Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations

Acharya, S.; Adamova, D.; Adler, A.; Adolfsson, J.; Rinella, G.A.; Agnello, Maria; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Bearden, Ian; rtc312, rtc312; Gaardhøje, Jens Jørgen; bsm989, bsm989; Moravcova, Zuzana; Nielsen, Børge Svane; Vislavicius, Vytautas; Zhou, You; Alice Collaboration

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2022.137393

Publication date:
2022

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations

ALICE Collaboration*

**Abstract**

Correlations between mean transverse momentum [p_T] and anisotropic flow coefficients v_2 or v_3 are measured as a function of centrality in Pb-Pb and Xe-Xe collisions at √s_{NN} = 5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [p_T], v_2, and v_3 is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and T_EENTo initial-state shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather than the T_EENTo based calculations. In particular, Trajectum and JETSCAPE predictions, both based on the T_EENTo initial state model but with different parameter settings, fail to describe the measurements. As the correlations between [p_T] and v_n are mainly driven by the correlations of the size and the shape of the system in the initial state, these new studies pave a novel way to characterize the initial state and help pin down the uncertainty of the extracted properties of the quark–gluon plasma recreated in relativistic heavy-ion collisions.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

The primary goal of ultrarelativistic heavy-ion collisions is to study the quark–gluon plasma (QGP) [1], a deconfined state of quarks and gluons, predicted by quantum chromodynamics (QCD) to emerge at extreme densities and temperatures. High-energy heavy-ion collisions at Relativistic Heavy Ion Collider (RHIC) [2–5] and the Large Hadron Collider (LHC) at CERN [6,7] have yielded strong evidence that the QGP is observed in such collisions, enabling the study of its properties in the laboratory. A key phenomenon that provides valuable information on the transport properties of the created QGP matter is the anisotropic expansion of the produced particles [8]. The final anisotropy can be quantified by a Fourier decomposition of the single particle azimuthal distribution [9],

\[
P(\varphi) = \frac{1}{2\pi} \left[ 1 + 2 \sum_{n=1}^{\infty} v_n \cos(n(\varphi - \Psi_n)) \right].
\]

Here, \( \varphi \) is the azimuthal angle of the emitted particle, and \( v_n \) and \( \Psi_n \) are the n-th order flow coefficient and flow symmetry-plane angle, respectively. Systematic measurements on fluctuations and correlations of \( v_n \), coefficients and \( \Psi_n \) have been previously reported in Refs. [10–25]. Comprehensive comparisons with hydrodynamic model calculations provide critical information on the event average initial-state shape and the initial energy density distribution in the nuclear overlap region, as well as their event-by-event fluctuations. Additionally, they constrain the shear and bulk viscosity over entropy density ratios of the QGP, \( \eta/s \) and \( \zeta/s \), respectively [26–29]. Even at fixed final-state particle multiplicity, not only the shape but also the average size of the nuclear overlap region will, in general, fluctuate from event to event. These size fluctuations (at constant charged-particle density) lead to fluctuations of the pressure gradient and therefore affect the radial flow, thus influencing the transverse momentum \( p_T \) spectra of the produced particles. Arguably, the event-by-event fluctuations of the mean transverse momentum \( \langle p_T \rangle \) (the average transverse momentum of all particles in a single event) are more sensitive to the equation-of-state and \( \zeta/s \) than the measurements of the anisotropic flow [30,31]. Despite their early success in describing \( v_n \) measurements, hydrodynamic models have been able to reproduce the observed \( [p_T] \) fluctuations only recently [32–34]. Notably the measurements of \( v_n \) and \( [p_T] \) are used as independent experimental inputs for the Bayesian analyses [33–36], which extract state-of-the-art information on the initial conditions and the final state properties, including the temperature dependence of \( \eta/s \) and \( \zeta/s \).

Apart from the individual studies of \( v_n \) and \( [p_T] \), the interplay between radial and anisotropic flow was qualitatively investigated via anisotropic flow of identified hadrons [37,38] and with event-shape engineering (ESE) [39]. It was proposed that correlations...
between radial and anisotropic flow could be quantified via correlations between \( p_T \) and \( v_n \) using a modified Pearson correlation coefficient [40],

\[
\rho(v^2_m, [p_T]) = \frac{\text{Cov}(v^2_m, [p_T])}{\sqrt{\text{Var}(v^2_m)} \sqrt{\text{Var}([p_T])}}
\]

