SatuRn

Scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications
Gilis, Jeroen; Vitting-Seerup, Kristoffer; Van den Berge, Koen; Clement, Lieven

Published in:
F1000Research

DOI:
10.12688/f1000research.51749.2

Publication date:
2022

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
satuRn: Scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications

Jeroen Gilis1-3, Kristoffer Vitting-Seerup4-7, Koen Van den Berge1,3,8, Lieven Clement1,3

1Applied Mathematics, Computer science and Statistics, Ghent University, Ghent, 9000, Belgium
2Data Mining and Modeling for Biomedicine, VIB Flemish Institute for Biotechnology, Ghent, 9000, Belgium
3Bioinformatics Institute, Ghent University, Ghent, 9000, Belgium
4Department of Biology, Kobenhavns Universitet, Copenhagen, 2200, Denmark
5Biotech Research and Innovation Centre (BRIC), Kobenhavns Universitet, Copenhagen, 2200, Denmark
6Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
7Department of Health Technology, Danish Technical University, Kongens Lyngby, 2800, Denmark
8Department of Statistics, University of California, Berkeley, Berkeley, California, USA

Abstract
Alternative splicing produces multiple functional transcripts from a single gene. Dysregulation of splicing is known to be associated with disease and as a hallmark of cancer. Existing tools for differential transcript usage (DTU) analysis either lack in performance, cannot account for complex experimental designs or do not scale to massive single-cell transcriptome sequencing (scRNA-seq) datasets. We introduce satuRn, a fast and flexible quasi-binomial generalized linear modelling framework that is on par with the best performing DTU methods from the bulk RNA-seq realm, while providing good false discovery rate control, addressing complex experimental designs, and scaling to scRNA-seq applications.

Keywords
RNA-seq, single-cell transcriptomics, splicing, differential transcript usage, statistical framework, satuRn

This article is included in the Bioconductor gateway.
Corresponding authors: Koen Van den Berge (Koen.VanDenBerge@UGent.be), Lieven Clement (lieven.clement@ugent.be)

Author roles: Gilis J: Formal Analysis, Funding Acquisition, Investigation, Methodology, Software, Validation, Visualization, Writing – Original Draft Preparation; Vitting-Seerup K: Methodology, Validation, Writing – Review & Editing; Van den Berge K: Conceptualization, Funding Acquisition, Methodology, Supervision, Validation, Writing – Review & Editing; Clement L: Conceptualization, Funding Acquisition, Methodology, Supervision, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: Jeroen Gilis, Koen Van den Berge, and Lieven Clement are supported by the Research Foundation Flanders (FWO), research grant No. G062219N, and Jeroen Gilis is further supported by FWO SB fellowship No. 3S037119. Koen Van den Berge is a postdoctoral fellow of the Belgian American Educational Foundation (BAEF) and is supported by the Research Foundation Flanders (FWO), grant no. 1246220N. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Gilis J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Gilis J, Vitting-Seerup K, Van den Berge K and Clement L. satuRn: Scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications [version 2; peer review: 2 approved] F1000Research 2022, 10:374 https://doi.org/10.12688/f1000research.51749.2

First published: 11 May 2021, 10:374 https://doi.org/10.12688/f1000research.51749.1
Amendments from Version 1

We included three additional case studies to the manuscript: (i) a case study analysis with a more complex multifactor experimental design, (ii) a case study assessing differential usage of equivalence classes and (iii) an analysis that uses satRN to perform a differential exon usage analysis. These analyses were included in the Results and Discussion sections of the manuscript and include the novel Figures 10 and 11, Table 3 and Extended data figures S27-29. In addition, we elaborated on the effects of data sparsity, the magnitude of the induced DTU signal and the different counting approaches on the performance of the different DTU tools. Novel findings were incorporated in the Results section and include figures S10-13, S16-19, S30-32, and table S1 in the Extended data. We also included a scalability assessment for the different methods on bulk RNA-seq data, which is discussed in the Results section and displayed in Extended data figures S20 and S21. Finally, we addressed all other minor suggestions by the reviewers.

Any further responses from the reviewers can be found at the end of the article

Introduction

Studying differential expression (DE) is one of the key tasks in the downstream analysis of RNA-seq data. Typically, DE analyses identify expression changes on the gene level. However, the widespread adoption of expression quantification through pseudo-alignment,1-5 which enables fast and accurate quantification of expression at the transcript level, has effectively paved the way for transcript-level analyses. Here, we specifically address differential transcript usage (DTU) analysis, one type of transcript-level analysis that studies the change in relative usage of transcripts/isoforms within the same gene. DTU analysis holds great potential: previous research has shown that most multi-exon human genes are subject to alternative splicing and can thus produce a variety of functionally different isoforms from the same genomic locus.6-8 The dysregulation of this splicing process has been reported extensively as a cause for disease,6-9 including several neurological diseases such as frontotemporal dementia, Parkinsonism and spinal muscular atrophy, and is a well-known hallmark of cancer.10

In this context, full-length single-cell RNA-Seq (scRNA-seq) technologies such as Smart-Seq211 and Smart-Seq312 hold the promise to further increase the resolution of DTU analysis from bulk RNA-seq data towards the single-cell level, where differences in transcript usage are expected to occur naturally between cell types. However, only a few bespoke DTU methods have been developed for scRNA-seq data and they lack biological interpretation. Indeed, methods specifically developed for scRNA-seq data are either restricted to exon/event level13,14 analysis (e.g. pinpointing exons involved in splicing events), or they can only pinpoint DTU genes without unveiling the actual transcripts that are involved.15 Interestingly, many DTU methods for bulk RNA-seq do provide inference at the transcript level and their performance has already been extensively profiled in benchmark studies.16-18 Based on a subset of the simulated RNA-seq dataset from Love et al.19 (see Methods), we show the performance of six DTU tools; DEXSeq,19 DoubleExpSeq,20 DRIMSeq,21 edgeR diffSplice,22 limma diffSplice23 and NBSplice24 (Figure 1A). DEXSeq and DoubleExpSeq have a higher performance than the other methods. In addition, we observe that most methods, and DRIMSeq in particular, fail to control the false discovery rate (FDR) at its nominal level, which is in line with previous reports.16-18

In order to assess DTU in single-cell applications, however, these bulk RNA-seq DTU tools should scale to the large data volumes generated by full-length scRNA-seq platforms, which can profile the transcriptome of several thousands of cells26-28 in a single experiment. In Figure 1B, we evaluate the required computational time in function of the number of sequenced libraries for a two-group DTU analysis for 30,000 transcripts on a subset of the scRNA-seq dataset from Chen et al.29 Despite of its good performance, the popular tool DEXSeq already required more than five hours to analyze two groups of 32 cells and clearly does not scale to large bulk nor scRNA-seq datasets.

In addition, DTU methods should allow for the analysis of datasets with large numbers of (unique) transcripts. The number of transcripts that are typically assessed depends on the coverage of the RNA-seq experiment and the adopted filtering criteria in the data analysis workflow. As the coverage of RNA-seq experiments has increased rapidly over the past few years and can be expected to continue expanding, scalability towards large numbers of transcripts will be essential to enable a transcriptome-wide view on the isoform usage changes. In Figure 1C, we perform a DTU analysis across a range of transcripts in a two-group comparison with 16 cells each, using the dataset from Chen et al. Here, we observed that the DTU tool BANDITS30 scales particularly poorly to large numbers of transcripts. More specifically, BANDITS did not complete the DTU analysis on the dataset with 7,500 transcripts within 137 hours on our system (see Methods); therefore, larger analyses were omitted. As such, BANDITS had to be omitted from the analyses shown in Figures 1A and 1B. For a performance and scalability evaluation of BANDITS on datasets with an (artificial) lower number of transcripts, we refer to Extended data figures S1 and S3.25

Page 3 of 43
Besides scalability, several other issues arise when porting bulk RNA-seq DTU tools towards scRNA-seq applications. Indeed, modelling scRNA-seq data often requires multifactorial designs, for instance when comparing expression levels across multiple cell types between multiple treatment groups. Accounting for multiple covariates, however, is not implemented in BANDITS, NBSplice and DoubleExpSeq, jeopardizing their utility for (sc-)RNA-seq DTU analysis. Another issue arises with the large numbers of zero counts in scRNA-seq data, which seems to be particularly problematic for NBSplice that fails to converge if the gene-level count of any of the samples or cells is zero. As such, NBSplice could not be evaluated in Figures 1B and 1C.

Altogether, many of the existing DTU analysis tools are not well suited to analyze large bulk RNA-seq and full-length scRNA-seq datasets, leaving the great potential of differential splicing analysis for these data largely unexploited. In light
of these shortcomings we developed satuRn, which is an acronym for Scalable Analysis of differential Transcript Usage for RNA-seq data, a novel method for DTU analysis that (i) is highly performant, (ii) provides a good control of the false discovery rate (FDR) (iii) scales seamlessly to the large data volumes of contemporary (sc-)RNA-seq datasets, (iv) allows for modelling complex experimental designs, (v) can deal with realistic proportions of zero counts and (vi) provides direct inference on the biologically relevant transcript level. In brief, satuRn adopts a quasi-binomial (QB) generalized linear model (GLM) framework. satuRn provides direct inference on DTU by modelling the relative usage of a transcript, in comparison to other transcripts from the same gene, between groups of interest. To stabilize the estimation of the overdispersion parameter of the QB model, we borrow strength across transcripts by building upon the empirical Bayes methodology as introduced by Smyth \textit{et al.} In order to control the number of false positive findings, an empirical null distribution is used to obtain the p-values, which are corrected for multiple testing with the FDR method of Benjamini and Hochberg. Our method is implemented in an R package available at https://github.com/statOmics/satuRn and is distributed through the Bioconductor project.

Methods

satuRn model

As input, satuRn requires a matrix of transcript-level expression counts (or, analogously, a matrix of exon-level or equivalence class-level counts), which may be obtained either through pseudo-alignment using kallisto or Salmon, or by classical alignment-based tools followed by transcript-level quantification (e.g. STAR and RSEM). Let Y_{gti} denote the observed expression value for a given transcript $t = 1, \ldots, T_g$ of gene $g = 1, \ldots, G$ in cell or sample $i = 1, \ldots, n$. The total expression of gene g in sample i can then be expressed as

$$Y_{g,i} = \sum_{t=1}^{T_g} Y_{gti},$$

i.e., by taking the sum of expression values for all T_g transcripts belonging to gene g in sample i. The usage of transcript t in sample or cell i can then be estimated as

$$U_{gti} = \frac{Y_{gti}}{Y_{g,i}}.$$

Next, we adopt a quasi-binomial (QB) generalized linear modelling (GLM) strategy to model transcript usage. As opposed to canonical maximum likelihood models, this quasi-likelihood modelling strategy only requires the specification of the first two moments of the response distribution, i.e., the mean and the variance. We define the mean of the QB model as

$$E[U_{gti}|X_i, Y_{g,i}] = \pi_{gti},$$

$$\log\left(\frac{\pi_{gti}}{1 - \pi_{gti}}\right) = \eta_{gti},$$

$$\eta_{gti} = X_i^T \beta_{gt}.$$

In this notation, π_{gti} is the expected probability of observing transcript t within the pool of transcripts $(1, \ldots, T_g)$ belonging to gene g in sample i and, as such, corresponds to its expected usage for that sample. We model π_{gti} using a logit link function, where β_{gt} is a $p \times 1$ column vector of regression parameters modelling the association between the average usage and the covariates for transcript t. Finally, X_i^T is a row in the $n \times p$ design matrix X that corresponds with the covariate pattern of sample i, with p the number of parameters of the mean model, i.e., the length of vector β_{gt}.

