction of pathway \(i \) of Reaction \(X \), and \(k_s \) is the rate constant of a Reaction \(X \):

\[
\alpha_{si} = \frac{k_{si}}{k_s}
\]

To quantify the ratio of the radical terminating branching channels, \(\frac{\alpha_{ld}}{\alpha_{lc}} \), we measured the yields of ethylene glycol (EG) and dihydroxy diethyl peroxide (ROOR). In the absence of secondary chemistry, the ratio of their concentration is equal to the ratio of their branching fractions. Secondary losses of the products by reaction with \(^\cdot \)OH is calculated to be minimal due to the small fraction of ethene oxidized during the experiment, and the main loss is photolysis. As described in the ESI (Appendix C),† we measured upper limits to the photolysis loss rates for EG, ROOH, glycolaldehyde (GA), and ROOR and find that these losses are also small (negligible for EG, less than 1% of GA, and less than 6% of ROOR and ROOH in a typical experiment). Additionally, we measured the wall loss rates for these compounds as a function of time and find that, over the time period of our experiments, these losses are negligible.

GA is produced in excess of EG in these experiments, consistent with significant additional sources beyond Reaction (4c). In 993 mbar of air, we attribute approximately half of the excess to the reaction of oxygen with the alkoxy radicals formed in Reaction (4a) and (4b):

\[
\text{HOCH}_2\text{CH}_2\text{O} + ^\cdot \text{OH} \rightarrow \text{2CH}_2\text{O} + \text{HO}_2 \tag{7a}
\]

\[
\text{HOCH}_2\text{CHO} + \text{HO}_2 \tag{7b}
\]

The fraction of the excess GA that results from Reaction (7b) is well-explained using results from Orlando et al.17 for experiments performed here under both much higher and lower \([\text{O}_2]\) as discussed in Appendix C of the ESI.† Theoretically, direct hydrogen atom elimination from the initially produced hot alkoxy radical could also explain the excess glycolaldehyde production at low \([\text{O}_2]\), but it is expected that C-C bond scission will be much faster. Thus, we tentatively attribute the remaining excess GA to Reaction (4b).

To further constrain the branching fractions and kinetics of Reaction (4), we perform a series of experiments varying the ratio of the formation rates of HOCH\(_2\)CH\(_2\)O\(_2^*\) and HO\(_2^*\). In the absence of external sources, HO\(_2^*\) is produced directly in Reaction (4b) and indirectly via the subsequent chemistry of alkoxy radicals, e.g. decomposition (Reaction (7a)) or via their reaction with \(\text{O}_2 \) (Reaction (7b)). We increase the formation rate of HO\(_2^*\) relative to RO\(_2^*\) by adding CH\(_3\)OH to the chamber, which provides an external source of HO\(_2^*\) independent of RO\(_2^*\):

\[
^\cdot \text{OH} + \text{CH}_2\text{OH} \rightarrow \text{HO}_2^* + \text{CH}_2\text{O} + \text{H}_2\text{O} \tag{8}
\]

A small amount of additional RO\(_2^*\) is also produced in our experiments in Reaction (9):

\[
^\cdot \text{OH} + \text{H}_2\text{O}_2 \rightarrow \text{HO}_2^* + \text{H}_2\text{O} \tag{9}
\]

As our independent variable, we define \(F_{\text{external}} \), the ratio of the HO\(_2^*\) produced externally to Reaction (4) via Reactions (8) and (9) to the amount of RO\(_2^*\) produced via Reaction (5), where the \(k_{si} \) are the relevant reaction rate coefficients:

\[
F_{\text{external}} = \frac{P_{\text{HO}_2^*\text{external}}}{P_{\text{RO}_2^*}} = \frac{k_{R8}[\text{CH}_2\text{OH}]+k_{R9}[\text{H}_2\text{O}_2]}{k_{R5}[\text{C}_2\text{H}_4]} \tag{10}
\]

When no methanol is added to the chamber and \(k_{R8}[\text{H}_2\text{O}_2] \ll k_{R5}[\text{C}_2\text{H}_4] \), \(F_{\text{external}} \) approaches zero and HO\(_2^*\) is produced only as a result of Reaction (4). In this ‘high RO\(_2^*\)’ limit, significantly more RO\(_2^*\) is produced in the chamber than HO\(_2^*\) and, according to our box model simulations, more than 90% of the HO\(_2^*\) reacts with RO\(_2^*\) to produce ROOH (the products of Reaction (3) will be discussed further in a later section). As such, the production of ROOH provides a probe of the branching to the radical propagating channels in Reaction (4). To quantify this, we define the dependent variable \(Q \):

\[
Q = \frac{[\text{ROOH}]}{[\text{HOCH}_2\text{CH}_2\text{O}]+[\text{ROOR}]} \tag{11}
\]

In the limit where \(F_{\text{external}} \rightarrow 0 \), \(Q \) is a measure of the ratio of the branching fractions of the radical propagating channels to the radical terminating channels:

\[
Q_{\text{high RO}_2^* \text{limit}} = \frac{2(\alpha_{R4d}+\alpha_{R4b})}{\alpha_{R4c}+\alpha_{R4d}} \tag{12}
\]

where the factor of 2 in the numerator arises because Reactions (4a) and (4b), including the subsequent reactions of the alkoxy radicals, each produce two HO\(_2^*\). Therefore, the \(y \)-intercept of \(Q \) as a function of \(F_{\text{external}} \) provides a constraint on the ratio of the radical propagating and radical terminating channels of Reaction (4).

To further constrain the kinetics of Reaction (4), we explore the ‘high HO\(_2^*\)’ limit, where \(F_{\text{external}} \gg 1 \). In this limit, nearly all of the \(^\cdot \)OH produced from the photolysis of \(\text{H}_2\text{O}_2 \) reacts via Reactions (8) and (9) to produce HO\(_2^*\). Because the formation rate of HO\(_2^*\) greatly exceeds that of RO\(_2^*\), the HO\(_2^*\) self-reaction is its main loss,
while the main loss of \(\text{RO}_2 \) is its reaction with \(\text{HO}_2 \) (Reaction (3)).

