TBC1D4-S711 controls skeletal muscle insulin sensitization after exercise and contraction

Kjøbsted, Rasmus; Kristensen, Jonas Møller; Eskesen, Nicolas Oldenburg; Kido, Kohei; Fjorder, Klara; Damgaard, Ditte F; Larsen, Jeppe Kjærgaard; Andersen, Nicoline Resen; Birk, Jesper Bratz; Gudiksen, Anders; Treebak, Jonas Thue; Schjerling, Peter; Pilegaard, Henriette; Wojtaszewski, Jørgen

Published in: Diabetes

DOI: 10.2337/db22-0666

Publication date: 2023

Document version: Early version, also known as pre-print

Document license: Unspecified

TBC1D4-S711 controls skeletal muscle insulin sensitization after exercise and contraction

Rasmus Kjøbsted¹, Jonas M. Kristensen¹, Nicolas O. Eskesen¹, Kohei Kido¹, Klara Fjorder¹, Ditte F. Damgaard¹, Jeppe K. Larsen¹,², Nicoline R. Andersen¹, Jesper B. Birk¹, Anders Gudiksen³, Jonas T. Treebak², Peter Schjerling⁴,⁵, Henriette Pilegaard³, Jørgen F. P. Wojtaszewski¹.

¹August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
²Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
³Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
⁴Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.
⁵Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.

Short running title: TBC1D4 and muscle insulin sensitivity

Key words: AS160, AMPK, exercise, glucose uptake, insulin sensitivity

Figures / Tables: 8 / 0

Word count: 4723

References: 48

Corresponding authors:
Rasmus Kjøbsted, PhD & Jørgen F. P. Wojtaszewski, PhD
August Krogh Section for Molecular Physiology
Department of Nutrition, Exercise and Sports
University of Copenhagen
Universitetsparken 13
DK-2100, Copenhagen, Denmark
Phone: +45 2834 4370 & +45 3532 1625
Email: rasmus.kjobsted@nexs.ku.dk, jw@nexs.ku.dk
Abstract

The ability of insulin to stimulate glucose uptake in skeletal muscle is important for whole-body glycemic control. Insulin-stimulated skeletal muscle glucose uptake is improved in the period after a single bout of exercise and accumulating evidence suggests that phosphorylation of TBC1D4 by the protein kinase AMPK is the primary mechanism responsible for this phenomenon. To investigate this, we generated a TBC1D4 knock-in mouse model with a serine-to-alanine point mutation at residue 711 that is phosphorylated in response to both insulin and AMPK activation. Female TBC1D4-S711A mice exhibited normal growth and eating behavior as well as intact whole-body glycemic control on chow and high-fat diets. Moreover, muscle contraction increased glucose uptake, glycogen utilization and AMPK activity similarly in wild-type and TBC1D4-S711A mice. In contrast, improvements in whole-body and muscle insulin sensitivity after exercise and contractions were only evident in wild-type mice and occurred concomitantly with enhanced phosphorylation of TBC1D4-S711. These results provide genetic evidence to support that TBC1D4-S711 serves as a major point of convergence for AMPK- and insulin-induced signaling that mediates the insulin-sensitizing effect of exercise and contractions on skeletal muscle glucose uptake.
Introduction

Progressive deterioration of insulin-stimulated skeletal muscle glucose uptake is a hallmark in the etiology of type 2 diabetes (1). Remarkably, a single bout of exercise enhances insulin-stimulated glucose uptake in skeletal muscle from healthy and insulin-resistant subjects (2–5) as well as rodent models (6–8). This effect of exercise may last for up to 48 hours (6,9) and highlights the huge potential of exercise to improve insulin-stimulated muscle glucose uptake in diseases characterized by muscle insulin resistance. The insulin-sensitizing effect of acute exercise on muscle glucose uptake seems to rely on elevated muscle perfusion (10) in combination with enhanced GLUT4 translocation (11–13), which occurs independently of changes in proximal insulin signaling (4,5,8,14–16) and protein synthesis (14).

Insulin-stimulated muscle glucose uptake is mediated through an Akt-dependent signaling pathway that involves inhibition of the Rab-GTPase-activating protein TBC1D4 (also known as AS160) by multisite phosphorylation (17,18). This releases intracellular GLUT4-storage vesicles to fuse with the muscle surface membrane which increases glucose transport capacity (19,20). In mouse skeletal muscle, TBC1D4 is phosphorylated at the serine residue 711 (704 in humans) during insulin stimulation as well as by AMP-activated protein kinase (AMPK) in response to exercise and contraction. However, phosphorylation of TBC1D4-S711 does not seem to be necessary to promote glucose uptake in itself (21).

Several studies in rodents and humans have shown that enhanced insulin-stimulated phosphorylation of TBC1D4 occurs in parallel with improvements in muscle insulin sensitivity after a single bout of exercise and contraction (5,8,15,22–25). We have shown that AMPK is necessary for the ability of exercise and contraction to enhance whole-body and muscle insulin sensitivity (26). In addition, we have shown that TBC1D4 is necessary for contraction and AICAR (AMPK activator) to enhance muscle insulin sensitivity (27) and several human studies have demonstrated enhanced phosphorylation of TBC1D4-S711 concomitant with improved muscle insulin sensitivity after exercise (5,28,29). Together, this inspired us to hypothesize that an AMPK-
TBC1D4-S711 signaling axis mediates the beneficial effect of exercise and contraction on muscle insulin sensitivity.

To test our hypothesis, we generated a knock-in mouse model with a point mutation that replaces serine with alanine at residue 711 in the long isoform of Tbc1d4 (TBC1D4-S711A). Our findings reveal that the lack of phosphorylated TBC1D4-S711 does not affect whole-body and muscle insulin sensitivity in resting mice either on chow or high-fat diets. In contrast, TBC1D4-S711A mice do not exhibit enhanced whole-body and muscle insulin sensitivity after exercise and contraction. Collectively, these results suggest that phosphorylation of TBC1D4-S711 is necessary for muscle insulin-sensitization after exercise and contraction in mice.