The variance of the QB model can be described as

$$\text{Var}[U_{gti}|X_i, Y_{g,i}] = \frac{\pi_{gti}(1 - \pi_{gti})}{Y_{g,i}} \phi_{gt},$$

with $Y_{g,i} \pi_{gti} (1 - \pi_{gti})$ the canonical variance of the binomial distribution and ϕ_{gt} a transcript-specific overdispersion parameter to describe additional variance in the data with respect to the binomial variance. We adopt the empirical Bayes procedure from Smyth \textit{et al.} as implemented in the \textit{squeezeVar} function of the \textit{limma} Bioconductor R package, to stabilize the estimates of ϕ_{gt} by borrowing information across transcripts, which is adopted in the default edgeR quasi-likelihood workflow for bulk RNA-seq data. Note that stabilizing the dispersion estimation is particularly useful in datasets with a small sample size.
Taken together, the quasi-binomial thus allows us to model the log-odds of drawing a particular transcript \(t \) from the pool of transcripts from the corresponding gene \(g \) across samples. The intercept also has an interpretation of a log-odds and the remaining mean model parameters are log-odds ratios, which may thus be interpreted in terms of differential transcript usage. We adopt t-tests that are computed based on the log-odds ratio estimates of the QB model and the posterior variance, as obtained from the empirical Bayes procedure. P-values are computed assuming a t-distribution under the null hypothesis with posterior degrees of freedom calculated as the sum of the residual degrees of freedom and the prior degrees of freedom from the empirical Bayes procedure.

For bulk analyses, the implementation of satuRn as described above provides a high performance and a good control of the FDR. However, for single-cell datasets we observed that our inference is too liberal (see Extended data figure S14), which could suggest that the theoretical null, the t-distribution, is no longer valid. Indeed, in large-scale inference settings, failure of the theoretical null distribution is often observed. Efron\(^37\) (Chapter 6) describes four reasons why the theoretical null distribution may fail; failed mathematical assumptions, correlation across features (transcript expression), correlation across subjects (samples or cells), and unobserved confounders in observational studies. To avoid these issues, Efron proposes to exploit the massive parallel data structure of omics datasets to empirically estimate the null distribution of the test statistics.\(^37\) To this end, Efron converts the test statistic to z-scores, which should follow a standard normal distribution under the theoretical null, and then proposes to approximate the empirical null distribution with a normal distribution with unknown mean (\(\mu^* \)) and standard deviation (\(\sigma^* \)), which can be estimated by maximum likelihood on a subset of the test statistics near zero.

As such, we first convert the two-sided p-values to z-scores according to

\[
z_{gt} = \Phi^{-1}\left(\frac{p_{gt}}{2}\right) \times \text{sign}(S_{gt}),
\]

(5)

with \(\Phi \) the cumulative distribution function for the standard normal distribution, \(p_{gt} \), the original two-sided p-value indicating the statistical significance of differential usage of transcript \(t \) from gene \(g \) between the conditions of interest, \(\text{sign}(S_{gt}) \) the sign of the t-test statistic \(S_{gt} \) and \(Z_{gt} \), the resulting z-score. Next, we adopt the maximum likelihood procedure, implemented in the locfdr function of the locfdr R package from CRAN,\(^38\) to estimate the mean \(\mu^* \) and standard deviation \(\sigma^* \) of the empirical null distribution. Based on these estimates, we recompute the z-scores and corresponding p-values as follows

\[
z^*_{gt} = \frac{(z_{gt} - \mu^*)}{\sigma^*}
\]

(7)

\[
p^*_{gt} = 2\Phi\left(-\text{abs}\left(z^*_{gt}\right)\right).
\]

(8)

Finally, the resulting (empirical) p-values are corrected for multiple testing with the FDR method of Benjamini and Hochberg.\(^32\) As opposed to the original p-values that were calculated based on the theoretical null distribution for the t-statistics, we found that this procedure allows for a better FDR control in single-cell applications.

DTU tools literature

Table 1 provides a brief description of the DTU methods that were included in the performance benchmarks of this paper. For more details, we refer to the Extended data\(^7\) and the respective original publications. Note that all methods were run in R3.6.1 using default settings.

Filtering

We adopted two different strategies for filtering transcripts in each of the RNA-seq datasets in the performance benchmarks.

The first filtering strategy uses the `filterByExpr` function implemented in edgeR.\(^39\) This filtering strategy only retains transcripts that have at least an expression level of \(\text{min.count} \) counts-per-million (CPM, calculated as the number of read counts divided by the total number of reads in the dataset and multiplied by one million) in at least \(n \) samples or cells. In addition, the sum of the CPM of the transcript across all cells or samples must be at least \(\text{min.total.count} \). For the bulk RNA-seq datasets, we use the default settings \(\text{min.count} = 10, n = \min(10, 0.7\times n_\text{s}) \) and \(\text{min.total.count} = 10 \), with \(n_\text{s} \) the number of samples or cells in the smallest group. For the scRNA-seq datasets, the settings are adjusted to; \(\text{min.count} = 1 \) (as requiring a transcript to be expressed in all single-cells is a stringent criterium), \(n = 0.5\times n_\text{s} \) and \(\text{min.total.count} = 0 \). In addition, if only one transcript of a gene passes this filtering criterion, it is omitted from the analysis, as DTU analysis is meaningless when only one transcript is retained. As such, we specifically set the parameters to generate a very lenient filtering criterium.
The second filtering strategy uses the `dmFilter` function implemented in DRIMSeq. This filter is more stringent and specifically designed for DTU analysis. The filtering process can be thought of as proceeding in three steps. The first step requires the transcripts to have a count of at least 10 in at least \(n_s \) samples. The second filtering step requires the transcript to make up at least 10% of the total count of its corresponding gene in at least \(n_s \) samples or cells. The third filtering step removes all transcripts for which the corresponding gene has a count below 10 in any of the samples or cells in the dataset. Again, if only one transcript of a gene passes this filtering criterion, it is omitted from the analysis.

Abundance metrics

We additionally compared the results between two quantification strategies: counts and scaledTPM abundances. Counts are the transcript-level abundances estimated by kallisto or Salmon, i.e., the number of reads mapping to each transcript. scaledTPM normalized abundances are obtained by first computing transcript-per-million (TPM) abundances by (1) dividing the transcript counts by the length of the corresponding transcript in kilobases, (2) dividing by a cell/sample.
specific scaling factor, which is computed by taking the sum across transcripts of all length-corrected abundances from (1) and (3) multiplying by one million. Finally, the TPM abundances are scaled per cell/sample, so that the sum of the TPM abundances in the cell/sample equals the original number of counts for that cell/sample.

Bulk simulation study
To evaluate the performance of the different DTU analysis methods, we first adopt three simulated bulk RNA-seq datasets from previous publications: the simulated dataset from Love et al.18 (dataset 1) and both the Drosophila melanogaster (dataset 2) and Homo sapiens (dataset 3) simulation studies from Van den Berge et al.40 All three datasets were generated based on parameter values obtained from real RNA-seq samples, to mimic real RNA-seq data as close as possible.

Notably, there is a subtle difference in how DTU is introduced between the two simulation frameworks. For dataset 1 from Love et al.18, the origin of DTU is twofold: On the one hand, DTU was specifically introduced by swapping the transcript-per-million (TPM) abundances between two expressed isoforms. On the other hand, DTU was also obtained as a consequence of introducing DTE, where a single expressed isoform was induced to be differentially expressed at a certain log fold change, which leads to DTU if this transcript belongs to a gene expressing multiple isoforms. For datasets 2 and 3 from Van den Berge et al.40, there is only one source of DTU. The number of differentially used transcripts within a gene was sampled ranging from a minimum of two up to a random number drawn from a binomial distribution with size equal to the number of transcripts and success probability 1/3, thus allowing for differential usage of more than two transcripts within the same gene. For the selected transcripts, the percentage of usage within the corresponding gene is first computed on the TPM scale. Next, DTU was introduced by swapping these percentages between transcripts. Subsequently, the swapped percentages are multiplied by the original gene-level read count per kilobase (RPK) to obtain transcript-level RPK. Finally, TPM and counts are computed based on these transcript-level RPK. Additionally, dataset 1 uses Salmon2 (version 1.1.0) for estimating transcript-level abundances, whereas datasets 2 and 3 were quantified with kallisto1 (version 0.46.0).

Real bulk RNA-seq dataset evaluation
We evaluate the performance of the different DTU methods on real bulk RNA-seq data, by subsampling a homogeneous set of samples from the large bulk RNA-seq dataset available from the Genotype-Tissue Expression (GTEx) consortium41 release version 8. Nine datasets were generated non-parametrically. More specifically, we first selected samples from adrenal gland tissue that were extracted with the RNA extraction method “RNA Extraction from Paxgene-derived Lysate Plate Based”. From the remaining samples we subsampled nine datasets, comprising three repeats for each of three sample sizes; 5 versus 5, 20 versus 20 and 50 versus 50 samples. Next, DTU is artificially in 15% of the genes. The number of differentially used transcripts within a gene was determined with the strategy of Van den Berge et al.40 For the selected transcripts, the counts of transcripts within the same genes are swapped in one group of samples or cells, inducing DTU signal between the groups. The GTEx data was quantified with RSEM35 version 1.3.0.

Real single-cell RNA-seq datasets evaluation
We evaluate the performance of the different DTU methods on real scRNA-seq datasets. These scRNA-seq datasets were generated non-parametrically by subsampling a homogeneous set of cells from three real scRNA-seq datasets,26,29,42 after which DTU is artificially introduced as discussed above (see Methods, Real bulk RNA-seq dataset evaluation paragraph). The datasets from Chen et al.29 and Tasic et al.42 were quantified using Salmon v1.1.0, whereas the dataset from Darmanis et al.26 was quantified with Salmon v0.8.2 as obtained from Soneson et al.43

For the dataset of Chen et al.29 which was used to construct Figures 4 and the Extended data Figure S7,25 we selected a homogeneous population of cells by considering only the EpiStem cells of female mice, resulting in a dataset of 120 cells. From this homogeneous population of cells, we then subsampled six datasets, comprising three repeats for each of two sample sizes: 20 versus 20 and 50 versus 50 cells. Next, DTU was artificially introduced by swapping transcript counts between groups of cells. Finally, we adopted either edgeR or DRIMSeq for filtering.

The other two scRNA-seq datasets were generated analogously. For the dataset of Tasic et al.42 which was used to construct Figure S8 (Extended data25), we selected a homogeneous population of cells by considering only the Lamp5 cells in the anterior lateral motor cortex of mice without any eye conditions, resulting in a dataset of 897 cells. After introducing DTU by swapping transcript counts, we randomly subsampled 20, 75 or 200 cells from each group. For the dataset of Darmanis et al.26 which was used to construct Extended data25 Figure S9, we selected the immune cells that clustered together in tSNE cluster 8 of the original publication, resulting in a dataset of 248 cells. After introducing DTU, we randomly subsampled 20, 50 or 100 cells from each group.
Case study differential gene expression analysis
We perform a differential gene expression (DGE) analysis on a subset of the Tasic single-cell dataset, i.e. between different the cell types originating from the ALM and VISp regions of the glutamatergic L5 IT subclass. We use the quasi-likelihood method of edgeR to model the gene expression profiles and additionally adopt the edgeR glmTreat function to test differential expression against a log2-fold change threshold (log2-fold change = 1). Statistical significance was evaluated at the 5% FDR level.

Performance assessment
We assess the performance of different DTU methods on a bulk simulation dataset with scatterplots of the true positive rate (TPR) versus the false discovery rate (FDR), according to the following definitions:

\[TPR = \frac{TP}{TP + FN} \]
\[FDP = \frac{FP}{FP + TP} \]
\[FDR = E[FDP] \]

where FN, FP and TP denote the numbers of false negatives, false positives and true positives, respectively. The FDR is the expected value of the false discovery proportion (FDP), which is the ratio of the number of false positives to the total number of positives. The FDR-TPR curves are constructed using the Bioconductor R package ICOBRA version 1.14.0.

Scalability benchmark
The scalability benchmark was run on subsets of the Chen scRNA-seq dataset, which contains 617 cells in total. For the scalability benchmark with respect to the number of cells in the dataset, we randomly subsample a certain number of cells (8, 16, 32, 64, 128 or 256 cells per group) from the dataset (without introducing DTU or selecting specific homogeneous cell populations). Next, we filter this subsample using the edgeR-based filtering criterion. This was done to remove very lowly abundant transcripts, which may otherwise cause problems in the parameter estimation procedure. From the remaining transcripts, we randomly subsampled to a total of 30,000 transcripts before running the DTU analysis. To allow for a scalability benchmark of BANDITS, which scales poorly to the number of transcripts (Figure 5B), we also generated a dataset with only 1,000 transcripts (see Extended data figure S1). For the scalability benchmark with respect to the number of transcripts, we randomly sampled two groups of 16 cells from the dataset. After applying the edgeR-based filter, we sampled eight distinct numbers of transcripts: 1,000, 2,000, 5,000, 10,000, 15,000, 20,000, 25,000, 30,000 and 35,000 prior to the DTU analysis.