Because, as follows from eqn (11):

\[
Q = \frac{k_{R3} [\text{HO}_2] [\text{RO}_2]}{k_{R4} (a_{R4c} + a_{R4d}) [\text{RO}_2]} \tag{14}
\]

and the ratio of \([\text{HO}_2]\) to \([\text{RO}_2]\) in the high \(\text{HO}_2 \) limit is determined by the ratio of their production multiplied by the ratio of their lifetimes:

\[
\frac{[\text{HO}_2]}{[\text{RO}_2]} = \frac{F_{\text{external}} k_{R3}}{k_{R4} \left(a_{R4c} + a_{R4d} \right)} \tag{15}
\]

in the high \(\text{HO}_2 \) limit, \(Q \) is a sensitive measure of the ratio of \(k_{R3}^2 \) to \(k_{R4} \):

\[
Q_{\text{high } \text{HO}_2 \text{ limit}} = \frac{1}{2k_{R13}} \times \frac{k_{R3}^2}{k_{R4} (a_{R4c} + a_{R4d})} \times F_{\text{external}} \tag{16}
\]

In our experiments, \(F_{\text{external}} \) ranges from 0.04 to 4.5. The lower limit results from the use of \(\text{H}_2\text{O}_2 \) as the \(\cdot \text{OH} \) precursor—some external \(\text{HO}_2 \) is produced from its reaction with \(\cdot \text{OH} \) even in the absence of methanol addition—while the maximum \(F_{\text{external}} \) is limited by insufficient production of \(\text{RO}_2 \) products and the resulting poor quantification of \(Q \).

The limiting behaviors described by eqn (12) and (16) are useful for designing the experimental methods, for quantifying initial estimates of our parameters, and to perform sensitivity analyses to estimate uncertainty. However, to formally estimate the branching estimates of our parameters, and to perform sensitivity analyses to their lifetimes:

\[
\frac{[\text{HO}_2]}{[\text{RO}_2]} = \frac{F_{\text{external}} k_{R3}}{k_{R4} \left(a_{R4c} + a_{R4d} \right)} \tag{15}
\]

In the high \(\text{HO}_2 \) limit, \(Q \) is a sensitive measure of the ratio of \(k_{R3}^2 \) to \(k_{R4} \):

\[
Q_{\text{high } \text{HO}_2 \text{ limit}} = \frac{1}{2k_{R13}} \times \frac{k_{R3}^2}{k_{R4} (a_{R4c} + a_{R4d})} \times F_{\text{external}} \tag{16}
\]

In our experiments, \(F_{\text{external}} \) ranges from 0.04 to 4.5. The lower limit results from the use of \(\text{H}_2\text{O}_2 \) as the \(\cdot \text{OH} \) precursor—some external \(\text{HO}_2 \) is produced from its reaction with \(\cdot \text{OH} \) even in the absence of methanol addition—while the maximum \(F_{\text{external}} \) is limited by insufficient production of \(\text{RO}_2 \) products and the resulting poor quantification of \(Q \).

The limiting behaviors described by eqn (12) and (16) are useful for designing the experimental methods, for quantifying initial estimates of our parameters, and to perform sensitivity analyses to estimate uncertainty. However, to formally estimate the branching estimates of our parameters, and to perform sensitivity analyses to their lifetimes:

\[
\frac{[\text{HO}_2]}{[\text{RO}_2]} = \frac{F_{\text{external}} k_{R3}}{k_{R4} \left(a_{R4c} + a_{R4d} \right)} \tag{15}
\]

In the high \(\text{HO}_2 \) limit, \(Q \) is a sensitive measure of the ratio of \(k_{R3}^2 \) to \(k_{R4} \):

\[
Q_{\text{high } \text{HO}_2 \text{ limit}} = \frac{1}{2k_{R13}} \times \frac{k_{R3}^2}{k_{R4} (a_{R4c} + a_{R4d})} \times F_{\text{external}} \tag{16}
\]

In our experiments, \(F_{\text{external}} \) ranges from 0.04 to 4.5. The lower limit results from the use of \(\text{H}_2\text{O}_2 \) as the \(\cdot \text{OH} \) precursor—some external \(\text{HO}_2 \) is produced from its reaction with \(\cdot \text{OH} \) even in the absence of methanol addition—while the maximum \(F_{\text{external}} \) is limited by insufficient production of \(\text{RO}_2 \) products and the resulting poor quantification of \(Q \).

The limiting behaviors described by eqn (12) and (16) are useful for designing the experimental methods, for quantifying initial estimates of our parameters, and to perform sensitivity analyses to estimate uncertainty. However, to formally estimate the branching estimates of our parameters, and to perform sensitivity analyses to their lifetimes:

\[
\frac{[\text{HO}_2]}{[\text{RO}_2]} = \frac{F_{\text{external}} k_{R3}}{k_{R4} \left(a_{R4c} + a_{R4d} \right)} \tag{15}
\]

In the high \(\text{HO}_2 \) limit, \(Q \) is a sensitive measure of the ratio of \(k_{R3}^2 \) to \(k_{R4} \):

\[
Q_{\text{high } \text{HO}_2 \text{ limit}} = \frac{1}{2k_{R13}} \times \frac{k_{R3}^2}{k_{R4} (a_{R4c} + a_{R4d})} \times F_{\text{external}} \tag{16}
\]

In our experiments, \(F_{\text{external}} \) ranges from 0.04 to 4.5. The lower limit results from the use of \(\text{H}_2\text{O}_2 \) as the \(\cdot \text{OH} \) precursor—some external \(\text{HO}_2 \) is produced from its reaction with \(\cdot \text{OH} \) even in the absence of methanol addition—while the maximum \(F_{\text{external}} \) is limited by insufficient production of \(\text{RO}_2 \) products and the resulting poor quantification of \(Q \).

