Positions priming in briefly presented search arrays
Asgeirsson, Arni Gunnar; Kristjánsson, Árni; Kyllingsbæk, Søren; Fjóla Hrólsfdóttir, Kristbjörg; Hafþórsdóttir, Heldrún; Bundesen, Claus

Published in:
Perception

Publication date:
2011

Document version
Peer reviewed version

Citation for published version (APA):
Position and color priming in briefly presented search arrays

Árni Gunnar Ásgeirsson¹, Árni Kristjánsson², Søren Kyllingsbæk¹, Kristbjörg Fjöla Hrólfsdóttir², Heiðrun Hafþórsdóttir² and Claus Bundesen¹

1. Center for Visual Cognition, Department of Psychology, University of Copenhagen.
2. Laboratory for Visual Perception and Visuomotor Control, Faculty of Psychology, University of Iceland.

Introduction

In efficient visual search, priming of pop-out (PoP; Maljkovic & Nakayama, 1994, 1996) is usually reported as a speeded response when a target feature is repeated on consecutive trials.

Feature facilitation accounts: Sensitization to features via short-term memory. Priming at perceptual level.

Post-perceptual accounts: PoP affects response times, not accuracy, via response repetition benefits, decision bias or other "late" effects.

Questions:

1. Do color and/or position repetitions increase accuracy at brief exposure durations?
2. If so, is a category weighting account a viable explanation of the PoP when applied within a TVA-framework (Bundesen, 1990)?

Accounting for repetition priming within TVA (Bundesen, 1990)

A Theory of Visual Attention (TVA) is a combined theory of selection and recognition. It has been mathematically formalized in a fixed capacity, independent race model (IPRM). The central assumptions of the theory are described by the rate and weight equations (figure 2). In TVA selectivity is obtained by adjusting attentional weights for perceptual categories by differentiating the parameter values (v). Pertinence can be adjusted voluntarily by current goals or instructions, but involuntary factors can also affect it.

Here we treat PR as a parameter that can be influentially affected from trial to trial by varying target identity during a task. The assumption is that m-calculations are ongoing and the current importance of a target category is affected by its importance on the previous trial.

Figure 1
(1) a trial (black arrow) and (2) between trial stimulus arrays (red arrow).

Results

• A 2x2 within subjects analysis revealed significant main effects of position and color repetition (p < 0.001 and 0.003, respectively). No interaction was found between the two (p=0.619).

• Position priming effects ranged from 2.5-11.4 pp, between subjects.

• Color priming effects ranged from 1.7-11.8 pp, between subjects.

• All subjects showed the same pattern of lowest accuracy under the "no repetition" condition and highest accuracy under the "both repeated" condition. These within-subject differences ranged from 10-23 pp.

Figure 3

The experiment

We tried to replicate perceptual priming effects in an accuracy based design (Yashar & Lamy, 2010) while generalizing to alphanumeric stimuli. Our design also has the advantage of multiple responses (15 consonants), which minimizes any effects of response repetition and visuomotor effects, leaving the results more readily interpreted as perceptual effects.

We presented subjects with a 3x3 consonant matrix where a target would always occupy one of the four corner positions. The displays where present for from 10-180 msec.

The subjects’ task was to report the odd-one-out letter by pressing the appropriate key on a keyboard. The target identity was determined by color and varied randomly (Figure 1).

Methods

Participants were 40 students at the University of Iceland (39 male, 1 female). Each subject participated in at least 10 blocks of 100 trials. Trails following incorrect trials in the same block were not repeated. Correct responses where not followed by a "false" trial. Each subject was 15 consonants shown to the Icelandic and English alphabets. These were presented as ARPAL, 500 msec. All letters where equally likely to appear at any time.

Stimuli were presented in red or blue. This was determined randomly for each trial (P(red)=P(blue)=0.5). All stimulus positions where corrected by pattern masks, made from bits of Arial Bold.

Data were either red or blue. This was determined randomly for each trial (P(red)=P(blue)=0.5).

Participants were 8 students at the University of Iceland (3 male), ages 22-28. Each subject participated in at least 10 blocks of 100 trials. Trials following incorrect trials were not repeated. Correct responses were not followed by a "false" trial.

All visual positions where corrected by pattern masks, made from bits of Arial Bold.

The model also applies to pooled, rather than individual data. However, the goodness of fit is quite promising. The model has 4 free parameters (v, alpha, col.nep, and pos.nep, weights) and a fixed C (processing speed). The C parameter is fixed at 50 ischem (table 1).

The model also applies to pooled, rather than individual data. However, the goodness of fit is quite promising. The model has 4 free parameters (v, alpha, col.nep, and pos.nep, weights) and a fixed C (processing speed). The C parameter is fixed at 50 ischem (table 1).

The model also applies to pooled, rather than individual data. However, the goodness of fit is quite promising. The model has 4 free parameters (v, alpha, col.nep, and pos.nep, weights) and a fixed C (processing speed). The C parameter is fixed at 50 ischem (table 1).

The model also applies to pooled, rather than individual data. However, the goodness of fit is quite promising. The model has 4 free parameters (v, alpha, col.nep, and pos.nep, weights) and a fixed C (processing speed). The C parameter is fixed at 50 ischem (table 1).

Results

• PoP affects accuracy at very brief exposures.

• The effects cannot be explained by reference to response related mechanisms.

• The results suggest a perceptual component in PoP. This does in not exclude response related PoP.

• A simple additive TVA model can be fitted quite well to experimental data.

• Recent literature suggests that repetition are the result of two or multiple mechanisms (see Lamy & Yashar, in press; Kristjánsson & Campana, 2010).

Conclusions

References