We additionally perform a scalability benchmark on the GTEx bulk RNA-seq dataset. Using the same strategy as described above for the scRNA-seq scalability benchmark, we here assess scalability with respect to the number of samples (8, 16, 32 or 64 samples per group) while keeping the number of transcripts fixed at 30,000 and scalability with respect to the number of transcripts (same range as above) while keeping the number of samples fixed at sixteen. Results are displayed in the Extended data figures S20 and S21.

All scalability benchmarks were run on a single core of a virtual machine with an Intel(R) Xeon(R) CPU E5-2420 v2 (2.20GHz, Speed: 2200 MHz) processor and 30GB RAM.

Results
We first evaluate the performance of our novel DTU method, satuRn, on publicly available simulated and real bulk RNA-seq data, as well as on real scRNA-seq data. In general, we found that the performance of satuRn was at least on par with the performances of the best tools from the literature. In addition, our method controls the FDR closer to the nominal level, on average. Second, we show that satuRn scales towards the large data volumes generated by contemporary bulk and single-cell RNA-seq experiments, allowing for a transcriptome-wide analysis of datasets consisting of several thousands of cells, in only a few minutes. Finally, we analyze a large full-length scRNA-seq case study dataset, where we obtain highly relevant biological results on isoform-level changes between cell types that would have remained obscured in a canonical differential gene expression (DGE) analysis.

Performance on simulated bulk RNA-seq datasets
To evaluate the performance of satuRn, we adopt three simulated bulk RNA-seq datasets from previous publications. Dataset 1 was obtained from Love et al. and contains two groups of 12 samples each, which we subsample without
replacement to evaluate 3vs3, 6vs6 and 10vs10 two-group comparisons. Datasets 2 and 3 are the *Drosophila melanogaster* and *Homo sapiens* simulation studies from Van den Berge *et al.* and Soneson *et al.*, which both contain two groups of five samples each. In brief, all datasets were constructed by generating sequencing reads based on parameters that are estimated from real bulk RNA-seq data. DTU between groups of samples was artificially introduced in the data, prior to the quantification of expression using either Salmon (dataset 1) or kallisto (datasets 2 and 3). Notably, there are some methodological differences between the simulation framework of dataset 1 and that of datasets 2 and 3 with respect to the read generation and the simulation of DTU signal (see Methods). In terms of transcript filtering, we adopt two different strategies as implemented by edgeR and DRIMSeq, which correspond to a lenient and more stringent filtering, respectively (see Methods).

The result of the performance evaluation of satuRn with respect to other DTU methods on the three simulated bulk datasets is displayed in Figure 2. Figure 2A shows the average performance over three 6 versus 6 subsamples for dataset 1, after filtering with edgeR. Figures 2B and 2C display the performance on datasets 2 and 3 after edgeR filtering, respectively. In all three datasets, satuRn outperforms NBSplice, edgeR diffsplice and limma diffsplice. Intriguingly, the performance of DRIMSeq varies strongly between the three datasets. This discrepancy may be explained by the different strategies for generating reads and introducing DTU between dataset 1 on the one hand, and datasets 2 and 3 on the other hand (see Methods). We furthermore find the performance of satuRn is on par with the best performing tools from the literature, DEXSeq and DoubleExpSeq. In addition, both satuRn and DoubleExpSeq provide a stringent control of the FDR, while DEXSeq and DRIMSeq are often too liberal, as reported previously.

Figure 2. Performance evaluation of satuRn on three simulated bulk RNA-Seq datasets. Each curve visualizes the performance of each method by displaying the sensitivity of the method (true positive rate, TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR threshold. The performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq, for all datasets. In addition, our method consistently controls the FDR close to its imposed nominal FDR threshold.
We also evaluated the effects of sample size and different filtering criteria on the performance of the different DTU methods (see Extended data figures S2, S13). Neither sample size nor filtering criterion had a profound impact on the ranking of the performances of the different DTU methods; satuRn, DEXSeq and DoubleExpSeq remain the best performing methods overall. In addition, we studied the impact of using either transcript count estimates or normalized abundance estimates (scaledTPM, see Methods) as input data for the DTU algorithms. We observed a slightly higher performance in all datasets when providing count estimates, except for Dataset 1 from Love et al. Love et al. introduced DTU either by swapping TPM abundances or by introducing a fold change in transcript expression in one group of samples, again on TPM abundances. However, when back-transforming the swapped TPM abundances to count abundances, the transcript lengths were not swapped. Hence, the simulation strategy can induce differences in the total count for a gene, which in turn may alter the usage of all (target and off-target) transcripts in that gene when counts are used as an input, which gives rise to many false positives in off-target transcripts of DTU genes. When introducing DTU by swapping counts (real bulk and single-cell evaluations), we could expect spurious signal in analyses on the TPM scale for the same reason. However, the difference between the transcript count and TPM analyses was much less pronounced, which was also the case for the Van den Berge et al. simulation approach. Therefore, all performance evaluations in the body of this publication were generated with count estimates as input data, except for Figure 2, panel A. For a full overview on the effects of sample size, filtering criteria and data input type, we refer to Figures S2 and S13 of the Extended data.

Performance on a real bulk RNA-seq dataset

While simulation studies are common for evaluating the performance of DE analysis methods, there is currently no consensus on the simulation strategy that best mimics real (sc)RNA-seq data. In addition, simulation frameworks typically generate data according to parametric assumptions on the data-generating mechanism, thus potentially favoring DE methods that adopt similar distributional assumptions in their statistical model. An alternative procedure is to non-parametrically modify a real dataset. Here, we obtained different subsamples from the large bulk RNA-seq dataset available from the Genotype-Tissue Expression (GTEx) consortium, generating nine datasets in total, i.e. three repeats for each of three sample sizes; 5 versus 5, 20 versus 20 and 50 versus 50 samples. We then artificially introduced DTU in these data by swapping transcript counts between groups of samples (see Methods for details). Again, we adopt two different filtering strategies as implemented by edgeR and DRIMSeq (see Methods).

The results of the performance evaluation of satuRn on the real bulk datasets upon edgeR filtering is displayed in Figure 3. In agreement with the results obtained from the simulated bulk RNA-seq study, we observe that the performance of satuRn is on par with DEXSeq and DoubleExpSeq. Again, satuRn provides a conservative FDR control. While the FDR control of DoubleExpSeq is good overall, it appears to become too liberal with increasing sample size. In this evaluation, DRIMSeq performs poorly, in contrast to simulated bulk RNA-seq datasets 2 and 3, but in line with the performance evaluation on the simulated bulk RNA-seq dataset 1. Note that DEXSeq, DRIMSeq and NBSplice were omitted from the analysis of the larger comparison, as these methods do not scale to large datasets (Figure 1).

Figure 3. Performance evaluation of satuRn on a real bulk RNA-Seq dataset. Each curve visualizes the performance of each method by displaying the sensitivity of the method (true positive rate, TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR threshold. The performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq. In addition, satuRn consistently controls the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing sample sizes. Note that DEXSeq, DRIMSeq and NBSplice were omitted from the analysis of the larger comparison, as these methods do not scale to large datasets (Figure 1).
largest dataset (50 versus 50 samples), as these methods do not scale to such large datasets (Figure 1). Adopting the DRIMSeq-based filtering did not have a qualitative impact on the performance (Extended data Figure S6).

Performance on real single-cell data
Finally, we evaluate the performance of satuRn on single-cell RNA-seq data. As with the real bulk analysis, the single-cell datasets were generated by subsetting from three different real scRNA-seq datasets26,29,42 (see Methods). Again, we subsampled three repeats of different sample sizes, artificially introduced DTU with the swapping strategy and applied either the edgeR- or DRIMSeq-based filtering criterion (see Methods for details).

By subsampling the Chen et al.29 dataset, we generated three repeats of two sample sizes, i.e. 20 versus 20 and 50 versus 50 cells. The results of the performance evaluation of satuRn on this dataset upon edgeR filtering is displayed in Figure 4. The performance of satuRn is slightly better than that of the best tool from the literature, DoubleExpSeq. As compared to the evaluations on bulk data, we observe a performance drop for DEXSeq relative to satuRn and DoubleExpSeq. This, in combination with its poor scalability (Figure 1), greatly compromises the use of DEXSeq for the analysis of scRNA-seq data. satuRn again provides a stringent control of the FDR, while the inference of DoubleExpSeq is too liberal, again becoming more problematic for larger sample sizes. Adopting the DRIMSeq filter did not have a qualitative impact on the performances (Extended data figure S7). The results of the performance evaluations on the other two scRNA-seq datasets26,42 are in strong agreement with the results displayed here, with satuRn performing at least on par with DoubleExpSeq and satuRn additionally controlling the FDR around the nominal level (Extended data figures S8 and S9).

Notably, we found that the theoretical null distribution of the test statistics from satuRn failed to provide good FDR control in single-cell analyses (Extended data figure S14). To obtain proper p-values with satuRn in single-cell applications, we therefore estimate the null distribution of the test statistic empirically (see Methods, satuRn paragraph). Note that the performances in the bulk RNA-seq benchmarks are not affected by adopting the empirical null distribution, because no deviations of the theoretical null distribution occur in bulk data. However, the empirical null resulted in much improved FDR control in scRNA-seq datasets (Extended data figure S14). We therefore adopt the empirical null estimation as the default setting in satuRn. As such, all satuRn results in this publication are relying on the empirical null strategy. As a final remark, we likewise attempted to improve the FDR control of DoubleExpSeq. However, in all analyses with DoubleExpSeq we observed a large spike of p-values equal to 1, which poses a problem when estimating the empirical null distribution (Extended data figure S15). Therefore, this strategy could not be used to improve the FDR control of DoubleExpSeq.

Figure 4. Performance evaluation of satuRn on a real scRNA-Seq dataset. Each curve visualizes the performance of each method by displaying the sensitivity of the method (true positive rate, TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR threshold. The performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq. In addition, our method provides a stringent control of the FDR, while DoubleExpSeq becomes more liberal with increasing sample sizes (see also Extended data figure S7). Note that DEXSeq and DRIMSeq were omitted from the two largest comparisons, as these methods do not scale to large datasets (Figure 1). NBSplice was omitted from all comparisons, as it does not converge on datasets with many zeros, such as scRNA-Seq datasets.
In these benchmark single-cell datasets, DTU signal was introduced non-parametrically by swapping transcript counts (see Methods), thus introducing DTU signal of different magnitude in the different transcripts. In Extended data25 Figures S16-S19, we stratified the FDR-TPR curves on the difference in the observed average transcript usage between the two groups of cells. In all benchmark datasets, satuRn and DoubleExpSeq are more successful in detecting small differences as compared to the other methods. Indeed, while all methods succeed in detecting large differences in absolute transcript usage, the performance gain of satuRn and DoubleExpSeq in the results without stratification can be attributed to picking up DTU with smaller effect sizes.

![Scalability evaluation on scRNA-Seq data. A: Runtime with respect to the number of cells in a scRNA-Seq dataset. Left panel: DRIMSeq and especially DEXSeq scale poorly with the number of cells in the dataset. Right panel: Detailed plot of the fastest methods. satuRn scales linearly with increasing numbers of cells, with a slope that is comparable to that of limma diffsplice. As such, satuRn can perform a DTU analysis on a dataset with two groups of 256 cells each and 30,000 transcripts in less than three minutes. For all sample sizes, the number of transcripts in the datasets were set at 30,000. Note that NBSplice was not included in this analysis as it fails to converge on datasets with a large proportion of zero counts. B: Runtime with respect to the number of transcripts in a scRNA-Seq dataset. Left panel: DEXSeq, DRIMSeq and especially BANDITS scale poorly to the number of transcripts in the dataset. Right panel: Detailed plot of the fastest methods. satuRn scales linearly with increasing numbers of transcripts, but with a steeper slope than edgeR diffsplice, DoubleExpSeq and limma diffsplice. The number of cells in the dataset was set fixed to two groups of 16 cells. All scalability benchmarks were run on a single core.](image)
Scalability benchmark

We performed a computational benchmark of satuRn to investigate its scalability with respect to the number of samples/cells and the number of transcripts in an RNA-seq dataset. All scalability benchmarks were run on a single core of a Linux machine with an Intel(R) Xeon(R) CPU E5-2420 v2 (2.20GHz, Speed: 2200 MHz) processor and 30GB RAM. The results are displayed in Figure 5.