The limiting behaviors described by eqn (12) and (16) are useful for designing the experimental methods, for quantifying initial estimates of our parameters, and to perform sensitivity analyses to estimate uncertainty. However, to formally estimate the branching estimates of our parameters, and to perform sensitivity analyses to their lifetimes:

\[
\frac{[\text{HO}_2]}{[\text{RO}_2]} = \frac{F_{\text{external}} k_{R3}}{k_{R4} \left(a_{R4c} + a_{R4d} \right)} \tag{15}
\]

In the high \(\text{HO}_2 \) limit, \(Q \) is a sensitive measure of the ratio of \(k_{R3}^2 \) to \(k_{R4} \):

\[
Q_{\text{high } \text{HO}_2 \text{ limit}} = \frac{1}{2k_{R13}} \times \frac{k_{R3}^2}{k_{R4} (a_{R4c} + a_{R4d})} \times F_{\text{external}} \tag{16}
\]
mass filter. The short reaction time of the reagent ions with the analytes yields a sensitivity for each compound that is proportional to: the ion–molecule collision rate with the analyte, the fraction of such collisions that result in ion products, the transmission efficiency of such ions, and whether there is fragmentation, all modulated by the number of CF3O− produced in the polonium source. As the fraction of reagent ions, here primarily CF3O− and its clusters with H2O and H2O2 (observed at m/z 85, 103, and 119, respectively), that react with the analytes is small, we first normalize the signals at the cluster mass (e.g. the counts at m/z 163 for the hydroxyhydroperoxide) by the sum of signal for the reagent ions. Because the number of reagent ions is very high, to remain in a linear counting regime, we use the reagent ion signal for the sum of the minor isotopeologues at m/z + 1 (e.g. 86 for CF2O−). So, the sensitivities listed in Table 1 below are normalized by the sum of m/z 86 + m/z 104 + m/z 120. These normalized signals are proportional to concentration of each analyte ionized in the flow.

To determine the sensitivity of the CIMS to ethylene glycol, we used two methods to produce gas phase standards. In the first, ethylene glycol (Sigma-Aldrich) was evaporated into a 200 L Teflon bag, which was then attached to an FTIR and a flow dilution system in series with our GC-CIMS. The concentration of EG in the Teflon bag was quantified using the FTIR and cross sections from the PNRL IR Database as air from the 200 L bag, which was then attached to an FTIR and a subsample (34 scm) was diluted into a 2 SLM nitrogen flow yielding EG concentrations of approximately 1 ppmv which was directed into the CIMS instrument. In the second method, we prepared a known concentration of EG by flowing 20 scm of air over a diffusion vial maintained at 30 °C. The diffusion vial containing EG was regularly weighed. The mass loss rate of EG over time, and the flow rate in the CIMS flow tube were used to calculate the mixing ratio of EG in the flow tube. The sensitivity calculated using these two methods agrees within 8%. The sensitivity using the diffusion vial method was repeated often and the average is listed in Table 1.

To estimate the sensitivity for the other RO2 reaction products, we calculate their ion–molecule collision rate relative to that of EG. CF3O− binds strongly to most multifunctional organic compounds24 and as such, the fraction of each product ionized depends linearly on the ion–molecule collision rate. For some analytes, such as H2O2, the ion–molecule complex binding energy is small, and not all collisions lead to stabilized product ions. This dissociation is diagnosed by evaluating the sensitivity as a function of temperature and water vapor. For weakly bound clusters, the sensitivity decreases as a function of temperature and generally has a complex behavior as a function of water—sometimes increasing at low concentrations as the water chaperone increases cluster formation, before decreasing at high water concentrations due to ligand switching.19,21 For the product clusters described in this work, we find that the sensitivity is largely insensitive to temperature and both water and H2O2, consistent with high stability for the ion clusters. Even for well bound clusters, the efficiency of formation of CF3O− clusters following collision can be less than unity if they fragment into smaller ions. The data obtained with the GC enables us to quantify this fragmentation for each analyte, and we observe very little such fragmentation for the species reported here. The hydroxyhydroperoxide (m/z 163) produces a very small signal at m/z 145 (<2%) and m/z 63 + 81 (2–3%). (The latter two ions are diagnostic of organic hydroperoxides.22–24) Given the size and stability of the ion products and the lack of significant fragmentation, we expect that for all the RO2 reaction products, the sensitivity of each for its CF3O− cluster will scale with the ion–molecule collision rate to within ±20%.

To calculate the ion–molecule collision rate, we use the method of Su et al.25 together with calculated dipole moments and polarizabilities using quantum calculations.26 The calculated ion–molecule collision rates, relative to that for ethylene glycol are listed in Table 1.

2.5 Peroxide synthesis

Previous studies of the formation of accretion products have observed compounds at the mass of the peroxides (ROOR) using CIMS techniques,1,8,10 but the identity of these products has not been typically confirmed. Studies by Kenseeth et al.27 have, for example, shown that accretion products produced in the ozonolysis of pinenes are not peroxides and do not form in the gas phase. Here, a method for the synthesis of a standard for the C4 dihydroxy peroxide for comparison to our oxidation products is outlined.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Measured sensitivitya (cts pptv−1)</th>
<th>Calc. CF3O−-molecule collision rateb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene glycol</td>
<td>2.5 ± 0.2 × 10−4</td>
<td>1</td>
</tr>
<tr>
<td>H2O2</td>
<td>1.65 ± 0.06 × 10−4</td>
<td>0.94</td>
</tr>
<tr>
<td>2,3-Butanediol</td>
<td>2.8 ± 1.6 × 10−4</td>
<td>1.02</td>
</tr>
<tr>
<td>2-Hydroxy-3-butane</td>
<td>2.7 ± 0.2 × 10−4</td>
<td>1.29</td>
</tr>
<tr>
<td>Glycolaldehyde</td>
<td>2.7 ± 0.2 × 10−4</td>
<td>1.94</td>
</tr>
<tr>
<td>HOCH2CH2OOCH2CH2OH</td>
<td>2.7 ± 0.2 × 10−4</td>
<td>1.08</td>
</tr>
<tr>
<td>HOCH2CH2OOH</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>HOCH2CH2OOH</td>
<td>1.08</td>
<td></td>
</tr>
</tbody>
</table>

a Signals are normalized to the signal of the 13C isotope of the reagent ion (m/z 86 + m/z 104 + m/z 120). b Relative to ethylene glycol. c The ratio of sensitivity to ethylene glycol is lower than the ratio of the ion–molecule collision rate coefficients due to incomplete stabilization of collisions.19
2.5.1 General information

2.5.1.1 Caution. Although no explosions were experienced in this work, organic peroxides are potentially hazardous compounds and must be handled with great care: avoid direct exposure to strong heat or light, mechanical shock, oxidizable organic materials, or transition-metal ions. A safety shield should be used for all operations involving H$_2$O$_2$.