Research design and methods

Animal models

All animal experiments were approved by the Danish Animal Experiments Inspectorate (permit number 2019-15-0201-01659) and complied with the EU convention for the protection of vertebrates used for scientific purposes. TBC1D4-S711A mice were generated using CRISPR-Cas9 technology as previously described (27). In short, Cas9 protein with a single guide RNA (sgRNA) was used together with a repair template encoding the desired mutations to substitute the S711 codon (TCT) with an alanine codon (GCG) in exon 11 that is present only in the long isoform of Tbc1d4. A silent mutation was introduced in the repair template to prevent sgRNA re-annealing (Fig. 1A). Heterozygous TBC1D4-S711A male and female mice were used to breed wild-type, heterozygous and homozygous TBC1D4-S711A mice, all of which were fertile and viable. To ensure correct mutagenesis, the three different genotypes were sequenced around the mutated codons (Fig. 1B) and subsequently genotyped using the following PCR primer sets: WT: FP 5’-GAGTAATTCTTCTGCCAGCCTTCCA-3, RP 5’-GGAGCAGTGAAAGGAAGGAGGCGAGAG-3’. S711A: FP 5’-GAGTAATTCTTCTGCCAGCCTTCCATC-3’, RP 5’-GCAGTGAAAGGAAGGCGCCG-3’. Heterozygous long isoform-specific TBC1D4 KO female
mice were also generated, genotyped and used as previously described (27). Mice were bred at the Department of Experimental Medicine, University of Copenhagen, and housed with nesting material in temperature- and humidity-controlled rooms on a 12:12-h light-dark cycle (lights on 06:00 AM) with free access to standard rodent chow diet (Altromin #1324) and water. All experiments were performed in female mice unless stated otherwise.

Body weight, body composition and food intake

Body weight and food intake were recorded once weekly using a precision scale. Lean and fat mass were measured at the end of the diet interventions using an EchoMRI 4in1 Body Composition Analyzer.

High fat diet intervention

Eleven to thirteen-week-old mice were single-caged and provided free access to a high-fat diet (60% calories from fat; Research Diets #D12492) for 14 weeks.

Glucometabolic studies

For fasting and re-feeding experiments, fed blood glucose concentrations were measured in single-housed mice at ~07:00 AM. Fasting and re-feeding blood glucose concentrations were measured in mice fasted 16 hours overnight (start ~03:00 PM) as well as 30 and 60 min after being given free access to standard chow diet. For the oral glucose tolerance test (OGTT), single-housed mice were fasted 16 hours overnight (start ~03:00 PM) after which D-glucose (2 g/kg body weight) dissolved in saline (0.9%) was administered by oral gavage. For the insulin tolerance test (ITT), single-housed mice were fasted 4 hours (start ~07:00 AM) after which insulin (0.75 U/kg, Actrapid, Novo Nordisk) dissolved in saline (0.9%) was administered by a single intraperitoneal injection. Blood glucose levels were determined at $t = 0, 15, 30, 45, 60,$ and 120 min during the OGTT and ITT. At all time points during the fasting re-feeding experiments as well as at $t = 0, 15,$ and 30 min during the OGTT, ~35 µL of blood was drawn into heparinized capillary tubes to determine insulin concentrations in plasma, which was prepared from whole blood centrifugation (16,000 g for 5 min at 4°C). HOMA-IR was calculated from the following equation: $\text{HOMA-IR} = \text{Fasting plasma}$
insulin · Fasting blood glucose / 22.5.

Plasma insulin, blood glucose and blood lactate

Handheld glucose (Contour XT, Bayer) and lactate (Lactate Plus, Nova Biomedical) analyzers were used for all blood glucose and lactate measurements that were sampled from the tail vein. Plasma insulin was determined using an ELISA-kit from ALPCO (80-INSMSU-E10).

Muscle glycogen

Muscle glycogen was measured on whole muscle homogenate after acid hydrolysis and determined by a fluorometric method (30).

Real-time PCR

Procedures for isolation of RNA, reverse transcription and determination of single-stranded cDNA content have been described previously (31). The mRNA content of the short and long isoform of TBC1D4 was determined by real-time PCR using SYBR Green (SYBR Green PCR Master Mix, Thermo Fischer Scientific, Woolston Warington, UK). PCR primer set for the short and long isoform of the mouse Tbc1d4 gene (short: FP 5’-TCCAGCGAACAATGCAGTGA-3’ RP 5’-GATGCAACCCGGAGGAAAAT-3’, long: FP 5’-CAGCCCGGCGCATGTA-3’ RP 5’-CAGGAAAGAGGGAGCAGTGA-3’) were designed using Primer Express software (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA) and obtained from TagCopenhagen (Copenhagen, Denmark). A serial dilution was made separately for subcutaneous white adipose tissue (ScWAT) and skeletal muscle cDNA samples and used to construct tissue specific standard curves. These were used to convert the cycle threshold values of the unknown samples taking into account tissue-specific PCR efficiency, while the y-axis intersect value of the muscle standard curve was used for both muscle and ScWAT to obtain comparable mRNA levels. The amount of TBC1D4 mRNA was normalized to the average amount of β-actin and TBP mRNA of each cDNA sample. The β-actin and TBP mRNA were determined using pre-developed assay reagents and Universal Mastermix (Applied Biosystems) and was not affected by the genotype (32). The amount of TBC1D4 mRNA is in all three tissues presented as fold-change relative to the level in soleus
muscle from wild-type mice, which was set to 1.

In vivo insulin-stimulated tissue glucose clearance

Fed and single-housed mice were anaesthetized by a single intraperitoneal injection of pentobarbital and xylocain (90 mg/kg and 5 mg/kg, respectively) and left to recover for 15 min. Subsequently, a bolus of saline (0.9%) with or without insulin (0.75 U/kg), containing $[^3]$H-2-deoxyglucose (66.7 uCi/mL) (Hartmann Analytic, Braunschweig, Germany), was administered by a single retro-orbital intravenous injection. Blood glucose concentrations were determined at $t = 0$, 5, 10, and 15 min. Moreover, 25 µL of blood was collected at similar time points to determine the specific activity of $[^3]$H-2-deoxyglucose in plasma. Tissues were collected at $t = 15$ min after euthanization of animals by cervical dislocation to determine phosphorylated $[^3]$H-2-deoxyglucose ($[^3]$H-2-deoxy-glucose-6-P) tissue content as previously described (33). Tissue glucose clearance rates (ml blood g tissue$^{-1}$ min$^{-1}$) were calculated by relating the amount of $[^3]$H-2-deoxy-glucose-6-P accumulated in tissues to the tissue weight, the specific activity in plasma, the time of exposure and the average blood glucose concentration.