Figure 5A displays the scalability with respect to the number of cells in the dataset, (different subsets of the single-cell dataset of Chen et al.25), while keeping the number of transcripts in the dataset fixed at 30,000. From the left panel, it is clear that DRIMSeq and especially DEXSeq scale very poorly with the number of cells in the dataset, which was already shown in Figure 1B. In the right panel, we focus on the four remaining methods. satuRn scales linearly with increasing numbers of cells, with a slope comparable to limma diffsplice. As such, satuRn can perform a DTU analysis on a dataset with two groups of 256 cells each and 30,000 transcripts in less than three minutes. Note that BANDITS30 was not included in this benchmark, as it does not scale to datasets with this many transcripts. For a performance and scalability evaluation of BANDITS on datasets with a lower number of transcripts, we refer to Extended data figure S1.25 NBSsplice was also omitted as it fails to converge on datasets with a large proportion of zero counts.

Figure 5B shows the scalability with respect to the number of transcripts in the dataset, while keeping the number of cells in the dataset fixed to two groups of 16 cells. As shown in Figure 1C, BANDITS, DEXSeq and DRIMSeq scale poorly to datasets with many transcripts. From the right panel, satuRn scales linearly with increasing numbers of transcripts, albeit with a steeper slope than edgeR diffsplice, DoubleExpSeq and limma diffsplice. Note, that the scalability of DTU analyses can be improved through parallelization, if this is allowed by the underlying algorithm. Parallel execution is possible in satuRn and in all methods from the literature that were discussed in this manuscript, except for DoubleExpSeq and NBSsplice.

In Extended data Figure S20,25 we additionally evaluate the scalability of the DTU tools on different subsets of the bulk GTEx41 dataset. These results are in line with those of the single-cell scalability benchmark, with DEXSeq and DRIMSeq being markedly slower than the other methods. When directly comparing the scalability between the bulk and single-cell data on equally sized subsets (Extended data Figure S2125), we found limited differences in scalability between the data types, except for DEXSeq. DEXSeq scales considerably better on bulk data than on single-cell data, suggesting that the estimation of the GLM parameters is slower when the data are sparse. However, as the scalability profile of DEXSeq is quadratic with respect to the number of cells/samples in the data, it is still infeasible to adopt DEXSeq in datasets with many cells/samples.

Altogether, we find that while several methods for DTU analysis exist, none are optimally suited for analyzing single-cell datasets. DRIMSeq, NBSsplice, edgeR diffsplice and limma diffsplice have a much lower overall performance in our benchmarks. DEXSeq does not scale to large datasets. Finally, DoubleExpSeq does not support experimental designs that require an analysis with multiple additive effects, e.g. randomized complete block designs and designs where batch-effect correction is required, which are essential for many practical scRNA-Seq analysis settings.40 In addition, it fails to control the FDR at the desired level, especially with increasing sample sizes. With satuRn, we overcome these issues and effectively unlock DTU analysis for single cell applications.

Case study

We use satuRn to perform a DTU analysis on a subset of the single-cell (SMART-seq211) RNA-seq dataset from Tasic et al.42 In addition, we analyze the same dataset with DoubleExpSeq and limma diffsplice, which are the only other DTU methods that scale to large scRNA-seq datasets and have a reasonable performance in our benchmarks. DEXSeq does not scale to large datasets. Finally, DoubleExpSeq does not support experimental designs that require an analysis with multiple additive effects, e.g. randomized complete block designs and designs where batch-effect correction is required, which are essential for many practical scRNA-Seq analysis settings.40 In addition, it fails to control the FDR at the desired level, especially with increasing sample sizes. With satuRn, we overcome these issues and effectively unlock DTU analysis for single cell applications.

DGE analysis with edgeR

In their original DGE analysis, Tasic et al.42 obtained the largest number of differentially expressed genes between the cell types originating from the ALM and VIsp regions of the glutamatergic L5 IT subclass (2,739 cells in total), where L5 refers to layer-of-dissection 5 and IT refers to the intratelencephalic projection type. Here, we first perform a DGE analysis with
an edgeR-based workflow (see Methods) on the same comparisons between L5 IT cell types that were assessed by Tasic et al. Table 2 shows the number of differentially expressed genes between the groups of interest in column 4.

DTU analysis with satuRn
Next, we perform a DTU analysis for the same cell types using satuRn. In column 5 of Table 2, we display the number of differentially used transcripts for each comparison. We also show the number of unique genes in which we find evidence for changes in usage of at least one transcript (column 6). While the number of differentially used transcripts is lower than the number of differentially expressed genes in each of the contrasts, we did identify differentially used transcripts in all contrasts of interest. Most interestingly, we observe that the overlap between the differentially expressed genes and the genes in which we found evidence for DTU is very limited (Table 2, column 7). This shows that the information obtained from our DTU analyses are orthogonal to the results from the canonical DGE analyses, which has been reported previously for simulated bulk data.18

Gene set enrichment analysis
We perform a gene set enrichment analysis (GSEA52) on the three comparisons with most DE genes and most genes with evidence for DTU (comparisons 5, 6 and 7). Similar gene ontology categories are returned for the set of DGE genes and the set of DTU genes, with many of the enriched processes being biologically relevant in the context of this case study. Enriched gene sets include the gene ontology classes, synapse, neuron projection, synaptic signaling and cell projection organization. This shows that the complementary information brought by the DTU analysis is indeed biologically relevant. For an extensive overview of the GSEA of the set of DGE genes and genes with evidence of DTU in comparisons 5, 6 and 7, we refer to the Extended data.25

satuRn identifies biologically relevant DTU transcripts
To display the utility of satuRn for identifying and visualizing DTU transcripts in scRNA-seq datasets, we focus on comparison #6 of the DTU analysis and discuss the gene P2X Purinoceptor 4 or P2rx4 (Ensembl ID ENSMUST00000029470), also a gene which is part of a family of purinergic receptors that have been implicated in functions such as learning, memory and sleep. In the DGE analysis, no evidence for differential expression of P2rx4 was found at the gene level (FDR-adjusted p-value = 1). By contrast, in our DTU analysis the transcripts of P2rx4 displayed the highest statistical evidence for differential usage within the set of transcripts that could be assigned to the ontology class ‘neuron projection’.52 The mean usage of transcript ENSMUST00000081554 is estimated to be 28.9% in Tnc cells and 75.9% in Hsd11b1 Endou cells (FDR-adjusted p-value = 1.22E-13). For transcript ENSMUST000000195963, the transcript usage changes from 58.2% in Tnc cells and 16.6% in Hsd11b1 Endou cells (FDR-adjusted p-value = 1.79E-10). For the third transcript of P2rx4 that was assessed in our DTU analysis, ENSMUST000000132062, we found no statistical evidence for DTU (FDR-adjusted p-value = 0.534). In Figure 6, we show the output for the visualization of the transcript usages for P2rx4 as obtained from satuRn. Interestingly, the majority transcript in the Tnc cell type, ENSMUST000000195963, is not protein coding.52 By contrast, the majority transcript in the Hsd11b1 Endou cell type, ENSMUST00000081554, is coding for the P2X purinoceptor protein (UniProt ID Q9Z256). As such, the changes in transcript usage between both cell types represent actual biological differences in the functionality of the gene products, which may be relevant to the process of neuron projection. This functional difference would have remained obscured when only performing a canonical DGE analysis.

Table 2. Number of differentially expressed genes and differentially used transcripts in eight comparisons between cell types.

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Cell type 1 (ALM)</th>
<th>Cell type 2 (VISp)</th>
<th>DGE</th>
<th>DTU Tx</th>
<th>DTU Gene</th>
<th>Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cpa6 Gpr88</td>
<td>Batf3</td>
<td>203</td>
<td>24</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Cbln4 Fezf2</td>
<td>Col27a1</td>
<td>281</td>
<td>92</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Cpa6 Gpr88</td>
<td>Col6a1 Fezf2</td>
<td>154</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Gkn1 Pcdh19</td>
<td>Col6a1 Fezf2</td>
<td>231</td>
<td>33</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>LYPD1 Gpr88</td>
<td>Hsd11b1 Endou</td>
<td>331</td>
<td>118</td>
<td>69</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Tnc</td>
<td>Hsd11b1 Endou</td>
<td>595</td>
<td>193</td>
<td>112</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Tmem163 Dmrtb1</td>
<td>Hsd11b1 Endou</td>
<td>471</td>
<td>90</td>
<td>53</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Tmem163 Arhgap25</td>
<td>Whrn Tox2</td>
<td>197</td>
<td>63</td>
<td>40</td>
<td>1</td>
</tr>
</tbody>
</table>
Comparison to limma diffsplice

We also analyzed the case study dataset with limma diffsplice.23 When running limma diffsplice with default settings, a large number of DTU transcripts was returned (Extended data25 figure S22) and we observe that the p-values were shifted towards smaller values (Extended data25 figures S23 and S24). Therefore, we adopted the same empirical null strategy as implemented in satuRn to post-process the results. While this dramatically decreased the number of significant DTU transcripts, limma diffsplice still identified more transcripts (i.e., true or false positives) than our method. However, when we inspected the transcripts that were highly ranked in the top DTU list of limma diffsplice but lowly ranked in our top list, we found that most of these transcripts either originate from genes that are lowly expressed, or they are transcripts with a
large fraction of zero counts (i.e., zero expression in a large percentage of cells). Limma diffsplice thus claims differential usage more often for transcripts that only contain little information for assessing DTU. This is depicted in Figure 7.

This behavior can be expected. Limma diffsplice tests for DTU by comparing the log-fold change in expression of transcript t with the average log-fold change in the expression of all transcripts belonging to the same gene as transcript t. As such, limma diffsplice does not incorporate any information on the absolute gene expression levels. In contrast, our quasi-binomial GLM framework models the log-odds of drawing a particular transcript t from the pool of transcripts in the corresponding gene. As a consequence, transcripts belonging to lowly expressed genes are correctly considered less informative in satuRn and are thus less likely to be picked up. For example, in Figure 8A, we show that while our method estimates a mean usage of 7% in Tnc cells and 26% in Hsd11b1 Endou cells (indicated by the gold diamond), the transcript is not identified as differentially used, given the low abundance of the corresponding gene and the highly variable single-cell level observations.

Conversely, by looking at the transcripts that were highly ranked in our DTU list but lowly ranked in the top list of limma, we observe that our model is more likely to capture small changes in transcript usage that are stable across all cells and belong to genes that are highly expressed. An example of such a transcript is shown in Figure 8B. satuRn estimates a mean usage of 3% in Tnc cells and 6% in Hsd11b1 Endou cells. While this is only a minor change in transcript usage, satuRn still identifies this transcript as differentially used because the gene is highly expressed and the small change in usage is supported by a large number of cells. In case such small differences in usage are not considered biologically meaningful, it is possible to set a threshold on the minimal desired difference. Finally, by not taking into account gene abundances, limma is more influenced by outlying observations that have a low gene-level abundance (Figure 8C). Indeed, DTU claims by limma are driven by differences in raw mean usages of transcripts. In Figure 8C, the raw mean usage of the transcript is 77% in Tnc cells and 45% in Hsd11b1 Endou cells, as indicated by the cyan diamonds. By contrast, the mean usage estimate by satuRn, which takes into account that the Hsd11b1 Endou cells expressing the transcript at 0% usage have low gene-level count, is 83% for Tnc cells and 75% for Hsd11b1 Endou cells, as indicated by the gold diamonds.