Unless otherwise stated, reactions were performed in flame-dried glassware under ambient conditions using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon. Reagents were purchased from commercial sources and used as received. Reaction temperatures were controlled by an IKAmag temperature regulator. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 pre-coated plates (250 μm) and visualized by UV fluorescence quenching, potassium permanganate staining, or p-anisaldehyde staining. Silicycle SiliaFlash P60 Academic Silica gel (particle size 40–63 μm) was used for flash chromatography. Preparative HPLC was performed using an Agilent 1200 HPLC system equipped with an ACE C18 column (5 μm, 21.2 mm × 250 mm). 1H and 13C NMR spectra were recorded on a Varian Inova 500 (500 MHz and 125 MHz, respectively) spectrometer and are reported in chemical shift relative to CHCl$_3$ (δ 7.26 and 77.16 ppm, respectively). Data for 1H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant, integration). Abbreviations are used as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. IR spectra were obtained from thin films deposited on NaCl plates using a PerkinElmer Spectrum BXII spectrometer and are reported in wavenumbers (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm) using a 100 mm path-length cell. All of the spectral data can be found in the ESI† (Appendix G).

2.5.2 Alkyl peroxides 1–3. Compounds were prepared according to a modified literature procedure (Fig. 1). To a flame dried 25 mL round bottom flask was added ethereal H$_2$O$_2$ (ref. 29) (1 M solution, 10 mL, 10 mmol, 1.0 equiv.). This solution was brought to 0 °C, and ethylene oxide was bubbled into the solution for 30 s. PMA (phosphomolybdic acid, 182 mg, 0.1 mmol, 0.01 equiv.) was added and the reaction mixture was stirred at 0 °C for 30 min. After 30 min, H$_2$O$_2$ remained by TLC analysis (100% ethyl acetate, visualized with p-anisaldehyde). Ethylene oxide was again bubbled into the solution for 30 s, and an additional 500 mg (0.27 mmol, 0.027 equiv.) of PMA was added. The reaction mixture was stirred for another 1 h at 0 °C, at which point TLC indicated consumption of H$_2$O$_2$. The reaction mixture was pushed through a short silica plug and concentrated. Analysis of the crude clear residue using GC-CIMS showed the presence of a compound with m/z = 163, eluting at 31 °C, and two compounds with m/z = 207, eluting at 52 °C and 64 °C, respectively (Fig. 2). All chromatograms were run under the same conditions as those described in the Appendix F of the ESI† for the oxidation experiments, with at least 5 minutes of trapping time at −45 °C.

The clear residue was purified via preparatory TLC (5% methanol/ethyl acetate, visualized with p-anisaldehyde). All major bands were collected and were subjected to GC-CIMS analysis. Only two compounds were observed via GC-CIMS analysis: one major compound at m/z 163 and one major compound at m/z 207 (Fig. 2). The chromatograms of both of these compounds contain daughter ions characteristic of −OOH functional groups (m/z 63 and m/z 81).

The two isolated products were identified to be hydroxyhydroperoxide 1 (20.0 mg, 3% yield, colorless oil) and ether 2 (5.4 mg, less than 1% yield, colorless oil). We believe that peroxide 3 forms under the reaction conditions, as a second peak at $m/z = 207$ is observed in the crude reaction mixture, but is not stable to isolation. Additionally, compound 3 elutes at the same temperature as the putative accretion product in our oxidation experiments.

3 Results and discussion

3.1 The identity of the accretion product

Although several recent studies have reported formation of accretion products in oxidation experiments of organic compounds, the identity of these compounds remains generally unclear. For example, Kenseh et al. have recently shown that accretion products formed in the ozonolysis of α- and β-pinene arise not directly in the gas phase but rather from heterogeneous reactions of alcohols and (likely) peroxides...
produced via O$_2$ and 'OH chemistry, respectively. Here, in this simplest of systems, we show that the accretion product is likely an organic peroxy, HOCH$_2$CH$_2$OOH. As shown in Fig. 3, across all our experiments from those with minimal HO$_2$ chemistry to those dominated by such reactions, the yield of the accretion product closely tracks the yield of ethylene glycol, a unique gas-phase product of the reaction of HOCH$_2$CH$_2$OO’, suggesting that it is also produced in the gas phase via this self-reaction.

Shown in the first panel of Fig. 2 are gas chromatograms of the products formed in our ‘high RO$_2$’ experiments. Due to its high vapor pressure, glycolaldehyde is not efficiently trapped on the column. All the other products—ethylene glycol, the hydroperoxide, and the accretion product—are efficiently collected, separated, and detected at their CF$_3$O$^-$ cluster m/z. The average GC transmission efficiencies of all of these species is between 90–100%.

Three plausible molecules with the formula C$_6$O$_2$H$_{10}$ can be postulated to form in the gas-phase chemistry of HOCH$_2$CH$_2$OO’, and in the condensed-phase synthesis, considering the starting materials: a hydroperoxyhydroxyether, a dihydroxyperoxide, and a triol ether. The last compound can be distinguished from the first two by the number of readily exchangeable hydrogens. To rule out the triol ether, we added D$_2$O to the GC effluent, and, as shown in panel b of Fig. 2, ethylene glycol and the C$_2$ hydroxyhydroxyperoxide shift up 2 m/z, consistent with two exchangeable hydrogens. Likewise, the accretion product shifts up 2 m/z. No +3 m/z isotopologues are observed. As such we eliminate consideration of the triol as a plausible structure for the accretion product.

Also shown in Fig. 2 (panels c and d) is the chromatograph of the synthetic products from the liquid phase condensation of the hydroperoxide (as described above). Two compounds at the m/z of the accretion product (m/z 207, mw 122) are observed in the crude mixture, while only one C$_6$O$_2$H$_{10}$ compound is stable to prep TLC separation. The isolated compound eluting at approximately 65 °C is identified as the hydroperoxy hydroxy ether, HOCH$_2$CH$_2$OCH$_2$CH$_2$OOH, based on the 1H and 13C NMR spectra (see ESI†) and on the observed fragmentation of m/z 207 to m/z 63 and m/z 81 in CF$_3$O$^-$ CIMS, fragments characteristic of hydroperoxides.22,23 The first peak, the peroxy, elutes at the same temperature as the accretion product formed in the gas-phase experiments. Therefore, we conclude by elimination that the accretion product formed in the gas-phase ethene oxidation experiments is likely the dihydroxyperoxide (ROOR).