Ex vivo insulin- and AICAR-stimulated muscle glucose uptake

Insulin- and AICAR-stimulated glucose uptake was determined in isolated skeletal muscle using a previously described technique (34). Although AICAR is an unspecific AMPK activator that promotes intracellular accumulation of ZMP, the effect of AICAR on muscle glucose uptake has repeatedly been shown to be dependent on AMPK (35–37). Fed and group-housed animals were anaesthetized by a single intraperitoneal injection of pentobarbital and xylocain (100 and 5 mg/kg, respectively) after which soleus and extensor digitorum longus (EDL) were removed and suspended in heated (30°C) and continuously gassed (95% O$_2$ and 5% CO$_2$) incubation chambers (Multi Myograph System; Danish Myo Technology, Aarhus, Denmark) containing Krebs-Ringer-buffer supplemented with 0.1% BSA, 8 mmol/L mannitol, and 2 mmol/L pyruvate (KRB). After 10 min pre-incubation in KRB, muscles were incubated for 30 min in KRB containing AICAR (2 mmol/L) (Toronto Research Chemicals, Toronto, Canada) or insulin (100 or 10,000 µU/mL) (Actrapid; Novo
The uptake of 2-deoxyglucose was measured during the last 10 min of the 30-min stimulation period by adding 1 mmol/L $[^3]H$-2-deoxyglucose (0.056 MBq/mL), 7 mmol/L $[^14]C$-mannitol (0.0167 MBq/mL) (Hartmann Analytic, Braunschweig, Germany), and 2 mmol/L pyruvate to the incubation medium. After incubation, muscles were washed in ice-cold KRB, dried on filter paper, and frozen in liquid nitrogen. Glucose uptake was assessed by the accumulation of $[^3]H$-2-deoxyglucose in muscle with the use of $[^14]C$-mannitol as an extracellular marker. Radioactivity was measured in muscle lysates using liquid scintillation counting (Ultima Gold and Tri-Carb 4910 TR; PerkinElmer) and related to the specific activity of the incubation buffer.

In situ contraction-stimulated muscle glucose uptake

In situ contraction-stimulated muscle glucose uptake was determined as previously described (26,38). In short, an electrode was placed on the common peroneal nerve of one leg of fed mice that had been anaesthetized by a single intraperitoneal injection of pentobarbital and xylocain (100 and 5 mg/kg, respectively). The contralateral leg served as a sham-operated resting control. Muscle glucose uptake during 10 min of electrical stimulation was determined by retro-orbital injection of $[^3]H$-2-deoxyglucose as described above with blood sampling and blood glucose determination at $t = 0$, 5 and 10 min. For measurements of muscle glucose uptake after contraction, anesthetized and muscle-contracted mice were left to recover on a heating plate (30°C) for 30 min after which muscle glucose uptake was determined during a 10-min stimulation period as described above.

Insulin-stimulated muscle glucose uptake after in situ contraction

Measurements of insulin sensitivity in isolated EDL muscle after *in situ* contraction was assessed as previously described (26) except that EDL muscles were allowed to recover in incubation chambers for two hours. In short, EDL muscles were excised immediately after *in situ* contraction and suspended in heated (30°C) and continuously gassed (95% O$_2$ and 5% CO$_2$) incubation chambers containing KRB supplemented with 5 mmol/L D-glucose and 5 mmol/L mannitol. Following a 2-hour recovery period, basal and submaximal (100 µU/mL) insulin-stimulated 2-deoxyglucose uptake were assessed in EDL muscles during the last 10 min of a 30-min stimulation period as
described above. These experiments were performed separately in both male and female mice.

Insulin tolerance test after exercise

Measurements of insulin tolerance after a single bout of exercise was determined as previously described (26). In short, following treadmill running acclimatization on five consecutive days, mice were subjected to a graded maximal running test to assess the maximal running speed of each individual mouse. Blood glucose and lactate concentrations were measured immediately before and after the maximal running test in a subgroup of animals. For insulin tolerance tests, mice were single-housed and fasted for 2 hours (start ~06:00 AM) before performing 30 min of treadmill exercise (55% of individual maximal running speed). Resting control mice were left in their cages. Immediately after exercise, mice returned to their individual cages for 1 hour without access to food and were subsequently administered with a submaximal dose of insulin (0.3 U/kg) dissolved in saline (0.9%) by a single intraperitoneal injection. Blood glucose concentrations were determined at $t = 0, 20, 40, 60, 90, \text{ and } 120 \text{ min}$.

Muscle processing and Western blot analyses

Muscles and non-muscle tissues were crushed in liquid nitrogen prior to homogenization except for soleus and EDL muscle. Tissues were homogenized in ice-cold lysis buffer as previously described (39) and subsequently rotated end-over-end for 1 h at 4°C to increase protein extraction. Portions of the homogenate were centrifuged at 16,000 g for 20 min at 4°C, after which the supernatant (lysate) was collected. Total protein abundance in tissue lysates and homogenates was determined in triplicates by the bicinchoninic acid method (Thermo Fisher Scientific, Waltham, MA). Equal amounts of muscle protein lysate were heated in Laemmli buffer (96°C, 10 min) before being subjected to SDS-PAGE and Western blotting analyses as previously described (39).

AMPK activity

AMPKα2β2γ3-, α2βγ1, and α1βγ1-associated AMPK activity was determined in muscle protein lysate by three consecutive immunoprecipitations using custom made anti-AMPKγ3, anti-AMPKα2, and anti-AMPKα1 as previously described (40).
Antibodies

Anti-TBC1D4-pT649 (#8881), anti-Akt2 (#3063), anti-Akt-pS473 (#9271), anti-Akt-pT308 (#9275), anti-ACC-pS212 (#3661), anti-AMPKα-pT172 (#2531), anti-p38-MAPK (#9212), and anti-GAPDH (#2118) were all from CST (Danvers, MA). Anti-TBC1D1-pS231 (#07-2268) was from Millipore (Burlington, MA), anti-GLUT4 (PA1-1065) was from Thermo Fischer Scientific (Waltham, MA) while anti-AMPKα2 (sc-19131) and anti-hexokinase-II (sc-130358) were from Santa Cruz Biotechnology (Dallas, TX). Anti-TBC1D4 (ab189890) and anti-TBC1D1 (ab229504) were from Abcam (Cambridge, UK) and ACC protein was detected using horseradish peroxidase–conjugated streptavidin (P0397) from Agilent (Santa Clara, CA). Anti-TBC1D4-pS711 was custom made from Capra Science (41).