We therefore argue that, given the above observations, the transcripts identified by satuRn should be considered more reliable, as they generally originate from genes containing more information for assessing DTU.
Comparison to DoubleExpSeq

We additionally analyzed the dataset by Tasic et al. with DoubleExpSeq. DoubleExpSeq identified a large number of DTU transcripts in all eight comparisons between cell types, ranging from 335 to 4580 DTU transcripts (Extended data).
This is consistent with our performance benchmarks, which already suggested that DoubleExpSeq becomes overly liberal in single-cell datasets with a large number of cells (Figure 4, Extended data Figures S7, S8 and S9). We therefore expect many of these transcripts to correspond to false positives. Furthermore, this is reflected in the pathological distribution of p-values obtained by DoubleExpSeq, where p-values tend to be small and therefore the analysis too liberal (Extended data figure S25). Furthermore, as discussed in the benchmark studies, we could not adopt the empirical null strategy to improve the FDR control of DoubleExpSeq. Again, a large number of p-values equal 1 poses a problem for estimating the empirical null distribution (Extended data figure S26).

While the results of DoubleExpSeq are likely to be overly liberal, the ranking of the transcripts (based on the p-values of the DTU analysis) might still be reasonable. In Figure 9 we observe a large overlap between the top 200 transcripts identified by satuRn in comparison #6 of the case study and the top 200 transcripts of DoubleExpSeq in that comparison. This overlap is considerably smaller with a limma diffsplice analysis.

Finally, we note that while DoubleExpSeq could still be used in this case study given the simple factorial design (using a single factor to assign each cell to a cell type), DoubleExpSeq cannot be used in multifactorial designs, for instance to compare expression levels across multiple cell types between multiple samples or treatment groups.

Analyses with complex experimental designs
The analysis of scRNA-seq experiments often requires incorporating covariates in the statistical model, for instance to correct for batch effects or to account for subject-level baseline characteristics like age or body mass index. satuRn and most other DTU tools allow for the analysis of complex experimental designs with multiple categorical and continuous covariates (see Table 1). Exceptions are DoubleExpSeq and BANDITS that do not support modeling multiple covariates, which limits their utility for scRNA-seq data analysis and bulk RNA-seq experiments with complex designs. This may result in suboptimal data analysis. First, covariates may be able to explain a larger part of the variability in the data, which will increase the statistical power to pick up the effect of interest, as the explained variability would otherwise be incorporated in the error term. Second, the omission of covariates may result in biased parameter estimates. Third, the included covariates themselves could be key to further unravel the studied biological process.

To demonstrate satuRn’s ability to analyze datasets with complex experimental designs, we reanalyzed the single-cell study from Tasic et al. but now we include a main effect for cell type, gender, and the continuous covariate age, as well as an interaction effect between cell type and gender.

We first assess DTU between the Hsd11b1 Endou and Tnc cell types and compare the results with the original analysis ignoring gender and age effects. As expected, the additional covariates affect the ranking of transcripts in the resulting top list. For instance, transcript ENSMUST00000198199 dropped from the 8th to the 68th position after correcting for gender and age (empFDR = 1.89e-11 without covariates, empFDR = 2.26e-3 with covariates). Second, we assessed the interaction effect to prioritize transcripts for which the DTU between cell types differs according to gender.

Figure 9. Venn diagram displaying the degree of overlap of the top 200 transcripts in comparison #6 of the case study in three DTU analysis tools. We observe that in the set of the top 200 transcripts identified by satuRn, 149 transcripts overlap with the top 200 list from DoubleExpSeq. In the top 200 list of limma diffsplice, 108 transcripts are present that were not in the top lists of satuRn or DoubleExpSeq.
The differential transcript usage of ENSMUST00000145174 between Hsd11b1 Endou and Tnc cell types, for instance, is significantly different between female and male mice (empirical FDR = 0.0036). Indeed, for female mice there is evidence for DTU (empirical FDR = 0.01258), while no difference in usage is observed for male mice (empirical FDR = 0.9830, Figure 10).

Alternative input data types
Above, we have used satuRn for transcript-level differential usage analyses. However, there are two other differential usage analyses that we can perform at the sub gene level: differential usage of transcript compatibility counts, sometimes also referred to as equivalence class counts, and differential exon usage analyses. Below, we first repeat the case study on the single-cell dataset from Tasic et al. using a transcript compatibility count matrix as input to satuRn. Second, we perform a differential exon usage analysis on a subset of the “pasilla” bulk RNA-Seq dataset by Brooks et al., which is the dataset that was used in the exon-level differential usage analysis of the DEXSeq publication.

Case study on transcript compatibility counts
To obtain transcript-level abundance estimates, pseudoalignment tools like kallisto or Salmon rely on an expectation-maximization (EM) algorithm or similar for assigning reads to transcripts. This is a challenging task, given the largely overlapping RNA sequence of different gene isoforms. Therefore, it has been suggested to perform differential usage analyses on transcript compatibility counts (TCCs), sometimes referred to as equivalence class (EC) counts, instead. An equivalence class is the set of transcripts that a sequencing read is compatible with. As such, reads that are pseudo-aligned to the same set of transcripts are part of the same equivalence class. A TCC is the number of reads assigned to each of the different equivalence classes. Note, that TCCs can be obtained much faster than transcript-level counts, as the former does not require running the EM algorithm. Another important advantage of TCCs is that they can also be obtained from UMI-based scRNA-seq experiments, like the 10x Chromium protocol.

Here we perform a differential equivalence class usage (DECU) analysis on the single-cell dataset from Tasic et al. The DECU analysis is performed without correction for gender and age to allow for a comparison with our elaborate transcript-level analysis from the first case study analysis. We adopt the same filtering criteria as for the transcript-level analysis. However, ECs that correspond to more than one gene are additionally removed, as the relationship between ECs and genes needs to be determined unambiguously to infer within-gene EC usages. In our analysis, approximately 15% of the reads were discarded for this reason, which is in line with previous reports. After these steps, 26,141 ECs are retained, as compared to 14,420 transcripts in the transcript-level analysis. Next, the same comparisons of interest are tested. The number of differentially used ECs for each comparison are displayed in Table 3.
For several comparisons, there is a clear discrepancy between the number of differentially used transcripts and equivalence classes (Table 3, columns 4 and 6) and in the number of unique genes in which evidence for differential usage was observed (Table 3, columns 5 and 7). The overlap between the genes found in the transcript-level and the EC-level analysis ranges from 53% in comparisons 6 and 8 to 100% in comparison 3.

For comparison 6 (53% overlap), we investigate the genes identified by both analyses. For some genes that are identified in both analyses, there is a strong agreement between the transcript-level and EC-level results. One example is gene Phosphodiesterase 4D or Pde4d (Ensembl ID ENSMUSG00000021699). As depicted in Figure 11, there is a one-to-one concordance in the usage profiles of the equivalence classes and the transcripts. Interestingly, the first equivalence class 52911|52918 has reads that are compatible to both transcripts ENSMUST000000134973 and ENSMUST000000134978. In the transcript-level analysis, transcript ENSMUST000000134978 was not retained after filtering, as most of these reads were assigned to transcript ENSMUST000000134973 by Salmon. Note that while the interpretation at the transcript level is more sensible from a biological perspective, it also assumes an appropriate attribution of reads to transcripts.

For most other genes in which differential usage was identified in both analyses, the comparison between the transcript analysis and the equivalence class analysis is more ambiguous, as equivalence classes often do not allow to pinpoint the responsible transcript(s) driving the observed differential signal. For example, the gene P2X Purinoceptor 4 or P2rx4 (Ensembl ID ENSMUSG00000029470), which was discussed in Figure 6 of the transcript-level case study, was also identified in the EC-level analysis. Four P2rx4 equivalence classes passed feature-level filtering, which we will denote with EC1-EC4. EC1 uniquely corresponds to transcript ENSMUST00000134973 and ENSMUST00000138938, and both the transcript and EC are found to be differentially used in their respective analyses (Extended data Figure S27, panel A25). The other ECs correspond to two, three and four different transcripts, respectively, but not to transcript ENSMUST00000134978 by Salmon. Note that while the interpretation at the transcript level is more sensible from a biological perspective, it also assumes an appropriate attribution of reads to transcripts.

Finally, we performed a demonstrational case study on a subset of the Drosophila melanogaster “pasilla” bulk RNA-Seq dataset by Brooks et al.,57 which is the dataset that was used in the exon-level differential usage analysis of the DEXSeq.
In brief, this dataset consists of two experimental groups of three and four samples each. In addition, these samples were sequenced partly in single-end runs and partly in paired-end runs, which is corrected for by including a covariate to the DEXSeq and satuRn models. The dataset was obtained from the pasilla R data package, which contains a count matrix for the seven samples and 498 exons originating from 46 genes.

Compared to the original DEXSeq analysis, satuRn identified fewer differentially used exons between the two experimental groups, with three statistically significant findings at 5% FDR for satuRn compared to 20 significant findings with DEXSeq. While we did not benchmark satuRn and DEXSeq on exon-level data, this could correspond to DEXSeq being overly liberal in transcript-level bulk analyses, especially with small sample sizes (Figure 2 and Extended data Figure S25). More importantly, however, the ranking of the exons based on their respective p-values is almost identical between the two methods (Figure 2 and Extended data Figure S25). Again, this is supportive of a similar performance of DEXSeq and satuRn on small bulk RNA-Seq datasets, albeit with a different type 1 error rate. In Extended data Figure S29, we additionally demonstrate how satuRn can be used to visualize changes in the usage of exons.

Discussion

In this manuscript, we have proposed satuRn, a new software tool for DTU analysis. satuRn adopts a quasi-binomial GLM framework and obtains direct inference on DTU by modelling the relative usage of a transcript, in comparison to other transcripts from the same gene, between conditions of interest. We evaluated the performance of satuRn with respect to seven other DTU methods on three simulated bulk RNA-seq datasets, a real bulk RNA-seq dataset and three real scRNA-seq datasets. These benchmarks underscored the strong performance of satuRn, as well as its ability to control the FDR close to the nominal level. In addition, we showed that satuRn scales seamlessly to the large data volumes that are produced in contemporary (sc-)RNA-seq experiments. Furthermore, given the underlying GLM framework, our method can handle complex experimental designs that are commonplace in scRNA-seq experiments. Finally, satuRn can...
extract biologically relevant information from a large scRNA-seq dataset that would have remained obscured in a canonical DGE analysis.

Since most sequencing reads map to multiple transcripts, quantification tools such as Salmon or kallisto only provide an estimate of the expected number of fragments originating from each transcript. Incorporating quantification uncertainty has recently been shown to improve results in differential expression analysis of single-cell RNA-seq datasets. Currently, satuRn and all other DTU methods discussed in this manuscript, except for BANDITS, neglect the uncertainty on this abundance estimate. BANDITS models the abundance uncertainty; however, it had a markedly lower performance than our method in our benchmark evaluation (Extended data figure S1).5

One challenge common to all DTU methods is that the power to detect differentially used transcripts depends strongly on sequencing depth sequencing depth of the scRNA-seq dataset. This becomes clear when comparing the performances for the three different scRNA-seq benchmarks in this manuscript. The performances on the Darmanis dataset (Extended data figure S9) are markedly lower than the performances on the other two datasets (Figure 4 and Extended data figure S8). However, when we stratify the benchmark results according to the percentage of zero counts at the gene level, we observe that performances are negatively associated with sparsity, with all methods having worse performances for transcripts with many zero counts, across all datasets (Extended data Figures S30 and S31). The overall difference in performance between the different datasets is thus mainly driven by the number of transcripts with low, middle, and high fraction of zeros. A closer inspection of the Darmanis dataset showed that, after filtering, the transcript-level counts matrix contains a much larger percentage of zero counts than the other datasets (Extended data Figures S32 and S33). We also more frequently observed the scenario where the expression level of a gene could be attributed to a single isoform (Extended data Figures S32 and table S1). This effectively causes a binary transcript usage pattern at the level of individual cells, with transcript usages of 0% or 100% Although that this may reflect the true underlying biology, We argue that it is more likely to be a technical artefact as a consequence of more shallow sequencing, given the lower percentage of binary usage profiles in the Chen and Tasic datasets. The supposedly binary expression of transcripts due to coverage-dependent bias and the use of more stringent filtering criteria to reduce this bias has already been comprehensively reported by Najar et al.64

For a subset of the single-cell dataset of Tasic et al., we performed a case study on both transcript-level counts and transcript compatibility counts (TCCs). TCCs have several interesting properties: they are fast to compute and avoid the ambiguity in assigning reads to transcripts with often highly similar RNA sequences. The latter can be particularly difficult with UMI-based RNA-seq (e.g., 10× Chromium) data, given that only one end of the paired-end sequencing read can be used for transcriptome alignment. Nevertheless, biological interpretation of equivalence classes that correspond to multiple transcripts of a gene is challenging. Functional interpretation will therefore be limited to pinpointing genes with differential usage of equivalence classes. Transcript-level analyses, however, do allow for clear functional interpretation but assume the correct attribution of reads to transcripts. An additional disadvantage of equivalence class-level analyses is that reads mapping to multiple genes must be discarded, which for our analysis removed approximately 15% of all counts.