3.2 Product branching fractions

To calculate the branching fractions of the self-reaction, we quantify the closed-shell end products of these reactions (with the exception of formaldehyde, which does not cluster with CF$_3$O$^-$). Reaction (4) directly produces three products: ethylene glycol, glycolaldehyde, and the accretion product (ROOR).

Shown in Fig. 3 are the concentrations of ROOR and glycolaldehyde as a function of the concentration of ethylene glycol. The points are colored by the value of F_{external}. The observed yield of ROOR relative to EG is 0.56 ± 0.02. In 21% O$_2$ at 993 hPa, the yield of GA relative to EG is 1.50 ± 0.03. The ratio of the ROOR to EG is independent of F_{external}. The ratio of GA to EG increases at the highest F_{external} as a result of secondary chemistry of the ROOH, and therefore we do not include these points in the above fit (see ESI Appendix C†).

Absent secondary chemistry, the ratio of the product yields equals the ratio of their production. To accurately determine the ratio of their production, however, secondary losses must be considered. Here, this potentially includes the photolysis of the peroxy product (ROOR), the hydroperoxide (ROOH), and glycolaldehyde. We measured the upper limit of the photolysis rate of these compounds in our chamber as follows: after synthesizing them in the gas phase via an ethene oxidation experiment in the high RO$_2$ limit, we evacuated the chamber through a coil of Teflon tubing submerged in an ethanol/liquid nitrogen bath maintained at approximately −30 °C, trapping the low volatility products while allowing the remaining ethene and high volatility products to be pumped away. We then flushed out the chamber with clean air and returned the contents of the trap to the Teflon chamber by flowing dry air back through the trap at room temperature (294 K). Finally, we added 50 ppmv methanol to convert any 'OH produced by subsequent photochemistry to HO$_2$+$^+$, thereby isolating the loss due to photolysis. We then turned on the UV lights and measured the loss rates of the relevant compounds (Table 2). During a typical 2 min photolysis experiment, we calculate that 1% of the GA is photolyzed and at most 6% of the ROOR was lost. Photolysis of the hydroxhydroperoxide (ROOH) results in a maximum loss of a few percent. However, these measured photolysis rates are an upper limit to the loss via photolysis, as there may be additional secondary losses during these photolysis experiments— we expect that the true photolysis rates of ROOR and ROOH are likely closer to that of hydrogen peroxide. Therefore, in our subsequent analysis, we assume that over the 120 s time period of our experiments, the average photolysis frequency for the ROOR and ROOH is 3.0 × 10$^{-4}$ s$^{-1}$. If instead we use the upper
limit to the photolysis frequencies, the estimated branching ratios to ROOR and ROOH increase by approximately a factor of 1.05. We observe no significant photolysis of ethylene glycol over the experiment timescales. In addition to secondary losses, GA is also formed via the reaction of OH with ROOH and EG and via photolysis of ROOH and subsequent reaction of O₂ with the generated RO•. This chemistry is only significant when ROOH is much larger than GA (e.g. at high F_{ext} (see ESI Appendix C†)).

Accounting for the photolysis losses and glycolaldehyde production, we find that the ratio of the production of ROOR and GA to ethylene glycol are 0.57 ± 0.10 and 1.55 ± 0.20, respectively, where the uncertainty is derived primarily from the uncertainty in the relative calibration of the CIMS for these compounds. In the first-generation chemistry of this reaction system, Reaction (4) is a unique source of the accretion product and EG, so the ratio of their production is equal to the ratio of the branching in Reaction (4) $k_{4c}k_{4d}/k_{4c}$. GA, however, is also produced in the subsequent reactions of the alkoxy radical and O₂ (Reaction (7b)) and, speculatively, via a radical propagating reaction, Reaction (4b). There may be additional GA formed via Reaction (3). The formation of GA in these experiments is discussed further below.

3.3 Glycolaldehyde formation

As shown in Fig. 3, the yield of glycolaldehyde is consistently higher than the yield of ethylene glycol across our experiments. This is true even when oxygen is reduced to 1% of the total volume to minimize the extent of Reaction (7b) (see ESI Appendix C†). This observation is consistent with prior studies of GA formation in the ethene oxidation system. In the FTIR study of the title reaction by Barnes et al., for example, GA yields were 40% higher than EG at low oxygen mixing ratios (5 hPa). At 180 hPa and 200 hPa [O₂], similar to the concentrations in our study, GA yields were 70% and 95% larger, respectively.

There is no previous estimate for α_{3c} or α_{3b}, both of which would yield glycolaldehyde from the Reaction of RO₂ with HO₂. Shown in Fig. S5† is the ratio of modeled and measured GA to ethylene glycol as a function of the ratio of HO₂ to RO₂ steady state concentration (as simulated by the box model). Using this comparison of the box model with the data, we find that a branching fraction to the formation of GA of more than 1% from the RO₂ + HO₂ reaction is incompatible with the observations over a wide range of RO₂ fate. This in turn suggests that $\alpha_{3c} + 5 \times \alpha_{3b}$ is less than 0.01, where the factor of 5 accounts for our determination that in 1 atmosphere of air at 294 K, approximately 20% of alkoxy radicals react via Reaction (7b). In our subsequent analysis we assume both α_{3c} and α_{3b} are zero, producing no GA in our experiments, and attribute excess GA with low partial pressures of O₂ to Reaction (4b). We quantify the importance of this reaction pathway by assigning all GA produced in excess of EG in our low [O₂] experiments to this reaction channel. It is also a theoretical possibility that this excess GA is formed by the loss of a hydrogen atom from alkoxy radicals with excess energy—however, we do not expect such a reaction to be competitive with C–C bond scission or Reaction (4b). From our experiments, we determine that the branching to Reaction (4b) is 26% of the branching to Reaction (4c) $\left(\frac{\alpha_{4b}}{\alpha_{4c}} = 0.26^{+0.05}_{-0.26}\right)$. The large uncertainty in this result reflects the fact that this ratio is determined by the difference between the yield of GA and ethylene glycol at 0% O₂ and, as such, is highly sensitive to error in our knowledge of the relative sensitivity of the CIMS to these compounds.