(2)

where \( \text{Cov}(v^2_m, [p_T]) \) is the covariance between \( v^2_m \) and \( [p_T] \), it can be calculated using a three-particle correlation following Eq. (1) in Ref. [40]. The variance of \( v^2_m \) fluctuations is given by \( \text{Var}(v^2_m) \) and can be measured by two- and four-particle cumulants, \( \text{Var}(v^2_m) = v_n(2)^4 - v_n(4)^4 \). Dynamical transverse momentum correlations are given by \( c_k \) [40–43]. As \( \rho(v^2_m, [p_T]) \) (for \( n = 2, 3 \)) can be qualitatively or even quantitatively reproduced by the initial state correlations [31,44,45], its measurements will provide valuable information on the overlap region’s shape and size, and their correlations in the initial conditions. In particular, \( \rho(v^2_m, [p_T]) \) is found to be sensitive to the nuclear quadrupole deformation [46], adding a new tool to study the nuclear structure, which has been addressed systematically at low energies so far [47]. This \( \rho(v^2_m, [p_T]) \) (for \( n = 2, 3, 4 \)) observable has been measured previously [48], which reported a clear dependence on charged-particle multiplicity, when selecting particles with \( p_T > 0.5 \text{ GeV/c} \).

Recently, a new observable that probes the correlations between \( [p_T] \) and two different \( v^2_m \) and \( v^2_n \) coefficients has been introduced [49]. This observable \( \rho(v^2_m, v^2_n, [p_T]) \) can be achieved by replacing three observables, A, B, and C with \( v^2_m, v^2_n, \) and \( [p_T] \) in Eq. (24) from Ref. [49].

\[
\rho(v^2_m, v^2_n, [p_T]) = \frac{\text{Cor}(v^2_m, v^2_n, [p_T])}{\sqrt{\text{Var}(v^2_m)} \sqrt{\text{Var}(v^2_n)} \sqrt{\text{Var}([p_T])}} - \rho_h - \frac{\sigma m}{\sqrt{\text{Var}(v^2_m)} \sqrt{\text{Var}(v^2_n)}} - \frac{\langle [p_T] \rangle}{\sqrt{\text{Var}(v^2_m)} \sqrt{\text{Var}(v^2_n)}}
\]

(3)

where \( \rho_h = \rho(v^2_m, [p_T]) \). \( \text{Cor}(v^2_m, v^2_n, [p_T]) \) is the correlation among \( v^2_m, v^2_n, \) and \( [p_T] \) defined in Ref. [49], and \( SC(m, n) \) is the symmetric cumulant between \( v^2_m \) and \( v^2_n \) [16,50,51]. The \( \rho(v^2_m, v^2_n, [p_T]) \) is constructed based on multiparticle cumulants [49,52], where lower-order few particle correlations have been removed, thus, it only reflects the genuine correlations between \( p_T \), \( v_n \), and \( v_m \). It is potentially more sensitive than \( \rho(v^2_m, [p_T]) \) to the initial conditions and is expected to be used to probe the initial momentum anisotropy [44], an asymmetry in the transverse pressure of the system at the interface between a pre-equilibrium description and a hydrodynamic description. The presence of an initial momentum anisotropy was predicted from first-principle considerations in the colour glass condensate (CGC) effective theory of high-energy QCD [53,54]. However, conclusive evidence for the CGC remains elusive.

In this Letter, the measurements of the centrality dependence of correlations between flow coefficients and \( [p_T] \) in Pb–Pb and Xe–Xe collisions at 5.02 TeV and 5.44 TeV, respectively, are presented. The collision centrality is determined using energy deposition in the two scintillator arrays of the V0 detector, V0A and V0C, which cover the pseudorapidity ranges of 2.8 < \( \eta < 5.1 \) and \( -3.7 < \eta < -1.7 \), respectively [55,56]. Events that pass central, semi-central, or minimum-bias trigger criteria with a reconstructed primary vertex (PV) within ±10 cm of the nominal interaction point along the beam direction are used. Background events are removed using information from multiple detectors as described in Ref. [57]. A total of 245 million Pb–Pb collisions and 1.2 million Xe–Xe collisions pass these criteria. The charged-particle tracks are reconstructed using the Inner Tracking System (ITS) [58] and the Time Projection Chamber (TPC) [59]. To select only high-quality reconstructed tracks for the analysis, they are required to be in the kinematic range 0.2 < \( p_T < 3.0 \text{ GeV/c} \) and \( |\eta| < 0.8 \), to have more than 70 TPC space points (out of a maximum of 159), and a \( \chi^2 \) per degree of freedom of the track fit to the TPC space points to be less than 2. In order to reduce the contamination from secondary particles, the distance-of-closest-approach (DCA) of the tracks to the PV must be within 2 cm in the longitudinal direction and a \( p_T \)-dependent distance selection in the transverse plane, ranging from 0.2 cm at \( p_T = 0.2 \text{ GeV/c} \) to 0.02 cm at \( p_T = 3.0 \text{ GeV/c} \), is applied. To suppress the non-flow contaminations, which are the azimuthal angle correlations not associated to \( v_n \), multiparticle correlations with the subevent method [52,60] are applied. For this, the pseudorapidity acceptance of the central barrel is divided into three regions (subevents), A, B, and C, corresponding to \(-0.8 < \eta_{(A,B)} < -0.4, |\eta| < 0.4, \) and \( 0.4 < \eta_{(C)} < 0.8 \), respectively. Here subevents A and C are used in the \( v_n \) measurements, while subevent B is used for \( [p_T] \) measurements. The \( v_n \), \([p_T] \), and their correlations are measured in each event and corrected for detector acceptance and track-reconstruction efficiency using the latest developments based on generic framework with 3-subevent method [50,60] including \([p_T] \) calculations.