We conclude with the following recommendations for DTU analysis from an applied perspective. In case of small bulk RNA-seq datasets, satuRn, DEXSeq and DoubleExpSeq can be used interchangeably. In case of datasets with more complex designs that require the DTU model to incorporate additional covariates, e.g., batch effects, DoubleExpSeq cannot be used. For single-cell datasets, using DEXSeq will become infeasible in terms of scalability and DoubleExpSeq may give overly liberal results. As such, we recommend satuRn for performing DTU analyses in large bulk and single-cell RNA-seq datasets.

Data availability

Underlying data
Zenodo: Datasets associated with this publication https://doi.org/10.5281/zenodo.6826603.65

This project contains the following underlying data:

- **Case_study.zip** (Transcript-level expression count matrix Tasic_caseStudy_transcript_counts.Rds and corresponding metadata files Tasic_metadata_1.xlsx and Tasic_metadata_2.csv of a subset of the dataset by Tasic et al.42)

- **Performance_Chen.zip** (Transcript-level expression matrices Chen_counts.Rds and Chen_scaledTPM.Rds, as well as the corresponding metadata file Chen_metadata.csv of the dataset by Chen et al.29)
- **Performance_Darmanis.zip** (Transcript-level expression count matrix *Darmanis_counts.Rds* and the corresponding metadata file *Darmanis_metadata.Rdata* of the dataset by Darmanis et al.\(^{26}\))

- **Performance_Dmelanogaster.zip** (*Dmelanogaster_kallisto* is a folder containing the full output of the quantification of the Dmelanogaster dataset\(^{10}\) as quantified with kallisto\(^1\) version 0.46.0. The corresponding metadata can be retrieved from *Dmelanogaster_metadata_1.txt* and *Dmelanogaster_metadata_2.txt*.)

- **Performance_GTEx.zip** (Transcript-level expression matrices *GTEx_counts.gz* and *GTE_scaledTPM.gz*, as well as the corresponding metadata file *GTEx_metadata.txt* of the GTEx dataset.\(^{41}\))

- **Performance_Hsapiens.zip** (*Hsapiens_kallisto* is a folder containing the full output of the quantification of the Hsapiens dataset\(^{40}\) as quantified with kallisto\(^1\) version 0.46.0. The corresponding metadata can be retrieved from *Hsapiens_metadata_1.txt* and *Hsapiens_metadata_2.txt*.)

- **Performance_Love.zip** (*Love_kallisto* is a folder containing the full output of the quantification of the dataset by Love et al.\(^{18}\) as quantified with Salmon\(^2\) version 0.1.0. The corresponding metadata can be retrieved from *Love_metadata.rda*. Effective transcript length estimates for BANDITS\(^{30}\) are available from *Love_eff_len.rds*.

- **Performance_Tasic.zip** (Transcript-level expression matrices *Tasic_counts.Rds* and *Tasic_scaledTPM.Rds*, as well as the corresponding metadata files *Tasic_metadata_1.xlsx* and *Tasic_metadata_2.csv* of a subset of the dataset by Tasic et al.\(^{42}\))

- **Scalability_analysis.zip** (Several .Rdata files containing the scalability results of the different DTU tools on datasets of different sizes.)

In addition, all folders except **Scalability_analysis.zip** contain intermediate DTU analysis results that are available as .Rdata files or, in the case of **Case_study.zip**, .Rds files. Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Extended data
Zenodo: Extended data for satuRn publication [https://doi.org/10.5281/zenodo.6810615. \(^{25}\)]

This project contains the following extended data:

- **Supplementary_Figures.pdf**: The supplementary figures to the satuRn publication, including figure captions.

- **DTU_Methods_Detail.pdf**: A .pdf text file that describes the different DTU tools that were included in our benchmarks in greater detail as compared to the description in our main publication. For even higher detail, we refer to the respective original publications.

- **GSEA_MSigDB.xlsx**: The output of the Gene Set Enrichment Analyses (GSEA) for the case study of our publication as generated by the online MSigDB platform.

License: Data are available under the terms of the CC-BY 4.0 license.

Software availability
satuRn R package: https://github.com/statOmics/satuRn

Archived source code at time of publication: [https://doi.org/10.5281/zenodo.4656084. \(^{66}\)]

Code to reproduce analyses and figures: https://github.com/statOmics/satuRnPaper

Archived analysis code at time of publication: [https://doi.org/10.5281/zenodo.6826612. \(^{67}\)]

License: CC-BY 4.0 license.

Acknowledgements
The authors would like to thank Milan Malfait and Matias Van Heetvelde for their suggestions and comments throughout this project. We also note that an earlier version of this article can be found in bioRxiv.\(^{68}\)
References

Open Peer Review

Current Peer Review Status:

Version 2

Reviewer Report 01 February 2023

https://doi.org/10.5256/f1000research.136695.r146806

© 2023 Cmero M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Marek Cmero

1 Walter and Eliza Hall Institute of Medical Research, Melbourne, Vic, 3052, Australia
2 Department of Medical Biology, The University of Melbourne, Melbourne, Vic, 3052, Australia

In version 2 of the manuscript, the authors have comprehensively addressed the suggested revisions. There are some remaining minor issues; addressing these would help with clarity:

1. The axis labels for Figure S20A should read "number of samples per group" rather than cells.

2. Table S1 should use decimal points instead of commas for percentage values.

3. There are some mixed-up figure references in the last paragraph in the "Performance on simulated bulk RNA-seq datasets" section (page 11). I believe the first sentence should refer to S9 rather than S13. S10-12 are also not referenced in the text.

4. My original point about Figure 8 referred to the A-C labels that were missing. These labels still haven’t been added (A-D labels are also missing for Figure 6).

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, method development, transcriptomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 30 January 2023

https://doi.org/10.5256/f1000research.136695.r146805
Alejandro Reyes
Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland

Thanks to the authors for addressing fully the concerns raised in my first revision. They now discuss the general limitations of scRNA-seq affect differential transcript usage analyses, and how each tool is able to capture events of different magnitudes. Finally, I want to congratulate the authors for putting the manuscript together and a well-documented and functional software package.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, Computational Biology, Drug Discovery

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 21 June 2021

https://doi.org/10.5256/f1000research.54945.r85196

The authors propose a new method to test for differences in transcript usage for both bulk RNA-seq and single-cell RNA-seq data. The manuscript is clear and the method is sound and well explained. The authors provide an excellent implementation of their method as a Bioconductor package whose vignette is easy to follow. The main advantage and novelty of satuRn is that it scales well with very large samples, which is a limitation of some of the best performing methods in literature. Below are a couple of suggestions to provide more context to the DTU events on the benchmarks, assess to what extent DTU for single cells might be a limitation and a couple of requests for clarifications in the manuscript.

- The transcript swapping strategy seems quite powerful to benchmark DTU methods. This strategy is probably introducing DTU of different magnitudes. It would be highly informative if the authors can assess the performance of the different methods as a
function of the strength of the induced DTU. How is the performance of satuRn and the other tools across different ranges of DTU induction?

- The authors describe a strategy to calculate p-values based on t-test on the estimated log-odds transcript ratios. They also describe that this strategy is too liberal for scRNA-seq analyses and provide an alternative approach that converts these p-values to z-scores and use locfdr to estimate an empirical null distribution. Based on the paper and the vignette, it was unclear to me which strategy is followed for bulk RNA-seq analyses? Does the user have the possibility of choosing which strategy to use?

- The filtering strategy for scRNA-seq datasets is very stringent (at least 1 count in 50% of the cells) and might result in mostly highly expressed genes/transcripts. How many genes can be tested for DTU after such thresholds are applied in real scRNA-seq data? It would also be very informative to show benchmarks with less stringent criteria to assess how the presence of many zeros affect each method.

- Given that most scRNA-seq protocols only sequence the 3' end of transcripts, it might be unfeasible to reliably estimate transcript expression (this is discussed in Ntranos et al. (2019 1)). Examples would be when the transcripts are not distinguishable from the 3'ends alone. The authors should consider testing their approach and benchmarks at the level of transcript compatibility counts.

- I found unclear whether stageR applied by default (as I understand from the vignette)? If so, I think it is important to apply stageR to all the methods tested in the benchmarks to distinguish the performance of saturn vs satuRn + stageR.

- The authors describe the applicability of their method for differential transcript usage. However, as I understand the model, it could also be used for differential exon usage, or groups of reads supporting an alternative splicing event (counts from alternative splicing event A counts from event B, or intron clusters as in leafcutter, etc). I think the authors could showcase these examples to expand the applications of their model.

- In most ROC curves it's a bit hard to distinguish each different line due to over plotting.

References

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, Computational Biology, Drug Discovery

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 25 Jul 2022

Jeroen Gilis

We are grateful for the comments and suggestions of both reviewers, which have markedly improved the readability of the manuscript and have led to several additional analyses and findings. We here first summarise the major and minor changes to the manuscript and then address the reviewer-specific comments point-by-point:

Major changes:

- We include a case study analysis on single-cell RNA-seq data with a more complex multifactor experimental design. We first show that including additional covariates to the differential transcript usage (DTU) analysis affects the ranking of transcripts in the resulting top list as compared to an analysis without these covariates. Second, we use the more complex model to identify covariate-specific changes in DTU.

- We include a case study that performs a differential usage analysis at the level of equivalence classes. We qualitatively compare results between a transcript-level and equivalence class-level analysis on the same data, highlighting the advantages and disadvantages of both analyses.

- We included a short case study on differential exon usage on a small bulk RNA-seq dataset, comparing satuRn with DEXSeq.

- We elaborate on the effect of data sparsity and filtering on the benchmark performances of the different DTU tools. We additionally summarize the key characteristics of the different datasets.
We elaborate on the comparison between using raw counts or scaled TPM abundances in the context of DTU analyses.

We assess the performance of DTU methods as a function of the strength of the induced DTU signal as introduced by the swapping strategy in our performance benchmarks.

We additionally include a scalability analysis of the different DTU tools on bulk RNA-seq data.

Minor changes:

- We discuss the discrepancy of the performance benchmark results between the dataset from Love et al. and the other datasets.
- We add information on the quantification strategies for the single-cell RNA-seq datasets.
- We make more explicit which strategies were used for introducing DTU signal in the different datasets that were used for benchmarking the DTU methods.
- We clarify the acronym FDP.
- We labeled the panels of Figure 8. In addition, we provided labels to Figure 6 and adapted the captions accordingly.
- We provide a more detailed description of the null distribution histograms in the Extended data figures.
- We clarify that, by default, satuRn adopts the testing strategy that is based on the empirical null distribution, but that users could opt for working with the unadjusted p-values as well.
- We clarify that we did not perform stage-wise testing adjustment in any of the analyses presented in the manuscript.
- We aimed to improve the layout of the performance curves.

Response to comments Reviewer 2:

1. The swapping strategy will indeed induce DTU signal of different magnitudes. We followed the reviewer’s suggestion of assessing the performance of the different methods as a function of the strength of the induced signal.

Specifically, we have included four additional figures in the Extended data (Figures S16-S19), corresponding to the four benchmarks that used swapping, where we stratify FDR-TPR curves based on the strength of the induced DTU signal. As an estimate for the strength of the signal, we take the difference in the empirical average transcript usage between the two groups of cells/samples. The empirical usage was computed by dividing the transcript-level count with the corresponding
gene-level count in each cell/sample. Based on this metric, the FDR-TPR curves are stratified in 6 categories: a difference in transcript usage between groups of 0-10%, 10-20%, 20-30%, 30-40%, 40-50% and 50-100%. A brief discussion of the results is included in the “Performance on real single-cell data” paragraph of the Results section of the manuscript.