Statistical analyses

The statistical analyses were performed using GraphPad Prism software (GraphPad Software, San Diego, CA). Data are presented with individual values while bar and line graphs represent means ± SEM unless stated otherwise. An unpaired two-tailed Student’s t test was used for two-group comparisons. Two independent variables were compared using two-way ANOVAs with or without repeated measures followed by Sidak’s multiple comparisons test when an interaction between variables occurred. When unequal variance was observed between groups, the data were log10 transformed to obtain equal variance. Statistical significance was defined as P < 0.05.

Data and Resource Availability

The data and resources generated and/or analyzed during the current study are available from the corresponding authors on reasonable request.

Results

The TBC1D4-S711A mutation decreases TBC1D4 mRNA and protein levels in skeletal muscle

Initial investigations revealed that the TBC1D4-S711A mutation decreased mRNA levels of the long isoform of Tbc1d4 by ~40-50% in muscle whereas the short isoform of Tbc1d4 remained
unaffected in both muscle and ScWAT from homozygous TBC1D4-S711A mice (Fig. 1C and D). This led to a decrease in TBC1D4 protein content in skeletal muscle from homozygous TBC1D4-S711A mice (Fig. 1E), because skeletal muscle predominantly expresses the long isoform of Tbc1d4 (42). In addition, we found that basal and insulin-stimulated phosphorylation of TBC1D4-S711 was reduced in muscle from heterozygous TBC1D4-S711A mice and absent in muscle from homozygous TBC1D4-S711A mice (Fig. 1F and G). These data validate the TBC1D4-S711A mouse model and provides an opportunity to investigate the importance of TBC1D4-S711 for the regulation of muscle insulin sensitivity and whole-body glycemic control.

Whole-body glycemic control is not affected in TBC1D4-S711A mice

Analyses of chow-fed homozygous female TBC1D4-S711A mice revealed no phenotype regarding body weight, body composition and food intake when compared to wild-type littermates (Fig 2A-C). TBC1D4-S711A mice displayed normal blood glucose and plasma insulin levels in the fed and fasted state (Fig. 2D and E). HOMA-IR levels (Fig. 2F) implied that the TBC1D4-S711A mice exhibited intact whole-body insulin sensitivity. This was supported by a comparable increase in postprandial blood glucose and plasma insulin levels in the two genotypes 30 and 60 min after refeeding (Fig. 2D and E) as well as similar glucose and insulin tolerance (Fig. 2G-I). Together, these data demonstrate that the TBC1D4-S711A mutation does not affect whole-body glycemic control in resting lean female mice.

In vivo insulin-stimulated muscle glucose clearance is not impaired in TBC1D4-S711A mice

Mice with a TBC1D4-T649A mutation have reduced rates of insulin-stimulated muscle glucose uptake (19). Therefore, we decided to investigate the effect of the TBC1D4-S711A mutation on in vivo insulin-stimulated glucose clearance. Retro-orbital intravenous injection of insulin decreased blood glucose levels and increased glucose clearance in skeletal muscle and ScWAT to a similar extent in TBC1D4-S711A and wild-type mice (Fig. 3A-D). These findings were associated with intact proximal insulin signaling in ScWAT and muscle (Akt-T308/S473), but lower phosphorylation of TBC1D4-T649 in muscle from TBC1D4-S711A mice due to decreased
TBC1D4 protein levels (Fig. 3E-N). This demonstrates that phosphorylation of TBC1D4-S711 is dispensable for *in vivo* insulin-stimulated muscle glucose clearance during resting conditions.

Insulin- and AICAR-stimulated glucose uptake is not compromised in isolated oxidative and glycolytic skeletal muscle from TBC1D4-S711A mice

To circumvent potential humoral factors that may affect muscle glucose uptake in the *in vivo* mouse model, we examined the ability of insulin and AICAR to increase glucose uptake in isolated soleus (oxidative) and EDL (glycolytic) muscle. Upon submaximal and maximal insulin stimulation, glucose uptake rates increased to a similar extent in soleus and EDL muscle from TBC1D4-S711A and wild-type mice (Fig. 4A and B). The effect of AICAR on glucose uptake did not differ between genotypes (Fig. 4A and B). We confirmed that insulin increased phosphorylation of Akt-T308/S473 and that AICAR increased phosphorylation of TBC1D1-S231 and ACC-S212 similarly in muscle from the two genotypes (Fig 4C-J). Insulin-stimulated phosphorylation of TBC1D4-T649 was reduced in muscle from TBC1D4-S711A mice due to decreased TBC1D4 protein levels (Fig 4K-O and Q). Insulin and AICAR increased phosphorylation of TBC1D4-S711 in muscles from wild-type mice (Fig. 4P, R and S).

Whole-body glycemic control is not impaired in TBC1D4-S711A mice on high-fat diet

To evaluate the potential detrimental effect of the TBC1D4-S711A mutation on whole-body glycemic control in an obesogenic environment, female TBC1D4-S711A mice and wild-type littermates were exposed to a standard high-fat diet (HFD) for 14 weeks. To our surprise, TBC1D4-S711A mice gained slightly less weight and displayed reduced body fat content when fed a HFD (Fig. 5A and B) although food intake was comparable in the two genotypes (Fig. 5C). Despite this, no differences in blood glucose and plasma insulin levels were observed between genotypes in the fed, overnight fasted and re-fed state (Fig. 5D and E) nor did HOMA-IR and glucose tolerance differ (Fig. 5F-H). In agreement, insulin decreased blood glucose levels and stimulated glucose uptake in skeletal muscle and ScWAT to a similar extent in the two genotypes on HFD (Fig. 5I-L). These findings were associated with comparable insulin-related tissue signaling (Fig. 5M-V).
Collectively, our observations demonstrate that the TBC1D4-S711A mutation is not important for regulating whole-body and muscle glucose metabolism in resting obese female mice.

