Sea ice fluctuations in the Baffin Bay and the Labrador Sea during glacial abrupt climate changes

Scoto, Federico; Sadatzki, Henrik; Maffezzoli, Niccolo; Barbante, Carlo; Gagliardi, Alessandro; Varin, Cristiano; Valdellonga, Paul; Gkinis, Vasileios; Dahl-Jensen, Dorthe; Kjaer, Helle Astrid; Burgay, Francois; Saiz-Lopez, Alfonso; Stein, Ruediger; Spolaor, Andrea

Published in:
Proceedings of the National Academy of Sciences of the United States of America

DOI:
10.1073/pnas.2203468119

Publication date:
2022

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Sea ice fluctuations in the Baffin Bay and the Labrador Sea during glacial abrupt climate changes

Federico Scotoa,b,1, Henrik Sadatzkic, Niccolò Maffezzolid,4, Carlo Barbanteb,d, Alessandro Gagliardib, Cristiano Vanirid, Paul Valdelongad, Vasileios Gkinsie, Dorte Dahl-Jensenf,g, Helle Astrid Kjærg, François Burgayh,i, Alfonso Saiz-Lopezb, Ruediger Steini, and Andrea Spolaorb,d,1

Edited by Julie Brigham-Grette, University of Massachusetts Amherst, Amherst, MA; received February 25, 2022; accepted September 3, 2022 by Editorial Board Member Akkhebbal R. Ravishankara

Sea ice decline in the North Atlantic and Nordic Seas has been proposed to contribute to the repeated abrupt atmospheric warmings recorded in Greenland ice cores during the last glacial period, known as Dansgaard-Oeschger (D-O) events. However, the understanding of how sea ice changes were coupled with abrupt climate changes during D-O events has remained incomplete due to a lack of suitable high-resolution sea ice proxy records from northwestern North Atlantic regions. Here, we present a subdecadal-scale bromine enrichment (Br\textsubscript{enrich}) record from the NEEM ice core (Northwest Greenland) and sediment core biomarker records to reconstruct the variability of seasonal sea ice in the Baffin Bay and Labrador Sea over a suite of D-O events between 34 and 42 ka. Our results reveal repeated shifts between stable, multiyear sea ice (MYSI) conditions during cold stadials and unstable, seasonal sea ice conditions during warmer interstadials. The shift from stadial to interstadial sea ice conditions occurred rapidly and synchronously with the atmospheric warming over Greenland, while the amplitude of high-frequency sea ice fluctuations increased through interstadials. Our findings suggest that the rapid replacement of widespread MYSI with seasonal sea ice amplified the abrupt climate warming over the course of D-O events and highlight the role of feedbacks associated with late-interstadial seasonal sea ice expansion in driving the North Atlantic ocean–climate system back to stadial conditions.

Significance

Dansgaard-Oeschger (D-O) events are abrupt atmospheric warming events in Greenland that occurred repeatedly during the last glacial period. Combining proxy records from an ice core and a sediment core, we reconstruct sea ice conditions in the Baffin Bay and the Labrador Sea during several D-O events between 34 and 42 thousand years ago. Our results reveal in detail that widespread sea ice decline was synchronous with the atmospheric warming of the D-O events, highlighting the importance of sea ice decline in amplifying abrupt high-latitude climate warming. We also find re-expansion of seasonal sea ice during the late phase of warm interstadial periods, which likely contributed to a feedback loop in the sub-polar North Atlantic driving the climate system back to cold stadial conditions.
(North Greenland Eemian Ice Drilling) ice core has been used to reconstruct the sea ice evolution in the Canadian Arctic and Baffin Bay over the last glacial cycle (130 ka to present) (24). Specifically, lower Br$_{enr}$ values observed in the NEEM ice core during GS have been interpreted with a widespread multyear sea ice (MYSI) cover, while higher Br$_{enr}$ values during GI have been associated with enhanced FYSI conditions (24). The temporal resolution of the previously published glacial NEEM record (~60–120 y), however, did not allow any detailed investigation of sea ice changes during the D-O climate cycles or its temporal relationship with the atmospheric warming.

Here we present a subdecadal record of NEEM Br$_{enr}$ to reconstruct the sea ice variability in the Baffin Bay during D-O events 7–10 that occurred between 34 and 42 ka (b2k = before 2000 CE). To enhance the interpretation and spatial coverage of our sea ice reconstruction, we compare the NEEM Br$_{enr}$ sea ice record with an independent marine biomarker sea ice record from the Eirik Drift off South Greenland that reflects sea ice changes in the northern Labrador Sea. This study provides unprecedentedly detailed insights into millennial-scale and shorter-term sea ice fluctuations in regions west and south of Greenland during times of abrupt climate changes.

