Quantum Majority Vote

Buhrman, Harry; Linden, Noah; Mancinska, Laura; Montanaro, Ashley; Ozols, Maris

Published in:
14th Innovations in Theoretical Computer Science Conference (ITCS 2023)

DOI:
10.4230/LIPIcs.ITCS.2023.29

Publication date:
2023

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
https://doi.org/10.4230/LIPIcs.ITCS.2023.29
Quantum Majority Vote

Harry Buhrman ☑️
QuSoft, CWI, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Noah Linden ☑️
University of Bristol, UK

Laura Mančinska ☑️
University of Copenhagen, Denmark

Ashley Montanaro ☑️
Phasecraft Ltd., Bristol, UK
University of Bristol, UK

Maris Ozols ☑️
QuSoft, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Abstract

Majority vote is a basic method for amplifying correct outcomes that is widely used in computer science and beyond. While it can amplify the correctness of a quantum device with classical output, the analogous procedure for quantum output is not known. We introduce quantum majority vote as the following task: given a product state $|\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ where each qubit is in one of two orthogonal states $|\psi\rangle$ or $|\psi^\perp\rangle$, output the majority state. We show that an optimal algorithm for this problem achieves worst-case fidelity of $1/2 + \Theta(1/\sqrt{n})$. Under the promise that at least $2/3$ of the input qubits are in the majority state, the fidelity increases to $1 - \Theta(1/n)$ and approaches 1 as n increases.

We also consider the more general problem of computing any symmetric and equivariant Boolean function $f : \{0, 1\}^n \to \{0, 1\}$ in an unknown quantum basis, and show that a generalization of our quantum majority vote algorithm is optimal for this task. The optimal parameters for the generalized algorithm and its worst-case fidelity can be determined by a simple linear program of size $O(n)$. The time complexity of the algorithm is $O(n^4 \log n)$ where n is the number of input qubits.

2012 ACM Subject Classification Computer systems organization → Quantum computing

Keywords and phrases quantum algorithms, quantum majority vote, Schur–Weyl duality

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.29

References

1 Harry Buhrman, Noah Linden, Laura Mančinska, Ashley Montanaro, and Maris Ozols. Quantum majority vote. (Full version). doi:10.48550/ARXIV.2211.11729.