Contraction-induced glucose uptake and AMPK activity is not impaired in muscle from TBC1D4-S711A mice

Recent evidence supports a role of AMPK in regulating muscle glucose uptake in the immediate period after exercise and contraction (38). Therefore, we investigated the importance of the AMPK-TBC1D4-S711 signaling axis for the regulation of muscle glucose uptake in response to contraction. Glucose uptake was not impaired during contraction or 30 min after contraction in skeletal muscle from TBC1D4-S711A mice (Fig. 6A and B). In response to contraction, glycogen levels decreased (Fig. 6C) whereas AMPK activity and downstream signaling increased to a similar extent in muscle from the two genotypes (Fig. 6D-G). Phosphorylation of TBC1D4-S711 increased by contraction in wild-type muscle (Fig. 6H and I). These findings suggest that AMPK-mediated phosphorylation of TBC1D4-S711 is not involved in regulating muscle glucose uptake in response to contraction and that the applied contraction protocol elicits a comparable metabolic stress in muscle from the two genotypes.

The TBC1D4-S711A mutation disrupts improvements in muscle insulin sensitivity after contraction

As both insulin and exercised-induced AMPK activation converge on TBC1D4-S711 to promote its phosphorylation (21) and insulin-stimulated phosphorylation of TBC1D4-S711 is elevated in prior exercised and insulin-sensitized skeletal muscle (5,28,29), we tested the importance of TBC1D4-S711 for improving muscle insulin sensitivity after contraction. Two hours after contraction, insulin-independent glucose uptake was not significantly different between prior contracted and rested muscles (Fig. 7A and B). However, prior contraction increased submaximal insulin-stimulated glucose uptake in isolated muscle from wild-type mice (Fig. 7A) but failed to do so in muscle from TBC1D4-S711A mice (Fig. 7B). Accordingly, the incremental increase (delta) in insulin-stimulated glucose uptake (glucose uptake of non-insulin-stimulated muscles subtracted
from glucose uptake of paired insulin-stimulated muscles) was only elevated after prior contraction in muscle from wild-type mice (Fig. 7C).

Because our findings were derived from experiments in female mice, we wanted to test whether male TBC1D4-S711A mice exhibited a similar phenotype. We observed that the ability of contraction to improve insulin-stimulated glucose uptake was disrupted in muscle from male TBC1D4-S711A mice (Fig. 7D and E). However, there was a trend for improved muscle insulin sensitivity in male TBC1D4-S711A mice (p=0.061) (Fig. 7F) suggesting that male TBC1D4-S711A mice retain the ability to increase muscle insulin sensitivity after contraction but less markedly than male wildtype mice.

To investigate whether the reduced abundance of TBC1D4 protein per se was affecting the observations in muscle from female TBC1D4-S711A mice, we tested the ability of contraction to improve muscle insulin sensitivity in heterozygous muscle-specific TBC1D4 KO female mice in which muscle TBC1D4 protein is reduced by ~50%. Importantly, prior contraction improved muscle insulin sensitivity in these mice (Fig. 7G and H) suggesting that the inability of contraction to improve muscle insulin sensitivity in female TBC1D4-S711A mice is not due to a reduced abundance of muscle TBC1D4 protein.

GLUT4 and Hexokinase-II protein levels as well as proximal insulin signaling measured at the level of Akt-T308 were similar in EDL muscles from wild-type and TBC1D4-S711A female mice (Fig. 7I-K). Insulin increased phosphorylation of TBC1D4-T649 in muscle from both genotypes (Fig. 7L) while phosphorylation of TBC1D4-T649 related to TBC1D4 protein was slightly increased by prior contraction in wild-type muscle only (Fig. 7M and N). Importantly, insulin-stimulated phosphorylation of TBC1D4-S711 was elevated in prior contracted and insulin-sensitized EDL muscle from wild-type mice (Fig. 7O and P), which further supports a role of TBC1D4-S711 in regulating muscle insulin sensitivity.

The TBC1D4-S711A mutation disrupts improvements in whole-body insulin sensitivity after a single bout of exercise
To address the physiological relevance of TBC1D4-S711 for the regulation of muscle insulin sensitivity, we examined in vivo whole-body insulin sensitivity in mice by an intraperitoneal injection of submaximal insulin dose (0.3 U/kg) after a single bout of treadmill exercise. Initial findings revealed that the maximal running capacity did not differ between genotypes (Fig. 8A) nor did the blood glucose and lactate levels before and after the maximal running test (Fig. 8B and C). Prior exercise only enhanced the blood glucose-lowering effect of insulin in wild-type mice and thus, improved whole-body insulin tolerance by ~75% in wild-type mice (Fig. 8D-F). This provides further evidence to support that TBC1D4-S711 is a key phosphorylation site essential for enhancing muscle insulin sensitivity after exercise to improve whole-body glycemic control.

Discussion

Previously, we have shown that AMPK and TBC1D4 are necessary for improving muscle insulin sensitivity after contractions and that phosphorylation of TBC1D4-S711 is enhanced in prior contracted and insulin-sensitized muscle (26,27). Using mice harboring a single TBC1D4-S711A point mutation, we now show that phosphorylation of TBC1D4-S711 is necessary for improving muscle insulin sensitivity after contractions and whole-body insulin sensitivity after a single bout of exercise.

We found that the mRNA level and protein abundance of TBC1D4 were decreased by ~50% in skeletal muscle from TBC1D4-S711A mice. We believe that the observed decrease in muscle TBC1D4 protein is a consequence of a decrease in the TBC1D4 mRNA levels. This may be explained by the introduced gene mutations that can interfere with the ability of exonic splicing enhancers to promote efficient gene splicing (43). Gene mutations and alterations in a nucleic acid sequence have also been shown to change the secondary structure of mRNA that may create unstable mRNA and lead to premature mRNA degradation of Tbc1d4 (44). Alternatively, phosphorylation of TBC1D4-S711 may in itself regulate the transcription of Tbc1d4. Importantly, the decrease in muscle TBC1D4 protein did not affect muscle and whole-body glucose metabolism.
in chow- or HFD-fed TBC1D4-S711A mice compared to wild-type littermates. To our knowledge, observations from heterozygous TBC1D4 KO mice have not been reported but heterozygous carriers of a common Greenlandic Inuit loss-of-function mutation in Tbc1d4, that decreases TBC1D4 protein abundance in muscle by ~50%, are not characterized by impaired glucose tolerance or increased risk of type 2 diabetes in contrast to homozygous carriers (45). Together, this suggests that the ~50% reduction in TBC1D4 protein does not compromise muscle and whole-body glucose metabolism during insulin stimulation.