Results

Core Sites, Chronology, and Sea Ice Proxies. The 2,540 m-long NEEM ice core retrieved in North West Greenland between 2008 and 2012 (77°45' N, 51°07' W, 2,479 m a.s.l.; Fig. 1) preserves a comprehensive record of the Greenland climate since the last interglacial, the Eemian (130 ka). At present, the mean annual temperature at the ice core site is −29°C and the accumulation rate is 0.22 m ice equivalent/year (25). The dating of the NEEM ice core was done according to the GICC05modelext-NEEM-1 age scale (26). The source region of marine aerosols and bromine deposited at the NEEM site encompasses the Canadian Archipelago, the Hudson Bay, and the Baffin Bay (24, 27), regions that are today mostly covered by seasonal sea ice (28). However, empirical and modeling evidence (29–32) suggest that the Laurentide Ice Sheet over North America also extended over the Canadian Archipelago and the Hudson Bay during the last glacial maximum (~24 ka). On the contrary, the Baffin Bay was probably covered by perennial sea ice but not by an ice sheet (33). We therefore assume that the glacial NEEM Br$_{enr}$ profile might largely reflect sea ice changes in the Baffin Bay area.

To discriminate between perennial vs. seasonal sea ice regimes and to evaluate the overall temporal sea ice response to glacial D-O events, we employ subdecadal records of bromine and sodium alongside stable oxygen isotopes data [δ18O (34)] (Figs. 2 and 3). Both records are obtained from the subsampling of the NEEM ice core between 1,711 and 1,793 m depth that corresponds to a time interval between 34 and 42 ka. This period encompasses four D-O cycles (D-O 7–10), including Heinrich event 4 (HE4) (35).

The NEEM high-resolution discrete samples (2–3 cm) were collected only in proximity of each D-O transitions (SI Appendix, Materials and Methods). We filled the measurement gaps for Br and Na records with low-resolution (110 cm) data from a previous study (24). NEEM δ18O and accumulation rate data were obtained through Continuous Flow Analysis (34, 36).

The Br$_{enr}$ sea ice proxy is calculated from the bromine-to-sodium mass ratio measured in the ice samples normalized to that of bulk seawater (where [Br]/[Na]$_{seawater} = 0.0062$ (37)). The primary mechanism that leads to increased Br$_{enr}$ values in polar ice is the auto-catalytic release of bromine species from sea ice saline substrates into the polar boundary layer during springtime, which eventually results in bromine-enriched snow deposited at the ice core site (21, 38–40). Increased levels of Br$_{enr}$ are hence associated with seasonal, or first-year, sea ice conditions in the ice core source region of aerosol (11, 21, 22, 40–45) (SI Appendix, Materials and Methods), while the δ18O record is commonly used as an indicator of local atmospheric temperatures (5, 34, 46, 47).

We complement our Br$_{enr}$ sea ice record with a biomarker-based sea ice proxy record from the Eirik Drift core GS16-204–23CC (58°13' N, 45°42' W, Fig. 1), which allows us to constrain shifts of the glacial sea ice edge south of Greenland during the D-O cycles. Biomarkers were analyzed in samples from the interval between 341 and 560 cm core depth, corresponding to the time interval between 31 and 42 ka. The sea ice biomarker IP$_{3S}$, a highly branched isoprenoid (HBI) monolene, is used to trace the occurrence of seasonal sea ice (17), brassicasterol as a tracer for open water conditions (18), and the HBI triene (HBI-III) to identify the retreating sea ice edge or marginal ice zone (19, 20). The age model for the section investigated in core GS16-204–23CC is based on stratigraphic alignment of its magnetic susceptibility record to that of nearby core JPC15, and tuning of the relative paleointensity record of JPC15 to that of the well-dated core PS2644, whose age model is based on a tuning to the GICC05 chronology but is independently supported by numerous foraminiferal 14C ages and tephra layers (48). The age model and the temporal resolution of our biomarker records of core GS16-204–23CC sufficiently constrain and resolve the sea ice conditions during stadial and interstadial periods between GS-7 and GS-9, allowing for a comparison to and supporting the NEEM ice core records at least on a millennial time scale. The sediment core chronology and methodology are detailed in the SI Appendix, Materials and Methods.

Baffin Bay Sea Ice Conditions during Abrupt Glacial Climate Changes. Between 34 and 42 ka, both NEEM sodium and bromine concentrations display a millennial-scale variability strictly in anti-phase with the NEEM δ18O temperature proxy profile and with about a 3-fold increase during GS compared to warmer GI (Fig. 2 A, D, and E). Sodium stadial/interstadial variability has been primarily explained by a change in accumulation and/or in wind strength (36) (Fig. 2B).