Finally, the extent of Reaction (7b) to the formation of glycolaldehyde is quantified by comparing the relative concentrations of GA and ethylene glycol at varying O₂ partial pressures. Fig. S4† shows $k_{7b}[O₂]$/[$HOCH_2CHO$ + $HOCH_2CHO$] as a function of [O₂], which we determine from the data of Barnes et al. and Orlando et al. Direct comparison of these data is complicated by the difference in total pressure between our experiments and those of Orlando et al. and Barnes et al., which may change the relative branching to decomposition and reaction with O₂. Additionally, the alkoxy radicals in the experiments of Orlando et al. were generated by the reaction of RO₂ with NO•. In this system, a temperature-dependent fraction of the alkoxy radicals have excess energy, and undergo prompt decomposition, whereas the rest of the alkoxy radicals are thermalized and can then either undergo decomposition or reaction with O₂. The fraction of thermalized alkoxy radicals generated in Reaction (4) may differ from that generated by the reaction between RO₂ and NO•. The analysis of our data, as presented in ESI Appendix C† indicates that approximately 20% of the alkoxy radicals in our system react with O₂, whereas 29% of the alkoxy radicals in the system studied by Orlando et al. react with O₂ at 298 K. While this

Table 2. Average photolysis frequencies of ROOR, ROOH, and glycolaldehyde in our atmospheric chamber with 8 lamps ($\lambda = 254$ nm). The measurements of ROOR and ROOH are upper limits of the photolysis loss. Reported uncertainties are the uncertainties in slopes fitted to the decay of these compounds as described in the ESI. The literature cross sections are determined from ln of the intensities.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Average photolysis frequency (10⁻⁴ s⁻¹)</th>
<th>Literature cross section (cm² molecule⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOCH₂CH₂OOCH₂CH₂OH</td>
<td>$<6.1 \pm 0.8$</td>
<td>$4.0 \pm 0.3 \times 10^{-20}$</td>
</tr>
<tr>
<td>HOCH₂CH₂OOH</td>
<td>$<5.2 \pm 0.9$</td>
<td>$7.0 \pm 1.0 \times 10^{-20}$</td>
</tr>
<tr>
<td>HOCH₂CHO</td>
<td>1.7 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>H₂O₂</td>
<td>3.0 ± 0.5</td>
<td></td>
</tr>
</tbody>
</table>

© 2023 The Author(s). Published by the Royal Society of Chemistry.
difference is well within the uncertainty of our quantification of EG and GA, it may reflect either the difference in pressure or a difference in the fraction of thermalized radicals in our system. The comparison between our data to the data of Orlando et al. and Barnes et al. is discussed further in ESI Appendix C.† In our subsequent analysis, we use a value of 20% for branching to Reaction (7b) in air.

3.4 Radical propagation vs. chain termination in Reaction (4)

As described above, in the limit where \(F_{\text{external}} \to 0 \), \(Q \) (eqn (11)) is a measure of the ratio of the radical propagating channels to the radical terminating channels of Reaction (4). In the limit where all HO\(_2\) is produced internally to Reaction (4), >90% of the HO\(_2\) reacts with HOCH\(_2\)CH\(_2\)OO\(^\cdot\), and there are no secondary losses,

\[
Q_{\text{high RO}_2 \text{ limit}} = \frac{2(\alpha_{R4a} + \alpha_{R4b})}{\alpha_{R4c} + \alpha_{R4d}}
\]

(17)

Shown in Fig. 4 is \(Q \) plotted as a function of \(F_{\text{external}} \). The \(\gamma \)-intercept, \((F_{\text{external}} = 0) \), is 1.07 suggesting that about half of the RO\(_2\) reacting via \(R4 \) yields HO\(_2\). The solid line shown in Fig. 4 is our box model results optimized to fit these data. The model includes external production of HO\(_2\), estimates for the loss of HO\(_2\) via its self reaction, and photolysis losses of both ROOH and the accretion product. The optimized model suggests that the ratio of the radical recycling channels \((\alpha_{R4a} + \alpha_{R4b}) \) to the radical terminating channels \((\alpha_{R4c} + \alpha_{R4d}) \) is 0.54 ± 0.11. Independent of the subsequent fate of the alkox radical, under our reaction conditions two HO\(_2\) are produced in each of the chain propagating channels. The uncertainty in this ratio represents error in the relative sensitivity of the CIMS to ROOH vs. ethylene glycol and ROOR (±25%) and uncertainty in their photolysis frequencies (±28%). As an additional check on the quantification of ROOH, the box model suggests that in the ‘high HO\(_2\)’ limit, the formation of ROOH should be within a few percent of the reacted ethene. After accounting for the small photolysis losses, we find that the ratio of ROOH to ethene reacted is on average 90% for the high HO\(_2\) experiments (see Fig. S12†).

3.5 The rate coefficient of Reaction (4)

As discussed earlier, when \(F_{\text{external}} \) is high, \(Q \) is proportional to

\[
\frac{1}{2k_{R13}} \times \frac{k_{R4}^2}{k_{R4}(\alpha_{R4c} + \alpha_{R4d})}
\]

To estimate \(k_4 \) and the branching fractions of Reaction (4), we perform a least-squares fit of \(Q \) from the box model to \(Q \) calculated from our CIMS data. The branching fraction \((\alpha_{4d}) \) to the formation of the accretion product and the self-reaction rate constant \((k_4) \) are the only fitted parameters. Other unknown parameters are written in terms of these parameters using the relationships developed in the previous sections, as demonstrated below:

\[
\alpha_{4c} = \alpha_{4d} \frac{\alpha_{R4c}}{\alpha_{R4d}} = 1.72\alpha_{4d}
\]

\[
\alpha_{4b} = \alpha_{4c} \frac{\alpha_{R4c}}{\alpha_{4c}} = 0.46\alpha_{4d}
\]

\[
\alpha_{4d} = 1 - \alpha_{4b} - \alpha_{4c} - \alpha_{4d} = 1 - 3.18\alpha_{4d}
\]