We have recently shown that AMPK and its downstream target TBC1D1 are involved in maintaining muscle glucose uptake elevated in the period after contraction and exercise (38). Because parts of TBC1D1 and TBC1D4 are in complex in skeletal muscle (46), we hypothesized that phosphorylation of TBC1D4-S711 by AMPK could also be involved in regulating muscle glucose uptake after contraction. Nevertheless, our findings did not support such a role of TBC1D4-S711 and therefore we now propose that AMPK promotes insulin-independent muscle glucose uptake in the immediate period after exercise/contraction via TBC1D1 and enhances muscle insulin sensitivity several hours after exercise/contraction via TBC1D4.

Improvements in muscle insulin sensitivity after a single bout of exercise in humans are associated with enhanced insulin-stimulated phosphorylation of TBC1D4 (5,28,29). Furthermore, improvements in muscle insulin sensitivity after contraction are positively associated with insulin-stimulated phosphorylation of TBC1D4-S711 in muscle from wild-type mice but not in muscle from AMPK-deficient mice (26). We now provide evidence to support that phosphorylation of TBC1D4-S711 is necessary for improving muscle insulin sensitivity after exercise and contraction in female mice. In male TBC1D4-S711A mice, the insulin-sensitizing effect of contraction is also disrupted but not fully abolished. This is in agreement with recent findings by Zheng et al. (47) who reported that AAV delivery of a TBC1D4 3P phospho-mutant (S588A, T642A, and S704A) to skeletal muscle of male TBC1D4 KO rats reduced, but did not fully blunt, the insulin-sensitizing effect of exercise. Whether these findings also apply to female rats is currently unknown, but may
indicate sex-specific differences in TBC1D4-induced augmentation of muscle insulin sensitivity after exercise/contraction.

Lack of TBC1D4 protein in skeletal muscle impairs the ability of exercise and contraction to enhance muscle insulin sensitivity, while restoration of TBC1D4 protein in muscle from TBC1D4 KO animals rescues it (27,47). Although a ~50% reduction in muscle TBC1D4 protein abundance did not affect basal/resting glucose metabolism in TBC1D4-S711A mice in the present study, such a reduction could potentially exert a detrimental effect on the insulin-sensitizing effect of contraction. To illuminate this, we investigated the ability of contraction to improve insulin sensitivity in muscle from heterozygous muscle-specific TBC1D4 KO mice. Notably, prior contraction improved insulin sensitivity in muscle from these mice demonstrating that the lack of phosphorylated TBC1D4-S711 rather than the reduced TBC1D4 protein abundance is responsible for disrupting improvements in muscle insulin sensitivity after exercise and contraction.

Exactly how contraction/exercise-induced phosphorylation of TBC1D4-S711 relays improvements in muscle insulin sensitivity remains uncertain but it is likely related to GLUT4 re-localization to insulin-responsive storage vesicles that augments translocation of GLUT4 to the muscle surface membrane upon subsequent insulin stimulation (11,12). We have recently demonstrated that the exercise-induced phosphorylation of TBC1D4-S711 bound to TBC1D1 is maintained in human skeletal muscle 4 hours after a single bout of insulin-sensitizing exercise (46). Because observations from cell-based models support a functional interplay between TBC1D4 and TBC1D1 where phosphorylation of TBC1D4 plays a key role in translating exercise-mimicking stimuli into physical GLUT4 releasing processes that modulate insulin sensitivity for glucose transport (48), it seems reasonable to assume that a disruption of the interplay between TBC1D4 and TBC1D1 in mature skeletal muscle could add further to our understanding on how exercise improves muscle insulin sensitivity.

In conclusion, we show that phosphorylation of TBC1D4-S711 regulates muscle insulin sensitization in response to exercise and contraction. Future studies will have to clarify how
phosphorylation of TBC1D4-S711 facilitates enhanced translocation of GLUT4 to the muscle surface membrane upon insulin stimulation and whether TBC1D4 also acts as a major regulator of insulin sensitivity in human skeletal muscle.

Acknowledgements

The authors would like to thank Betina Bolmgren and Irene Bech Nielsen (Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark) as well as Anja Jokipii-Utzon (Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Denmark) for their skilled technical assistance. The authors would also like to thank undergraduate student Nicoline Meyer Riisberg for her assistance during animal experimentation.

Funding

This work was supported by grants given to JFPW from the Danish Council for Independent Research Medical Sciences (FSS: 610-00498B) and The Novo Nordisk Foundation (NNF0070370). This work was also supported by a postdoctoral research fellow grant to RK from the Danish Diabetes Academy, which is funded by the Novo Nordisk Foundation (NNF17SA0031406) as well as a research grant to RK from the EFSD/Lilly Young Investigator Research Award Programme. JTT was supported by the Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR). CBMR is an independent Research Center at the University of Copenhagen that is partially funded by an unrestricted donation from the Novo Nordisk Foundation (NNF18CC0034900).

Duality of Interest

JFPW has ongoing collaborations with Pfizer Inc. and Novo Nordisk Inc. unrelated to this work. No other potential conflicts of interest relevant to this article were reported.

Author Contributions

Conceptualization and design: RK and JFPW. Laboratory analyses: RK, DFD, NOE, NRA, JBB, JTT, PS, AG and HP. Data analyses: RK. Animal experiments: RK, JMK, DFD, NOE, KK, and
JKL. Manuscript drafting: RK and JFPW. Interpretation, reviewing, editing and approval: All authors. RK and JFPW are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

References

muscle from mice. J Vis Exp. 2021(171)
Figure legends

Figure 1 – Generation and validation of the TBC1D4-S711A mouse model. (A) Schematic representation of the CRISPR-Cas9 with designed sgRNA and repair template. Position 711 of the Tbc1d4 gene is highlighted in green (wild-type) and purple (knock-in) while the silent mutation on position 705 is highlighted in yellow. (B) Sequencing of the Tbc1d4 gene around the knock-in and silent mutations in wild-type, heterozygous and homozygous TBC1D4-S711A mice. (C-D) mRNA content of Tbc1d4-long and Tbc1d4-short in soleus muscle, quadriceps muscle, and subcutaneous white adipose tissue (ScWAT) from wild-type and TBC1D4-S711A mice. (E-F) Quantification of TBC1D4 protein and phosphorylated TBC1D4-S711 in soleus muscle dissected from anaesthetized mice 15 min after a retro-orbital injection of vehicle (0.9% saline) with or without insulin (0.75 U/kg). (G) Representative immunoblots. Data were analyzed by a Student t test (C-D) and a two-way ANOVA (E-F). Dots represent individual values while bar graphs represent means ± SEM (n=6-7). ME, main effect. N.D., not detected.