Systematic uncertainties are estimated by varying event and track selection criteria. Uncertainties related to the selection of the event include the variation of the accepted vertex position along the beam line (9, 7 and 5 cm), and consideration of different magnetic field directions, which are analyzed separately. The resulting systematic uncertainty was found to be within 2%. The systematic uncertainties related to track selection criteria are estimated by considering different track reconstruction algorithms and reconstruction qualities. The variations of the maximum allowed DCA to the primary vertex along the beam line and in the transverse plane result in differences less than 1%. The quality of reconstructed tracks is varied by increasing the minimum number of space points in the TPC associated with the reconstructed track to 80 and 90, which leads to a negligible effect on the measured correlations. It is also found that the tracking efficiency exhibits a slight centrality dependence, varying by about 4% with multiplicity. To account for this, the tracking efficiency is varied by ±4% in a \( p_T \)-dependent way, so that the efficiency is at its nominal value at \( p_T = 0.2 \text{ GeV/c} \) and 4% larger or smaller at \( p_T = 3.0 \text{ GeV/c} \). This yields a systematic uncertainty below 1%. The residual non-flow contaminations are studied with the 3-subevent method [60,61] and the effects are found to be negligible, which agrees with the findings from model studies [61]. Only the sources of systematic uncertainty found to be statistically significant by more than 1σ following the procedure introduced in Ref. [62] are added in quadrature to obtain the total systematic uncertainty.

The measurements of \( \rho(v^2_m, [p_T]) \) and \( \rho(v^2_n, [p_T]) \) as a function of collision centrality in Pb–Pb collisions at \( \sqrt{s_{NN}} = 5.02 \text{ TeV} \) and Xe–Xe collisions at \( \sqrt{s_{NN}} = 5.44 \text{ TeV} \) are presented in Fig. 1. In Pb–Pb and Xe–Xe collisions, \( \rho(v^2_m, [p_T]) \) has a weak centrality dependence and is positive in the considered centrality range. This implies that \( v^2_m \) and \( [p_T] \) are positively correlated and confirms the previous studies using the ESE approach [39]. The presented ALICE results also qualitatively agree with the previous ATLAS measurements [48]. The stronger centrality dependence reported by the ATLAS Collaboration might be attributed to the different kinematic selection criteria and the choice of centrality determination. Hydrodynamic model calculations from the v-USPhydro model [30], the Trajectum Bayesian analysis [35], the JETSCAPE Bayesian analysis [36], and the IP-Glasma+MUSIC+UrQMD model [31], whenever available, are compared to data. The width of the bands illustrated in Fig. 1 denotes the statistical uncertainty of the model calculations using maximum a posteriori (MAP) parametrization.
while any potential systematic uncertainty arising from different parametrizations of the models has not been evaluated. The v-USPhydro model uses T$_{\text{Re}}$ENTo initial conditions tuned in Ref. [63] and evolved by the v-USPhydro hydrodynamic code [45]. The Trajectum [35] and JETSCAPE [36] predictions are also based on T$_{\text{Re}}$ENTo initial conditions but tuned as described in Refs. [35] and [36], respectively. The IP-Glasma+MUSIC+UrQMD model uses IP-Glasma initial conditions [64,65] followed by the MUSIC hydrodynamic model [66], coupled to a hadronic cascade model (UrQMD) [67,68]. In general, these models can quantitatively describe the previous measurements of particle $p_T$ distributions and anisotropic flow [69,70]. As shown in Fig. 1, the IP-Glasma+MUSIC+UrQMD calculations capture the general trend of the measured $\rho(v_2^2, |p_T|)$ with a weak centrality dependence, qualitatively describe the measurements in Pb–Pb and Xe–Xe collisions, but slightly overestimates the data. The v-USPhydro and Trajectum calculations exhibit a strong centrality dependence, underestimate the data by more than 50% for centrality above 30%, and have an opposite sign with respect to data for centralities above 40%. The discrepancies between the measurements and T$_{\text{Re}}$ENTo-based calculations become more pronounced with the JETSCAPE predictions [36], which become negative for semicentral collisions.