In addition to constraining \(\frac{k_4^2}{k_{R13}k_4} \), we report the value of \(k_4 \) assuming the currently accepted value for \(k_{R13} (2.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}) \) when accounting for both the termolecular and bimolecular pathways - note that in our experiments, the enhancement due to water vapor and methanol is negligible and assuming a value of \(k_3 = 1.1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \). Additionally, we report the ratio of the radical propagating channels to the radical terminating channels and the fitted results for all of the branching fractions of the self-reaction pathways (Table 3). In summary, we find the following branching fractions for the self-reaction pathways:

\[
\begin{align*}
\text{RO}_2 + \text{RO}_2 & \rightarrow \text{RO}^+ + \text{RO} + \text{O}_2 \quad \alpha_{4a} = 0.27 \pm 0.10 \\
\rightarrow \text{RO}^+ + \text{R}_{\text{4a}}\text{O} + \text{HO}_2 & \quad \alpha_{4b} = 0.10^{+0.04}_{-0.10} \\
\rightarrow \text{ROH} + \text{R}_{\text{4a}}\text{O} + \text{O}_2 & \quad \alpha_{4c} = 0.40 \pm 0.10 \\
\rightarrow \text{ROOR} & \quad \alpha_{4d} = 0.23 \pm 0.05
\end{align*}
\]

3.6 Comparison with earlier studies

We find the measured branching fraction to formation of the accretion product, \(\alpha_{4d} = 0.23 \pm 0.05 \), is much larger than that observed by Barnes et al. who found the ROOR formation to contribute at most 1% of the total products. Barnes et al. performed their experiments in a quartz reaction chamber that included metal mirrors. To evaluate the stability of the peroxide accretion product on quartz (and steel), we performed an ethene oxidation experiment in the high RO\(_2\) limit and, during direct sampling into the CIMS, replaced a portion of the Teflon

Fig. 4 Least-squares fit of modelled \(Q \) \((Q = \frac{[\text{ROOH}]}{[\text{HOCH}_2\text{CH}_2\text{OH}] + [\text{ROOR}]}) \) to measured \(Q \) as a function of \(\ln(F_{\text{external}}) \). Also shown are the full model run with twice the fitted value of \(k_4 \) and half the fitted value of \(k_4 \) for comparison. Data points shown in red squares are experiments run with butanediol rather than methanol as an HO\(_2\) source. The inset shows this same fit for lower values of \(Q \) as a function of \(F_{\text{external}} \).
Table 3 Quantification of important HOCH2CH2OO• + HOCH2CH2OO• reaction parameters and the sources of uncertainty. S_{compound} refers to the sensitivity of the relevant compound. $T = 294$ K and $P = 993$ mbar

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Constraint</th>
<th>Sources of uncertainty</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{4d}</td>
<td>ROOR</td>
<td>S_{ROOR} (15%), fit Fig. 3 (3%), secondary chemistry (3%)</td>
<td>0.57±0.09</td>
</tr>
<tr>
<td>α_{4c}</td>
<td>ROH</td>
<td>S_{ROH} (15%), $\alpha_{4b} + \alpha_{4a}$ (20%)</td>
<td>0.20±0.1</td>
</tr>
<tr>
<td>α_{7b} (in air)</td>
<td>ROH</td>
<td>S_{ROH} (15%), $\alpha_{4b} + \alpha_{4a}$ (20%)</td>
<td>0.26±0.1</td>
</tr>
<tr>
<td>α_{6b}</td>
<td>(R=O), ROH</td>
<td>fit Fig. 2 (10%), S_{ROOH} (10%)</td>
<td>0.54±0.1</td>
</tr>
<tr>
<td>$\alpha_{4d} + \alpha_{4b}$</td>
<td>[ROOH]</td>
<td>S_{ROOH} (15%)</td>
<td></td>
</tr>
<tr>
<td>$\alpha_{4d} + \alpha_{4d}$</td>
<td>ROH</td>
<td>S_{ROOH} + S_{ROH} (15%)</td>
<td></td>
</tr>
<tr>
<td>α_{4b}</td>
<td>$1 - \alpha_{ab} - \alpha_{4c} - \alpha_{4d}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_{4c}</td>
<td>$\alpha_{5c} \times \alpha_{4c}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_{4d}</td>
<td>$\alpha_{4d} \times \alpha_{4d}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_1^2</td>
<td>$\frac{k_1^2}{k_1^2}$</td>
<td>k_1 (10⁻¹² cm³ molecule⁻¹ s⁻¹)</td>
<td></td>
</tr>
<tr>
<td>$k_{13d}k_4$</td>
<td>$k_1^2k_{13d}k_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k_{13d}k_4$</td>
<td>$k_1^2k_{13d}k_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{4a}</td>
<td>$\frac{1}{2}([\text{HOCH2CHO}] + \frac{1}{4}[\text{HCHO}])$</td>
<td>(18)</td>
<td></td>
</tr>
</tbody>
</table>

Sampling line with a length of approximately 60 cm of quartz or metal tubing, which at our flow rate produced a residence time in the quartz/metal tube of <3 s. Despite this very short interaction time, we observed a more than a 50% loss of the accretion product (Fig. S3†). Such wall loss likely limited the ability of Barnes et al.¹³ to observe the ROOR. Additionally, a recent study published on the reactions of ethyl peroxy radicals¹¹ found a branching ratio to the accretion product of 10 ± 5%, demonstrating that formation of the accretion product is significant even in small unsubstituted peroxy radical systems, lending further support to our results.

Our estimate of the ratio of radical propagation to radical termination ($\frac{\alpha_{ab} + \alpha_{4a}}{\alpha_{4c} + \alpha_{4d}} = 0.54 ± 0.11$) in Reaction (4) is lower than several recent studies.¹³,³⁶,³⁸ The study most similar to the work presented here is that of Barnes et al.,¹³ a product study conducted with FTIR, which reports equal contributions of radical propagating and radical terminating channels. In that work, the concentrations of ethylene glycol, glycolaldehyde, and formaldehyde are compared to determine that α_{4a} and α_{4c} are approximately equal (eqn (18)):

$$\frac{\alpha_{4c}}{\alpha_{4a}} = \frac{[\text{HOCH2CH2OH}]}{\frac{1}{2}([\text{HOCH2CHO}] - [\text{HOCH2CH2OH}]) + \frac{1}{4}[\text{HCHO}]}$$

This expression assumes, however, that additional glycolaldehyde is only formed as a result of alkoxy radical chemistry.