Figure 2 – Whole-body glycemic control is not affected in resting TBC1D4-S711A female mice on chow diet. (A) Body weight (left) and cumulative weight gain (right) in wild-type and TBC1D4-S711A chow-fed mice between 8-18-weeks of age. (B) Body composition in 16-17-week-old mice. (C) Average daily chow intake in mice between 8-18 weeks of age. (D-E) Blood glucose and plasma insulin concentrations measured in the morning after having free access to chow diet (fed) as well as before (fasted), 30 and 60 min after re-feeding with regular chow diet following an overnight fast (16 hours) in 9-10-week-old wild-type and TBC1D4-S711A mice. a indicates P < 0.001 vs. all groups. b indicates P < 0.05 vs. fed group. c indicates P < 0.001 vs. re-fed groups. d indicates P < 0.01 vs. fed group. (F) HOMA-IR levels determined from the fasting blood glucose and plasma insulin concentrations in D and E. (G-H) Blood glucose and plasma insulin concentrations during an oral glucose tolerance test (OGTT, 2 g/kg) in 11-12-week-old wild-type and TBC1D4-S711A mice. Glucose area under the curve (AUC) values during the OGTT are shown in panel G. (I) Blood glucose concentrations during an insulin tolerance test (0.75 U/kg) in
15-16-week-old wild-type and TBC1D4-S711A mice. Data were analyzed by a Student t test (A-C) and a two-way repeated ANOVA (D-I). Dots represent individual values while bar and line graphs represent means ± SEM (n=15-18 in wild-type and n=8-13 in TBC1D4-S711A groups). Data in panel G were transformed to obtain equal variance prior to statistical testing. ME, main effect.

Figure 3 – In vivo insulin-stimulated glucose uptake is not impaired in muscle and adipose tissue from TBC1D4-S711A female mice. (A-B) Blood glucose and changes in blood glucose concentrations in anaesthetized 17-18-week-old wild-type and TBC1D4-S711A mice following retro-orbital injection of vehicle (0.9% saline) with or without insulin (0.75 U/kg). (C-D) In vivo insulin-stimulated glucose uptake in quadriceps muscle and ScWAT (subcutaneous white adipose tissue) from wild-type and TBC1D4-S711A mice. (E-M) Insulin-stimulated signaling in quadriceps muscle and ScWAT from wild-type and TBC1D4-S711A mice measured at the level of phosphorylated Akt and TBC1D4. (N) Representative immunoblots. Data were analyzed by a two-way repeated ANOVA within treatments (A), a two-way ANOVA between genotypes (B-H and J-M) and a Student’s t test (I). Dots represent individual values while bar and line graphs represent means ± SEM (n=11 in wild-type and n=7 in TBC1D4-S711A groups). Data in panels D-F and M were transformed to obtain equal variance prior to statistical testing. ME, main effect. N.D., not detected.

Figure 4 – Insulin- and AICAR-stimulated glucose uptake is not impaired in isolated skeletal muscle from TBC1D4-S711A female mice. (A-B) Basal, submaximal insulin- (100 µU/mL), maximal insulin- (10,000 µU/mL), and AICAR-stimulated glucose uptake in isolated soleus and EDL muscle from wild-type and TBC1D4-S711A mice. (C-R) Protein content of TBC1D4 as well as insulin- and AICAR-stimulated phosphorylation of Akt-T308, Akt-S473, TBC1D1-S231, ACC-212, TBC1D4-T649, and TBC1D4-S711 measured in muscles from panel A and B. a indicates P < 0.001 vs. all groups. b indicates P < 0.001 vs. basal. c indicates P < 0.05 vs. AICAR. d indicates P < 0.001 vs. basal and submaximal insulin. e indicates P < 0.05 vs. basal and submaximal insulin. f indicates P < 0.001 vs. basal and AICAR. g indicates P < 0.05 vs. submaximal insulin. (S)
Representative immunoblots. Data were analyzed by a two-way ANOVA except for data in panel P and R that were analyzed by a one-way ANOVA. Dots represent individual values while bar graphs represent means ± SEM (n=5 in wild-type and n=7 in TBC1D4-S711A groups). An unspecific band is observed in the TBC1D4-S711 immunoblot. Only the specific TBC1D4-S711 band (lower) has been quantified. Data in panels C-F and N were transformed to obtain equal variance prior to statistical testing. ME, main effect. N.D., not detected.

Figure 5 – Whole-body glycemic control is not affected in resting HFD-fed TBC1D4-S711A female mice. (A) Body weight (left) and cumulative weight gain (right) in wild-type and TBC1D4-S711A mice during HFD feeding. Mice were 11-13 weeks old at the beginning of the HFD-diet intervention. (B) Body composition in HFD-fed mice. (C) Average daily HFD intake during the diet intervention. (D-E) Blood glucose and plasma insulin concentrations measured in 23-25-week-old HFD-fed wild-type and TBC1D4-S711A mice in the morning after having free access to HFD (fed) as well as before (fasted), 30 and 60 min after re-feeding with regular chow diet following an overnight fast (16 hours). a indicates P < 0.001 vs. all groups. (F) HOMA-IR levels determined from the fasting blood glucose and plasma insulin concentrations in D and E. (G-H) Blood glucose and plasma insulin concentrations during an oral glucose tolerance test (OGTT, 2 g/kg) in 24-26-week-old HFD-fed wild-type and TBC1D4-S711A mice. Glucose area under the curve (AUC) values during the OGTT are shown in panel G. (I-J) Blood glucose and changes in blood glucose concentrations in anaesthetized 25-27-week-old HFD-fed wild-type and TBC1D4-S711A mice following retro-orbital injection of vehicle (0.9% saline) with or without insulin (0.75 U/kg). (K-L) *In vivo* insulin-stimulated glucose uptake in quadriceps muscle and ScWAT from HFD-fed wild-type and TBC1D4-S711A mice. (M-U) Insulin-stimulated signaling in quadriceps muscle and ScWAT from HFD-fed wild-type and TBC1D4-S711A mice measured at the level of phosphorylated Akt and TBC1D4. (V) Representative immunoblots. Data were analyzed by a Student t test between genotypes (B, C, F and Q), a two-way repeated ANOVA between genotypes (D, E, G and H) and within treatment (I) as well as a two-way ANOVA between genotypes (J-P and
R-U). Dots represent individual values while bar and line graphs represent means ± SEM (n=18 in wild-type and n=14 in TBC1D4-S711A groups in panel A-H while n=9 in wild-type and n=7 in TBC1D4-S711A groups in panel I-U). ME, main effect. N.D., not detected.