First, as expected, the ability of all methods to detect DTU decreases when the strength of the DTU signal decreases. Second, the difference of transcript usage that can be correctly detected is dependent on the data: small differences in transcript usage can be more easily detected in bulk data as compared to single-cell data, likely owing to the larger sequencing depth and lower variability of bulk datasets. Third, inference improves for all strata when the number of cells or samples increases. Fourth, we observed in all benchmark datasets that satuRn and DoubleExpSeq are more successful in detecting small differences as compared to the other methods. As such, the performance gain of satuRn and DoubleExpSeq in the overall results (without stratification) can be attributed to picking up DTU with smaller effect sizes. As a final note, having different transcript-level filtering procedures (edgeR filter versus DRIMSeq filter) did not affect these findings. Adopting scaledTPM abundances instead of raw counts did not affect the results, either (results not shown).

2. In the second comment, the reviewer asked if satuRn by default uses the empirical null strategy to improve FDR control, if this is also the case in bulk analyses and if this is tunable by the user.

By default, we indeed always use the strategy that relies on the empirical null distribution, both for single-cell and bulk datasets. The empirical null strategy improved the FDR control in single-cell data and performed on par in bulk data, as shown in Extended data Figure S14. However, it is possible for the user to use the “raw” p-values and FDR instead, as they are also provided in the output of the testDTU function.

The empirical null strategy being the default is discussed at the end of the “Performance on real single-cell data” paragraph of the Results section of the manuscript. However, in the Bioconductor vignette, we indeed failed to explicitly mention which strategy we are using. We have now added this information to the vignette, where we now also more explicitly describe the output of the testDTU function, i.e., the fact that both the raw and empirical p-values are returned and can both be used for downstream analysis (see the updated vignette at https://statomics.github.io/satuRn/articles/Vignette.html).

3. In the third comment, the reviewer requests to assess the effect of filtering and data sparsity on the performance of the different DTU tools. This relates to a comment also raised by reviewer #1, who requested to assess how the performance of the different DTU methods is affected by the percentage of zero counts in the data and if we could display some of the sparsity related summary statistics and distributions of the different benchmark datasets. We therefore address these comments jointly.
We first provide a table (Extended data Table S1) containing relevant summary statistics for the different datasets, including the number of features retained after filtering in the different datasets, as well as a figure (Figure S32) that visualizes some of the sparsity related properties of the datasets (e.g., library size, fraction zeros per cell). These clearly show that the Darmanis *et al.* dataset, for which the performance was lowest for each DTU method, is by far the sparsest dataset in our benchmark analyses.

Second, we explored how differences in sparsity between the different datasets are reflected in the performance benchmarks. To this end, we construct FDR-TPR curves where the genes (not individual transcripts) have been stratified on the percentage of zero counts. For each dataset, we thus assess the performance on three strata of genes, i.e., for genes that have a low (< 25%), middle (25-50%) or high (> 50%) percentage of zero counts in their corresponding transcript-level count matrices. All the transcripts of the gene get stratified in this gene-level stratum. The results of this performance benchmark have been included in the Extended data, Figures S30 and S31. As expected, we observe that performances are higher when there is a low percentage of zero counts, uniformly across all datasets and for all methods. Second, performances on genes with high percentage zero counts increase strongly when the number of cells in the data increases (comparison between the bottom rows of Figures S30 and S31). Third, some methods seem more sensitive than others against sparse data. In particular, the performance of DEXSeq on the Tasic *et al.* 20v20 dataset and the Chen *et al.* 20v20 dataset (Figure S30) is on par with the performance of satuRn and DoubleExpSeq for the strata with a low or middle percentage of zeros, but markedly lower for the stratum with the highest percentage of zeros. As such, the performance gain of satuRn and DoubleExpSeq over DEXSeq in these datasets can be largely attributed to a better performance on the sparsest part of the data. Note that this is in line with the performance of DEXSeq being on par with satuRn and DoubleExpSeq on bulk data.

In addition to Extended data Figures S30-S32 and Table S1, we included a discussion of these results in the Discussion section of the manuscript (third paragraph).

4. We have followed the reviewer’s suggestion of including an additional case study in the manuscript that performs a differential usage analysis on transcript compatibility counts (TCCs), sometimes referred to as equivalence class (EC) counts.

More specifically, we have performed an EC-level analysis on the dataset of Tasic *et al.* , which was also used for the transcript-level case study, allowing us to qualitatively compare the results of both analyses. This additional analysis led to several novel insights which we describe detail in paragraph “Case study on transcript compatibility counts” of the Results section and discuss in the fourth paragraph of the Discussion section of the manuscript. In addition, Figure S27 was added to the Extended data. We here attempt to briefly summarise the key outcomes of the analysis.

First, we display the number of differentially used transcripts and equivalence classes in eight comparisons between cell types in Table 3. The extent to which transcript-
level and EC-level results correspond differ between the different comparisons. For several comparisons, there is a clear discrepancy between the number of differentially used transcripts and equivalence classes (Table 3, columns 4 and 6) and in the number of unique genes in which evidence for differential usage was observed (Table 3, columns 5 and 7). The overlap between the genes found in the transcript-level and the TCC-level analysis ranges from 53% (54/102) in comparisons 6 and 8 to 100% in comparison 3.

For comparison 6 (53% overlap), we investigate the genes identified by both analyses. For some genes that are identified in both analyses, there is a strong agreement between the transcript-level and EC-level results. One example is the gene Pde4d. As depicted in Figure 11, there is a one-to-one concordance in the usage profiles of the equivalence classes and the transcripts. In other words, for this gene, the EC-level analysis is sufficient to obtain the same qualitative results as the transcript-level analysis. This is highly interesting, as the TCCs require only a fraction of the time to compute compared to the transcript-level counts, and they have no quantification uncertainty. However, for most other genes in which DU was identified in both analyses, the comparison between transcript and EC results is more ambiguous, as ECs often do not allow to pinpoint the responsible transcript(s) driving their observed DU. We demonstrate this by investigating the gene P2rx4. Four P2rx4 equivalence classes passed feature-level filtering, which we will denote with EC1-EC4. EC1 uniquely corresponds to transcript ENSMUST00000195963, and both the transcript and TCC are found to be differentially used in their respective analyses (Extended data Figure S27, panel A). The other ECs correspond to two, three and four different transcripts, respectively (Extended data Figure S27, panel A). For EC2 and EC3, strong evidence for differential usage was found. For EC4, there was no evidence for differential usage. However, based on these ECs alone, it would not be possible to unambiguously attribute these changes to single transcripts, complicating the biological interpretation.

In the Discussion, we therefore conclude that biological interpretation of equivalence classes that correspond to multiple transcripts of a gene remains challenging. Currently, functional interpretation will therefore be limited to pinpointing genes with differential usage of a certain equivalence classes, without being able to link this to a functional effect at the transcript- or protein level.

Finally, we note that while an analysis on scRNA-seq data from droplet protocols (like Chromium 10X) where the transcripts are not distinguishable from the 3’ ends alone would also be very interesting, we did not include such analysis in this manuscript. In our opinion, an extensive benchmarking of the different DTU tools on such data would be required and is out of the scope of this manuscript.

5. The reviewer asked if we by default use the stage-wise testing procedure stageR in a satuRn analysis workflow.

We do not apply stageR by default. Hence, all results from the paper are generated without stage-wise testing to allow for a fair comparison between the methods. We
did not systematically compare results for all methods with and without stageR, as
this would further increase (double) the number of benchmarks in this paper. In
addition, it is not an integral part of any DTU method and the utility of stageR in a
DTU setting has been demonstrated previously in the original stageR publication of
Van den Berge et al. However, conceptually, a stage-wise testing procedure makes
sense in the context of DTU and should result in increased statistical power for all
DTU methods. In this context, stageR has also been included in the downstream
analysis of DTU methods in the F1000research workflow paper by Love et al. (
https://doi.org/10.12688/f1000research.15398.3).

We only included stageR as a downstream analysis method in our package vignette,
where we wanted to showcase how to use stageR in the downstream analysis of
satuRn output. We have now specifically stated in the vignette that this is an optional
step.

6. We have followed the reviewer’s suggestion of including an additional case study in
the manuscript that performs a differential usage analysis at the level of exons. To
briefly showcase this, we adopted the differential exon usage (DEU) analysis using the
data from the DEXSeq vignette, i.e., we perform the same DEU analysis as the DEXSeq
vignette using both DEXSeq and satuRn. This analysis has been included in the “Case
study on exon-level counts” paragraph in the Results section of the manuscript. In
addition, we added Figures S28 and S29 to the Extended data.

Compared to the original DEXSeq analysis, satuRn identified fewer differentially used
exons between the two experimental groups, with three statistically significant
findings at 5% FDR for satuRn compared to 19 significant findings with DEXSeq. While
we did not benchmark satuRn and DEXSeq on exon-level data, this could correspond
to DEXSeq being overly liberal in transcript-level bulk analyses, especially with small
sample sizes (Figure 2 and Extended data Figure S2). More importantly, however, the
ranking of the exons based on their respective p-values is almost identical between
the two methods (Extended data Figure S28). Again, this is supportive of a similar
performance of DEXSeq and satuRn on small bulk RNA-Seq datasets, albeit with a
different type 1 error rate. In Extended data Figure S29, we additionally demonstrate
how satuRn can be used to visualise changes in the usage of exons.

7. Finally, the reviewer request to improve the layout of the performance curves to
reduce overplotting. Given that the performances of most methods are very close,
this was not trivial. First, we did not want to reduce the range of the x-axis, as this
would remove some of the FDR working points for the more liberal tools. Second, we
prefer displaying the entire curve over only displaying the curve between the FDR
working points of 0.01 and 0.1, which is also often done in this context. However, the
latter strategy does not allow for displaying early mistakes, i.e., false positives with a
very low FDR. Therefore, we aimed to accommodate the comment by reducing the
size of the FDR working points, making the curves slightly thinner and by increasing
the size of some of the plots.
Gilis et al. present satuRn, a novel method for performing differential transcript usage analysis on bulk and single-cell RNA-seq data. The approach improves upon existing methods through computational scalability and support for multifactorial experimental designs, while also tightly controlling FDR rates for bulk and single-cell experiments. The authors demonstrate performance using simulated, as well as real bulk and single-cell RNA-seq data, showing that satuRn performs on par with the best available approaches, while controlling the FDR and scaling favourably to large numbers of cells and transcripts.

The paper is well written, logical and easy to follow. The experimental methodology and results are sound and well presented. The authors have also done a great job with the software. I was able to install satuRn and run the vignette without any difficulty.

The following points would help improve the manuscript:

- The manuscript cites support for multifactor experimental designs as a key advantage of satuRn, however, this is not demonstrated. A small case study experiment with a multifactor experimental design, perhaps using the Tasic et al. data, would be helpful in illustrating this feature.

- The authors benchmark satuRn’s scalability on scRNA data, however, not on bulk RNA-seq (although competing methods are benchmarked on bulk data in Figure 1). While this is computationally less challenging, it would be helpful for the authors to also show satuRn’s scalability on bulk RNA-seq, for instance, using the Love et al. data as in Figure 1.

- The Discussion notes that performance on different scRNA datasets is affected by the percentage of zero counts: It would be helpful if the authors could show the zero count distributions in the three different scRNA data sets to illustrate this.

- It can be quite difficult to compare across the FDR-TPR curves when assessing performance
using the different filters and abundance estimation methods. Perhaps for a subset of the comparisons and only showing the best performing tools, the authors could consider adding a set of simplified figures that compares the different filtering/counting approaches on a single plot per tool.

- The authors state that performance of raw abundance estimates was better in all data sets, except for the Love et al. data., which is presumably due to the simulation methodology. Do the authors have any insights into why this dataset performed better using pseudo-alignments?

- The quantification methodology of the scRNA data is not described in the methods and should be included.

- In the two sections describing the real bulk and real single-cell study data, the authors refer to the 'swapping strategy' described in the Methods. However, two different swapping strategies are detailed. Please clarify.

- In the 'Performance assessment' section, the acronym FDP is not spelled out.

- Panels A-C in Figure 8 are missing labels.