Similarly, although bromine concentrations are generally higher during GS, we note increased levels over the course and/or in the final phase of GI (Fig. 2E). This may be associated with a change in the seasonality of precipitation (49, 50), and/or more extended seasonal sea ice in the Baffin Bay, the latter leading to an extra source of inorganic bromine deposited at NEEM (24, 42). As previously mentioned, it is important to remark that each D-O climate cycle involved substantial changes both in atmospheric temperature (4, 26) and wind patterns (6, 36), as well as precipitation with almost doubled snow accumulation rate during the GI compared to the GS periods (Fig. 2B) (26, 51). Nevertheless, we observe that also the calculated sodium and bromine deposition fluxes do not show any substantial differences with respect to the trends in elemental concentrations (SI Appendix, Fig. S2).

In line with the previous long-term Br$_{enr}$ reconstruction (24), each GS-GI transitions is marked by an increase of Br$_{enr}$ mean-value concomitant with the δ18O shifts, suggesting a close link between the rapid atmospheric warmings over Greenland and increased seasonal sea ice conditions in the Baffin Bay (24) (Fig. 3 A and B and Table 1). In particular, the highest Br$_{enr}$ mean values occur during the long-lasting and more...
pronounced interstadials such as GI-8 \(\text{Brenr}_{\text{GI-8}} = 3.52 \pm 4.29 \) \(\sigma \) (1σ); duration = 1,640 y (51), GI-10 \(\text{Brenr}_{\text{GI-10}} = 2.91 \pm 2.87 \) \(\sigma \); duration = 660 y (51), and GI-7 \(\text{Brenr}_{\text{GI-7}} = 2.75 \pm 3.80 \) \(\sigma \); duration = 740 y (51), when the reconstructed temperature increase \(\Delta T \) at the NEEM site was between 7 and 9°C (4) (Table 1). In contrast, a smaller increase in \(\text{Brenr} \) mean value is observed during the shortest and less intense event GI-9 \(\text{Brenr}_{\text{GI-9}} = 2.28 \pm 2.07 \) \(\sigma \); duration = 260 y (51); \(\Delta T \) = ~6°C (4), indicating a less extensive seasonal sea ice cover in the Baffin Bay compared to the other GI (Table 1). In relative terms, the highest increase of \(\text{mean-Brenr} \) with respect to the previous stadial period occurs during GI-8 (52%), followed respectively by GI-10 (53%), GI-7 (31%), and GI-9 (7%).

Taken at face value, the relative increase of \(\text{Brenr} \) mean value between stadial and interstadial periods (Table 1) might indicate an overall limited-to-moderate expansion of the total seasonal sea ice cover in the Baffin Bay. However, focusing on the internal (subdecadal) GS/GI \(\text{Brenr} \) variability, thus taking into account the SD of \(\text{Brenr} \) data, \(\sigma \), we can clearly identify a significant change at the onset of each D-O event (Table 1 and SI Appendix, Fig. S3). We suggest that the combined increase of both absolute \(\text{Brenr} \) mean values and its associated SD can be used as a proxy of sea ice stability during the glacial abrupt D-O cycles. Indeed, a lowered \(\sigma \) during stadial periods \(\text{Brenr}_{\text{GS}} = 2.21 \pm 0.81 \) \(\sigma \), excluding GS-7 of which we do not have the complete D-O cycle) supports the hypothesis of a stable, widespread MYSI cover over the Baffin Bay and limited FYSI fluctuations. In contrast, the concurrent increase of \(\text{Brenr} \) mean value and its associated SD during the interstadial periods \(\text{Brenr}_{\text{GI}} = 2.97 \pm 3.63 \) \(\sigma \) is reflective of more unstable sea ice conditions characterized by a reduced MYSI cover and more pronounced \(\text{Brenr} \) variability.

Timing of Baffin Bay Sea Ice Changes with Respect to D-O Climate Events. Isotope-enabled model simulations of D-O type events have demonstrated that, especially for long lasting events, the \(\delta^{18}O \) variability in southern Greenland ice cores can be nearly entirely explained by sea ice changes (46). In northern Greenland and in particular at the NEEM site, however, the impact of sea ice loss on the water isotopes profile has been suggested to be of secondary importance (46). In this context, NEEM \(\delta^{18}O \) and \(\text{Brenr} \) records are, to some extent, relatively independent of each other with the former capturing the abrupt near-surface air temperatures variations and the latter reflecting different sea ice conditions.