Figure 6 – Acute contraction affects glucose uptake, glycogen utilization and AMPK activation similarly in skeletal muscle from wild-type and TBC1D4-S711A female mice. (A-B) Glucose uptake measured in EDL and tibialis anterior (TA) muscles at rest, during in situ contraction and 30 min after contraction (only TA). a indicates P < 0.0001 vs. all groups. b indicates P < 0.0001 vs. rest group. (C-D) Glycogen content and heterotrimeric-specific AMPK activity measured in rested and in situ contracted TA muscle. (E-H) AMPK activation and downstream signaling measured at the level of phosphorylated AMPKα-T172, ACC-S212, TBC1D1-S231, and TBC1D4 S711 in rested and in situ contracted EDL and TA muscle. (I) Representative immunoblots. Data were analyzed within each muscle type by a Student t test (H) and a two-way ANOVA without (B) and with (A and C-G) repeated measures. Dots represent individual values while bar graphs represent means ± SEM (n=9-10 in all groups except for data on glucose uptake 30 min after contraction, n=5). An unspecific band is observed in the TBC1D4-S711 immunoblot. Only the specific TBC1D4 band (upper) has been quantified. Data in panels C were transformed to obtain equal variance prior to statistical testing. ME, main effect. N.D., not detected.

Figure 7 – The TBC1D4-S711A mutation disrupts improvements in muscle insulin sensitivity after contraction. (A-B and D-E) 2-deoxyglucose uptake in isolated EDL muscle from wild-type as well as TBC1D4-S711A female (A-B) and male (D-E) mice incubated with a submaximal insulin concentration (100 µU/ml) 2 h after rest or in situ contraction. (C and F) Delta insulin-stimulated 2-deoxyglucose uptake calculated from data in panel A and B as well as D and E by subtracting basal 2-deoxyglucose uptake values from values on insulin-stimulated 2-deoxyglucose uptake in paired EDL muscles from each animal. (G-H) Delta insulin-stimulated 2-deoxyglucose uptake (left) and representative immunoblot of TBC1D4 protein (right) in EDL muscle from heterozygous muscle-specific TBC1D4 KO female mice. (I-O) TBC1D4, GLUT4 and Hexokinase
II protein as well as phosphorylation of Akt-T308, TBC1D4-T649, and TBC1D4-S711 measured in muscles from panel A and B. (P) Representative immunoblots. Data were analyzed by a two-way repeated measures ANOVA within each genotype except for data in panel C, F and G that were analyzed by a Student t test within each genotype. Dots represent individual values while bar graphs represent means ± SEM (n=7-9 in all groups except for data in panel G, n=14-16). ME, main effect. N.D., not detected.

Figure 8 – Improvements in whole-body insulin tolerance after a single bout of exercise is impaired in TBC1D4-S711 female mice. (A) Maximal exercise capacity during treadmill running. (B-C) Blood glucose and lactate concentrations before (rest) and after a maximal running capacity test in wild-type and TBC1D4-S711A mice. (D-E) Blood glucose concentrations (% Basal) from wild-type and TBC1D4-S711A mice during a 120 min submaximal insulin tolerance test (0.3 U/kg) 1 h after rest or exercise. Absolute blood glucose concentrations at time point 0 min during the ITT in wild-type mice (rest: 4.2 ± 0.1 mmol l$^{-1}$, prior exercise: 4.2 ± 0.2 mmol l$^{-1}$; $p=0.8$) and in TBC1D4-S711A mice (rest: 4.3 ± 0.2 mmol l$^{-1}$, prior exercise: 4.0 ± 0.2 mmol l$^{-1}$; $p=0.2$) (F) Glucose area over the curve (AOC) values during the insulin tolerance test. Data were analyzed by a Student t test between (A) and within (F) genotypes as well as a two-way repeated measures ANOVA (B-E). Dots represent individual values while bar and line graphs represent means ± SEM (n=7-11). ME, main effect.
Silent mutation
Ser → Ala

Cas9

Repair template

5'- TAATTCTCCTGACAGCCCTCAACACATCCTTCCTCCTCTCCACT..-3'
3'- ATTAAGAGGCCTGCAAGCCCTCAACACATCCTTCCTCCTCTCCACT..-5'

GTTTCGGAAGTGTGAGAAGG

Soleus muscle

TBC1D4

GAPDH

WT

pTBC1D4 S711

HET S711A

Vehicle

Insulin

0.0
0.5
1.0
1.5
Muscle TBC1D4 protein (Relative units)

WT

S711A

HET S711A

Vehicle

Insulin

0.0
0.5
1.0
1.5
Muscle pTBC1D4 S711 / TBC1D4 (Relative units)

0.0
0.5
1.0
1.5
2.0
Muscle Tbc1d4-long mRNA (fold)

WT

S711A

HET S711A

Vehicle

Insulin

0.0
0.5
1.0
1.5
2.0
Muscle Tbc1d4-short mRNA (fold)

WT

S711A

HET S711A

Vehicle

Insulin

0.0
0.5
1.0
1.5
2.0
Muscle pTBC1D4 S711 / TBC1D4 (Relative units)

ME of S711A vs. WT and HET S711A p<0.001

ME of HET S711A vs. WT p=0.016

ME of insulin p=0.002

Silent mutation

A

B

C

D

E

F

G

Insulin

WT

HET S711A

S711A

pTBC1D4 S711

TBC1D4

GAPDH

Soleus muscle
Maximal running capacity (m sec\(^{-1}\))

A

Blood glucose (mmol l\(^{-1}\))

B

Blood lactate (mmol l\(^{-1}\))

C

ME of exercise \(p<0.001\)

D

Blood glucose [% Basal]

E

Blood glucose [% Basal]

F

AOC: 0-120 min (mmol l\(^{-1}\) x min)

WT

S711A

Rest

Prior exercise

\(p=0.018\)

\(p=0.002\)

\(p<0.001\)

\(p<0.001\)