A recent study [71] showed that $\rho(v_2^2, |p_T|)$ is more sensitive to the initial conditions of the collisions rather than to the transport properties of the QGP. This is also supported by the good agreement between the various hydrodynamic calculations and the correlation coefficients calculated directly from the corresponding initial-state model, which are presented by solid or dashed lines in the top panel of Fig. 1. These initial-state estimations (ISE) are calculated using the correlations of the energy of the fluid per unit rapidity at the initial time $t_0$ and initial anisotropy coefficient $\varepsilon_2$ [45]. Thus, differences between the calculations of $\rho(v_2^2, |p_T|)$ shown in Fig. 1 are not primarily due to different hydrodynamic codes or treatments of hadronic interactions in these models. The different model predictions are rather caused by the difference in the initial energy density profile (geometric effect) and, potentially, a contribution from an initial momentum anisotropy, which is included in the IP-Glasma framework based on the CGC effective theory. The effect of initial momentum anisotropy is studied by comparing the hydrodynamic calculations using IP-Glasma initial conditions with and without initial momentum anisotropy (with only the final state effect labelled “FSE” shown by the light blue shadows). The IP-Glasma based calculations shown in Fig. 1 (a) are consistent with each other in the 0–60% Pb–Pb collisions. Thus, the different descriptions of ALICE data from IP-Glasma and T$_{\text{Re}}$ENTo based calculations are mainly driven by the initial geometric effects, which possibly originated from different values of $\omega$ parameter that determines the width of the colliding nuclei in the initial conditions [72]. The variable $\rho(v_2^2, |p_T|)$ is the first observable for which such a significant difference is seen between T$_{\text{Re}}$ENTo and IP-Glasma models. Moreover, it is found that $\rho(v_2^2, |p_T|)$ is sensitive to the quadrupole deformation parameter $\beta_2$ of deformed nuclei, such as $^{238}$U or $^{129}$Xe [46,73]. Previous flow measurements in Xe–Xe collisions [22] provided the estimation of $\beta_2 = 0.16$ for Xe using the data in the 0–5% central collisions. The $\rho(v_2^2, |p_T|)$ calculation with $\beta_2 = 0$ and 0.162, based on IP-Glasma initial conditions in Fig. 1 (b), show a difference of 10–40% in the most central collisions. Comparisons of presented ALICE measurements to IP-Glasma+MUSIC+UrQMD calculations with the two different $\beta_2$ values suggest that the data agrees better with the IP-Glasma+MUSIC+UrQMD model calculations using $\beta_2 = 0.162$. Last but not least, the magnitude of $\rho(v_2^2, |p_T|)$ measured in Pb–Pb collisions is larger than that in Xe–Xe collisions. Such a difference is predicted by both v-USPhydro and IP-Glasma+MUSIC+UrQMD calculations and is believed to be useful to discover a potential triaxial structure of $^{129}$Xe at the LHC energies [74,75]. Comparisons with calculations that include different deformation scenarios could provide strong constraints on the $^{129}$Xe nuclear structure. This is highly non-trivial because it is not entirely clear at the moment if the nuclear structure at the LHC energies, where the partonic degree of freedom is relevant, should be quantified by the same set of parameters as the low energy nuclear structure studies.

Fig. 1 (bottom) shows the centrality dependence of $\rho(v_2^2, |p_T|)$ in the two colliding systems. The results are consistent within uncertainties for the considered centrality range. Both results show a positive value and rather a weak centrality dependence and a modest increase for centrality above 40% in Pb–Pb collisions. The IP-
The ALICE Collaboration would like to thank Giuliano Giacalone (v-USPhydro), Chun Shen, Bjørn Schenke (IP-Glasma), Wilke van der Schee (Trajectum), Julia Velkovska, Andi Mankolli (JETSCAPE), Piotr Bozek (Glauber+MUSIC) for providing the latest predictions from the state-of-the-art models.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the
following funding agencies for their support in building and running the ALICE detector: A. I. Alkhimyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEAED), Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Villum Fonden and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religious, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Sciences, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Applied Science (JIST), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Joint Institute for Nuclear Research [JINR], Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References


ALICE Collaboration


ALICE Collaboration

Physics Letters B 834 (2022) 137393

Deceased.

Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy.

Also at: Departamento DET del Politecnico di Torino, Turin, Italy.

Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia.

Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India.

Also at: Institute of Theoretical Physics, University of Wrocław, Poland.

Also at: University of Kansas, Lawrence, Kansas, United States.