Table 4 Comparison between measured kinetic parameters in this and prior studies. We omit from this table the study of Anastasi et al. as explained in detail in Murrells et al.³⁴ Note that α_{radical} is the fraction of the self-reaction that proceeds by radical propagating pathways. Uncertainties on values given in previous studies are the reported uncertainties

<table>
<thead>
<tr>
<th>Study</th>
<th>$k_{\text{obs}}/\sigma_{250 \text{ nm}}$ (10⁻⁶ cm s⁻¹)</th>
<th>α_{radical}</th>
<th>k_1 (10⁻¹² cm³ molecule⁻¹ s⁻¹)</th>
<th>T (K)</th>
<th>$k_{4,\text{recalc}}$ (10⁻¹² cm³ molecule⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>6.5 ± 0.4</td>
<td>0.37±0.10</td>
<td>2.4 ± 1.0</td>
<td>294</td>
<td>2.4 ± 1.0</td>
</tr>
<tr>
<td>Jenkins et al.</td>
<td>6.6 ± 1.1</td>
<td>0.18 ± 0.2</td>
<td>1.4 ± 0.2</td>
<td>298</td>
<td>2.3 ± 0.6</td>
</tr>
<tr>
<td>Murrells et al.</td>
<td>7.1 ± 0.6</td>
<td>0.36 ± 0.07</td>
<td>2.2 ± 0.5</td>
<td>296</td>
<td>2.3 ± 1.3</td>
</tr>
<tr>
<td>Jenkins et al.</td>
<td>6.5 ± 0.8</td>
<td>0.50</td>
<td>2.1 ± 0.5</td>
<td>298</td>
<td>2.5 ± 1.4</td>
</tr>
<tr>
<td>Boyd et al.</td>
<td>6.47 ± 0.04</td>
<td></td>
<td>2.4 ± 0.2</td>
<td>303</td>
<td>3.0 ± 0.2</td>
</tr>
</tbody>
</table>

* $k_{\text{obs}}/\sigma_{250 \text{ nm}}$ is the reported value in each study, where applicable, for the observed rate of decay of absorption at 250 nm divided by the cross section at 250 nm. * $k_{4,\text{recalc}}$ is the value of k_4 recalculated given $\alpha_{\text{radical}} = 0.37$ and at 294 K, and $\sigma_{250 \text{ nm}} = 4.75 \times 10^{-18}$ cm² molecule⁻¹, as given in Lightfoot et al. The temperature dependence is taken from Boyd et al.° Calculated at 294 K using the temperature dependence reported in Boyd et al.° Boyd et al. used an explicit non-linear fit of the time dependence of the absorption following the flash and it is difficult to directly compare with the results from the Jenkins laboratory. Here, we use the Arrhenius fits provided by Boyd et al. to extrapolate both k_4 and α_{radical} to 294 K. We then multiply the resulting k_4 by (0.66(1 - α_{radical}(294))] to obtain the comparison value.
from Reaction (4a) and that no accretion product is formed. Barnes et al. did observe excess GA at low O2 conditions similar to our findings, suggesting an additional source of GA beyond alkoxo chemistry. After accounting for this channel and the formation of ROOR, our optimized box model is fully consistent with the yields of ethylene glycol, GA, and formaldehyde reported by Barnes et al.

The rate coefficient for the title reaction (k_4) has been measured in several previous studies (Table 4). These have all been flash photolysis experiments where the decay of HOCH3/CH2OO has been monitored by UV spectroscopy. In addition to requiring knowledge of the UV cross sections of this radical, knowledge of the yield and formation timescale of HO2 is also needed as the reaction of HO2 with RO2 contributes significantly to the observed decay rate of RO2. While the ratio of the decay rate of the RO2 to the assumed RO2 cross sections have been similar in these experiments, the reported rate coefficients have varied due to differences in the inferred cross sections and HO2 chemistry. Most of these studies determine the absolute rate from the observed decay rate of RO2 by assuming a steady state of HO2, whereby the following equation holds:

$$k_{4, \text{obs}} = k_4(1 + \alpha_{\text{radical}}) = k_4(1 + \alpha_{4a} + \alpha_{4b})$$

(19)

where α_{radical} is the fraction of the self-reaction that proceeds via radical propagating channels. Therefore, the results of these studies are also sensitive to α_{radical}. Similar to Boyd and Lesclaux, using our box model we find that the inferred rate coefficient for Reaction (4) from these flash photolysis experiments is somewhat sensitive to assumed kinetics of the HO2 chemistry and the details of how the absorption data are fitted (fitting window and signal-to-noise). Nevertheless, to place these different studies on a similar footing, we use the reported decay rate of the UV absorption at 250 nm and a common value for the UV cross section of the peroxy radical (assumed to be 4.75×10^{-18} cm2 molecule$^{-1}$)35 and use eqn (19) with the recycling fraction from this work. Finally, we adjust for the difference in the experimental temperature using the temperature dependence for Reaction (4) from Boyd and Lesclaux.36 These are reported in the last column of Table 4.

The experiments reported here provide an entirely different constraint on the kinetics. Here, we quantify the relative reaction rate of the RO2 with itself vs. with HO2 under conditions where the ratio of the production rates of HO2 to RO2 is known, and obtain a value of k_4 (294 K) = $2.4 \pm 1.0 \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$. Despite the very different approaches and entirely different error sources, our inferred rate coefficient for Reaction (4) is remarkably similar to the kinetics measurements by flash photolysis.

4 Conclusions

Bimolecular peroxy radical reactions play an important role in the chemistry of the troposphere, and accurately measuring the rates of these reactions relative to other important RO2 loss processes is central to determining their ultimate effect on air quality. In this study, we have shown that the accretion product formed in the reaction of the ethene-derived peroxy radical is likely a peroxide and is produced with a branching fraction of approximately 23%. We have further measured the ratio of radical propagating to radical terminating chemistry as well as the branching to glycolaldehyde, which is produced in both chain propagating and chain terminating channels. Finally, we have constrained the rate coefficient of the title reaction relative to the reaction rate coefficient of the peroxy radical with HO2, and obtain a value consistent with those of previous flash photolysis studies. The branching fractions and kinetics along with their uncertainties (derived from comparison of our observations with a box model) are summarized in Table 3. Future studies will extend the methods discussed here to study the RO2 + RO2 chemistry in more diverse systems.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This material is based upon work supported by the U. S. National Science Foundation under Grant No. CHE-1905340. This work was also supported by Novo Nordisk Foundation Grant NNF19OC0057374.

Notes and references

