Positions priming in briefly presented search arrays
Asgeirsson, Arni Gunnar; Kristjánsson, Árni; Kyllingsbæk, Søren; Fjóla Hrólsdóttir, Kristbjörg; Hafþórsdóttir, Heiðrún; Bundesen, Claus

Published in:
Perception

Publication date:
2011

Document version
Peer reviewed version

Citation for published version (APA):
Position and color priming in briefly presented search arrays

Árni Gunnar Ásgeirsson1, Árni Kristjánsson2, Søren Kyllingsbæk1, Kristbjörg Fjöla Hrólfssdóttir3, Heiðrún Haftórsdóttir4 and Claus Bundesen1
1: Center for Visual Cognition, Department of Psychology, University of Copenhagen.
2: Laboratory for Visual Perception and Visuomotor Control, Faculty of Psychology, University of Iceland.

The experiment

We tried to replicate perceptual priming effects in an accuracy based design (Yashar & Lam, 2010) while generating to alphabetic stimuli. Our design also has the advantage of multiple responses (15 consonants), which minimizes any effects of response repetition and visuomotor effects, leaving the results more readily interpreted as perceptual effects.

We presented subjects with a 3x3 consonant matrix where a target would always occupy one of the four corner positions. The displays where present from 10-180 ms.

The subjects’ task was to report the odd-one-out letter by pressing the appropriate key on a keyboard. The target identity was determined by color and varied randomly (Figure 1).

Results

PoP affects accuracy at very brief exposures.

The results suggest a perceptual component in PoP. This does in not exclude response related PoP.

A simple additive TVA model can be fitted quite well to experimental data.

Recent literature suggests that repetition are the result of two or multiple mechanisms (see Lamy & Yashar, in press; Kristjánsson & Campana, 2010).

Conclusions

References

Introduction

In efficient visual search, priming of pop-out (PoP: Maljkovic & Nakayama, 1994, 1996) is usually reported as a speeded response when a target feature is repeated on consecutive trials.

Feature facilitation accounts: Sensitization to features via short-term memory. Priming at perceptual level.

Post-perceptual accounts: PoP affects response times, not accuracy, via response repetition benefits, decision bias or other ‘late’ effects.

Questions:

1. Do color and/or position repetitions increase accuracy at brief exposure durations?
2. If so, is a category weighting account viable explaining the PoP when applied within a TVA-framework (Bundesen, 1990)?

Accounting for repetition priming within TVA (Bundesen, 1990)

An extension to a Theory of Visual Attention (TVA) is a combined theory of selection and recognition.

A Theory of Visual Attention (TVA) is a combined theory of selection and recognition. It has been mathematically formalized in a fixed capacity, independent race model (FIRM). The central assumptions of the theory are described by the rate and weight equations (2).

In TVA selectivity is obtained by adjusting attentional weights for perceptual categories by differentiating their parameter values (m). Pertinence can be adjusted voluntarily by current goals or instructions, but involuntary factors can also affect it.

We treat m as a parameter that can be instantly affected from trial to trial by varying target identity during a task. The assumption is that m-calculations are ongoing and the current importance of a target category is affected by its importance on the previous trial.

The model is driven by a simple additive TVA-based model of PoP. The model is only bi-directional, since it is limited to one-trial memory, which will not suffice to describe PoP in detail. PoP has shown to be a cumulative effect, building up over several trials and decaying relatively slowly (Maljkovic & Nakayama, 1994).

The model also applies to position, rather than individual data. However, the goodness of fit is quite promising.

The model has 4 free parameters (K, alpha, col.rep. and pos.rep. weights) and a fixed C parameter (correlation of rate/weight).

The fit in figure 3. shows the curves predicted by the model.

We present least squares fits by a simple additive TVA based model of PoP. The model is only bi-directional, since it is limited to one-trial memory, which will not suffice to describe PoP in detail. PoP has shown to be a cumulative effect, building up over several trials and decaying relatively slowly (Maljkovic & Nakayama, 1994).

The model also applies to position, rather than individual data. However, the goodness of fit is quite promising.

The model has 4 free parameters (K, alpha, col.rep. and pos.rep. weights) and a fixed C parameter (correlation of rate/weight). The fit in figure 3. shows the curves predicted by the model.

Results

A 2x2 within subjects analysis revealed significant main effects of position and color repetition (ps <0.001 and 0.003, respectively). No interaction was found between the two (p=0.619).

Position priming effects ranged from 2.5-11.4 pp, between subjects.

Color priming effects ranged from 1.7-11.8 pp, between subjects.

Conclusions

PoP affects accuracy at very brief exposures.

The effects cannot be explained by reference to response related mechanisms.

The results suggest a perceptual component in PoP. This does in not exclude response related PoP.

A simple additive TVA model can be fitted quite well to experimental data.

Recent literature suggests that repetition are the result of two or multiple mechanisms (see Lamy & Yashar, in press; Kristjánsson & Campana, 2010).

References


Yashar & Lamy. (in Press). Refining the dual-stage account of intertrial feature priming: Does motor response or response repetition benefit lead to decision bias or other ‘late’ effects.