- It would be helpful if the authors could explain the null distribution histograms a bit more, i.e. what the green and blue lines, red triangles and highlighted distributions show.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use by others?
Partly

If any results are presented, are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, method development, transcriptomics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 25 Jul 2022

Jeroen Gilis

We are grateful for the comments and suggestions of both reviewers, which have markedly improved the readability of the manuscript and have led to several additional analyses and findings. We here first summarise the major and minor changes to the manuscript and then address the reviewer-specific comments point-by-point:

Major changes:

○ We include a case study analysis on single-cell RNA-seq data with a more complex multifactor experimental design. We first show that including additional covariates to the differential transcript usage (DTU) analysis affects the ranking of transcripts in the resulting top list as compared to an analysis without these covariates. Second, we use the more complex model to identify covariate-specific changes in DTU.

○ We include a case study that performs a differential usage analysis at the level of equivalence classes. We qualitatively compare results between a transcript-level and equivalence class-level analysis on the same data, highlighting the advantages and disadvantages of both analyses.

○ We included a short case study on differential exon usage on a small bulk RNA-seq dataset, comparing satuRn with DEXSeq.

○ We elaborate on the effect of data sparsity and filtering on the benchmark performances of the different DTU tools. We additionally summarise the key characteristics of the different datasets.

○ We elaborate on the comparison between using raw counts or scaledTPM abundances in the context of DTU analyses.

○ We assess the performance of DTU methods as a function of the strength of the induced DTU signal as introduced by the swapping strategy in our performance benchmarks.

○ We additionally include a scalability analysis of the different DTU tools on bulk RNA-seq data.

Minor changes:

○ We discuss the discrepancy of the performance benchmark results between the dataset from Love et al. and the other datasets.

○ We add information on the quantification strategies for the single-cell RNA-seq datasets.

○ We make more explicit which strategies were used for introducing DTU signal in the
different datasets that were used for benchmarking the DTU methods.

- We clarify the acronym FDP.
- We labeled the panels of Figure 8. In addition, we provided labels to Figure 6 and adapted the captions accordingly.
- We provide a more detailed description of the null distribution histograms in the Extended data figures.
- We clarify that, by default, satuRn adopts the testing strategy that is based on the empirical null distribution, but that users could opt for working with the unadjusted p-values as well.
- We clarify that we did not perform stage-wise testing adjustment in any of the analyses presented in the manuscript.
- We aimed to improve the layout of the performance curves.

Response to comments Reviewer 1:

1. We have followed the reviewer’s suggestion of including a case study analysis with a multifactor experimental design. We reanalysed the single-cell study from Tasic et al. but we now include a main effect for cell type, gender, and the continuous covariate age, as well as an interaction effect between cell type and gender. In this analysis, we first show that including these additional covariates affects the ranking of transcripts in the resulting top list as compared to our original unadjusted analysis. Second, we assessed the interaction effect to prioritise transcripts for which the DTU between cell types differs according to gender. Here, we highlight a transcript that displays strong evidence for DTU between cell types in female mice, but not in male mice. The analysis has been included in the manuscript as a new paragraph, “Analyses with complex experimental designs”, under the Results section and includes the new Figure 10.

2. We have followed the reviewer’s suggestion of including an additional scalability benchmark on bulk data. We performed the benchmark on the GTEx dataset and not the Love dataset (as was suggested by the Reviewer), because the latter only contains 24 samples. The results of the benchmark are in line with those of the single-cell scalability benchmark, with DEXSeq and DRIMSeq being markedly slower than the other methods. When directly comparing the scalability between the bulk and single-cell data on equally sized subsets, we found limited differences in scalability between the data types, except for DEXSeq. DEXSeq scales considerably better on bulk data than on single-cell data, suggesting that the estimation of the GLM parameters is slower when the data are sparse. However, since the scalability profile of DEXSeq is quadratic with respect to the number of cells/samples in the data, it is still infeasible to adopt DEXSeq in bulk datasets with many samples. The discussion of the results has been added to the “Scalability benchmark” paragraph of the Results section.
Figures of the scalability profiles on bulk data have been included in the *Extended data*, Figures S20 and S21.

3. In the third comment, the question was raised as to how the performance of the different DTU methods is affected by the percentage of zero counts in the data. This relates to a comment raised by reviewer #2, who requested “to show [DTU] benchmarks with less stringent criteria to assess how the presence of many zeros affect [the performance of] each method”. We therefore address these comments jointly.

We provide *Extended data* Table S1 containing relevant summary statistics for the different datasets, including the number of features retained after filtering, as well as Figure S32 that visualizes some of the sparsity related properties of the datasets (e.g., library size, fraction zeros per cell). These clearly show that the Darmanis *et al.* dataset, for which the performance was lowest for each DTU method, is by far the sparsest dataset in our benchmark analyses.

Second, we explored how differences in sparsity between the different datasets are reflected in the performance benchmarks. To this end, we construct FDR-TPR curves where the genes (not individual transcripts) have been stratified based on the percentage of zero counts. For each dataset, we thus assess the performance on three strata of genes, i.e., for genes that have a low (< 25%), middle (25-50%) or high (> 50%) percentage of zero counts in their corresponding transcript-level count matrices. All the transcripts of the gene get stratified in this gene-level stratum. The results of this performance benchmark have been included in the *Extended data*, Figures S30 and S31. As expected, we observe that performances are higher when there is a low percentage of zero counts, uniformly across all datasets and for all methods. Second, performances on genes with high percentage zero counts increase strongly when the number of cells increases (comparison between the bottom rows of Figures S30 and S31). Third, some methods seem more sensitive than others against sparse data. In particular, the performance of DEXSeq on the Tasic *et al.* 20v20 dataset and the Chen *et al.* 20v20 dataset (Figure S30) is on par with the performance of satuRn and DoubleExpSeq for the strata with a low or middle percentage of zeros, but markedly lower for the stratum with the highest percentage of zeros. As such, the performance gain of satuRn and DoubleExpSeq over DEXSeq in these datasets can be largely attributed to a better performance on transcripts of lowly abundant genes. Note that this is in line with the performance of DEXSeq being on par with satuRn and DoubleExpSeq on bulk data.

In addition to *Extended data* Figures S30-S32 and Table S1, we included a discussion of these results in the Discussion section of the manuscript (third paragraph).

4. We have followed the reviewer’s suggestion of including simplified figures that compare the different filtering and counting approaches on a single plot per tool. These figures have been included as *Extended data* Figures S10-S13 and are discussed in the “Performance on simulated bulk RNA-seq datasets” paragraph in the Results section of the manuscript.
These figures show more clearly that neither sample size nor the filtering strategy had a profound impact on the ranking of the performances of the different DTU methods; satuRn, DEXSeq and DoubleExpSeq remain the best performing methods overall. However, we did find that the effects of filtering and counting differ between the different datasets.

For the Love et al. simulated bulk dataset, filtering more stringently strongly improves performance. In addition, both performance and FDR control are much better when using scaledTPM abundances, as compared to using counts. The strong positive effect of using scaledTPM abundances are only observed for this dataset, which we will discuss in more detail in our response to the next comment of the reviewer.

For the simulated bulk datasets by Van den Berge et al., we also observe a positive effect of stringent filtering. The difference between scaledTPM and raw count abundances is negligible.

For the real datasets, a quite different pattern is observed. For the GTEx bulk dataset and the single-cell datasets by Tasic et al. and Chen et al., the effects of filtering are limited and using counts performs slightly better than using scaledTPM abundances.

Finally, stringent filtering had a strong positive impact on performance on the Darmanis et al. dataset. Note that this dataset is by far the sparsest dataset in our benchmarks (Extended data Figure S32 and Table S1). The differences in performance between scaledTPM and raw count abundances are small.

Taken together, using scaledTPM abundances is only beneficial in the simulations by Love et al., for reasons we explain in below. Therefore, we recommend using raw counts abundances. With respect to filtering, the more stringent DRIMSeq filtering strategy only seems beneficial in simulated data and in very sparse single-cell data. Thus, for bulk data and regular single-cell data the lenient edgeR filtering strategy seems sufficient to increase the signal-to-noise ratio.

5. In our hands, the use of scaledTPM abundances instead of raw counts was indeed only beneficial in the simulated dataset by Love et al. As suggested by the reviewer, this is indeed due to the simulation methodology.

Love et al. introduced DTU either by swapping TPM abundances or by introducing a fold change in transcript expression in one group of samples, again on TPM abundances. However, when back-transforming the swapped TPM abundances to count abundances, the transcript lengths were not swapped. Hence, the simulation strategy can induce differences in the total count for a gene, which in turn may alter the usage of all (target and off-target) transcripts in that gene when raw counts are used as an input, which gives rise to many false positives in off-target transcripts of DTU genes.

When introducing DTU by swapping raw counts (real bulk and single-cell evaluations),
we could expect spurious signal in analyses on the TPM scale for the same reason. However, the difference between the raw count and TPM analyses was much less pronounced, which was also the case for the Van den Berge et al. simulation approach.

We have included this as a remark in the “Performance on simulated bulk RNA-seq datasets” paragraph in the Results section of the manuscript.

6. The quantification methodology for the single-cell RNA-seq data was indeed missing and has now been included in the “Real single-cell study” paragraph of the Methods section as follows: “The datasets from Chen et al.29 and Tasic et al.42 were quantified using Salmon v1.1.0, whereas the dataset from Darmanis et al.26 was quantified with Salmon v0.8.2 as obtained from Soneson et al.43.”

7. We agree with the reviewer that it previously unclear which swapping strategy was used in the “real bulk study” and “real single-cell study” paragraphs of the Methods section. In both cases, DTU is artificially introduced by swapping raw transcript counts between groups of samples, which we now explicitly mention in both paragraphs.

8. We have now spelled out the acronym FDP in the “Performance assessment” paragraph of the Methods section, and defined it as follows: “The FDR is the expected value of the false discovery proportion (FDP), which is the ratio of the number of false positives over the total number of positives.”

9. As requested, we labeled the panels of Figure 8. In addition, we provided labels to Figure 6 and adapted the captions accordingly.

10. We agree with the reviewer that the null distribution histograms in the Extended data Figures S14, S15, S24 and S26 required further explanation. We have included this information in the caption of Figure S14 and referred to that information in the captions of Figures S15, S24 and S26. The update caption of Figure S14 reads as follows: “The z-scores corresponding to the null transcripts are expected to follow a standard normal distribution (mean = 0, standard deviation = 1). This corresponds well with the maximum likelihood estimates (MLE) for the mean and variance of the empirical null distribution (mean = -0.002, standard deviation = 1.029) as obtained with the locfdr package. In brief, these estimates are obtained by assuming that the z-scores of all transcripts follow a mixture distribution, where the z-scores of the null transcripts are expected to follow a normal distribution and the z-scores of the DTU transcripts follow some other distribution. Two models are fitted to the z-scores. The blue dashed curve is a normal distribution that is fitted to the mid 50% of the z-scores, which are assumed to originate from null genes, thus representing the estimated empirical null component densities. The MLE and central matching estimates (CME) for the mean and standard deviation of the estimated empirical null distribution are provided in the caption at the bottom of the plot. Finally, the green solid curve represents the estimated marginal density across all z-scores and is obtained by fitting a spline model to the histogram counts.”
To avoid confusing the reader with concepts that are not required for the paper, we have omitted the explanation of the yellow triangles on the locfdr figures. In brief, the locfdr package returns local FDR values for each transcript. The FDR is a set property, i.e., the expected fraction of false positives in the set that is returned. Efron (2010) showed that the FDR can also be interpreted as a posterior probability, i.e., the posterior probability that a random feature in the set that is returned is a false positive. Unlike the FDR, the local fdr of a feature is the posterior probability that this individual feature is a false positive, so it relates to a single specific null hypothesis of this specific feature and not to a set of null hypotheses. Efron (Ann. Stat. 2007) defined 0.2 as a useful cutoff for the local fdr and argues that a 0.2 cutoff for the local fdr often corresponds with a conventional FDR of 0.05. Efron showed that the FDR can also be interpreted as the average local fdr over the set that is returned as significant, i.e., the features with a local fdr < 0.2. The conventional FDR over this set can be estimated by taking the sample average of the local fdr of the features that are returned, and is bound to be much smaller than 0.2. The triangles on the locfdr plot indicate cut points for the z-scores; z-scores that are more extreme than the triangles will result in a local FDR estimate that is smaller than 0.2.

Competing Interests: No competing interests were disclosed.