To assess the temporal relationship between the abrupt Greenland atmospheric warmings and the glacial Baffin Bay sea ice change, we employ a statistical analysis to define a) the D-O onset based on structural changes in the \(\delta^{18}O \) series and b) the first occurrence of a statistically significant increase of the \(\text{Brenr} \) variability (SI Appendix, Materials and Methods). We hence calculate the Baffin Bay sea ice time response as the time interval between the D-O onset and the first statistically significant change in the variability of the \(\text{Brenr} \) sea ice proxy (SI Appendix, Materials and Methods). Table 2 shows that, except for D-O 7 (where there is a lead of 9 y), during all the other D-O events considered, the first significant change of \(\text{Brenr} \) variability is coeval with the \(\delta^{18}O \) shifts, suggesting a synchronous sea ice response to glacial abrupt climate warmings.

Based on the subdecadal temporal resolution of the NEEM ice core samples 2–6 y for \(\text{Brenr} \) and 2–8 y for \(\delta^{18}O \) (34), we argue that the breakup of the near-perennial sea ice cover and the shift to more seasonal sea ice conditions in the Baffin Bay might have happened conservatively within one decade at the D-O onset. Although we do not resolve the causal relationship between the two climatic components, we find that the \(\text{Brenr} \) variability steadily increases when the NEEM \(\delta^{18}O \) exceeds \(\sim -42 \pm 1.28 \) (95% confidence interval) and it decreases below this threshold value (yellow band in Fig. 4A and SI Appendix, Materials and Methods). This result highlights a quantitative link between past Baffin Bay sea ice stability and glacial abrupt climate variability, which might be

Fig. 1. Overview of the location sites of ice and marine sediment cores used in this study. Red stars indicate the NEEM and RECAP ice cores locations. Yellow star indicates the marine sediment core GS16-204-23CC. Black lines mark the median sea ice edge position during March (solid), April (dashed), May (dotted) averaged over the period 1981–2010 (https://nsidc.org) (65). The map was produced with QGIS (v3.10.10).
tested as a constraint for glacial coupled atmospheric-sea ice model simulations.

Furthermore, we use a spline to smooth the squared deviations from the mean of Brenr in order to assess the temporal evolution of the Baffin Bay sea ice changes during the selected D-O cycles (Fig. 4 and SI Appendix, Materials and Methods). The smoothed curves of the squared deviations of Brenr follow the δ^{18}O glacial climate variability, with lower values associated with a stable MYSI regime and higher values suggesting enhanced FYSI conditions (Fig. 4C). Yet, we observed that the maxima of the smoothed curves of Brenr squared deviations, interpreted as the most pronounced sea ice fluctuations, are not synchronous with the abrupt atmospheric warmings displayed by δ^{18}O, but delayed by up to several centuries with respect to the D-O onsets (Fig. 4, red dashed lines). The smoothed squared deviations of Brenr values during D-O 7 suggest that the most pronounced variation of the reconstructed Baffin Bay FYSI cover occurs \sim0.7 ka after the D-O onset, coinciding approximately with the termination of GI-7. Similarly, the most variable FYSI conditions during D-O events 8 and 10 are attained \sim0.4 ka and 0.25 ka after the onsets of GI-8 and GI-10, respectively. For the shortest and less intense D-O 9, the time lag is only 70 y. (Fig. 4C and Table 2). We note that the longest response times for most variable sea ice conditions being reached after the onsets of D-O events 8 and 7 were also accompanied by the largest amplitudes of the interstadial sea ice fluctuations. We argue that the short-term sea ice fluctuations increased in amplitude through GI, with their maximum being reached near the end of the GI, but were substantially muted during GS.

Sea Ice Proxy Evidence from the Eirik Drift Sediment Core. Biomarker records of core GS16-204–23CC are used to reconstruct the stadial and interstadial sea ice conditions in the Labrador Sea south of Greenland, extending our ice-core-based sea ice reconstruction for the Baffin Bay. This core site is today located under annually ice-free conditions, just south of the East Greenland Current extension that transports cold and ice-laden waters around the southern tip of Greenland into the Labrador Sea (Fig. 1). It is thus ideally suited to trace a potentially enhanced and variable sea ice cover and/or export in the northwestern North Atlantic during abrupt D-O climate changes.

To investigate the past sea ice conditions and phytoplankton production, we used IP$_{25}$, a monounsaturated HBI with 25 carbon atoms, the triunsaturated HBI-III, and brassicasterol. IP$_{25}$ is produced by certain sea ice diatoms and found in increased abundance in surface sediments underlying a seasonal sea ice cover in Arctic and sub-Arctic regions (17, 52, 53). In turn, it is (almost)
absent in surface sediments underlying either a perennial sea ice cover or an ice-free, open ocean. HBI-III is produced by open-water diatoms especially in the marginal ice zone, while brassicasterol is formed by diatoms and other phytoplankton in the open ocean (17, 18, 20). Both biomarkers are found in sediments underlying open-ocean conditions and under the seasonally retreating sea ice edge, but are largely absent under (near-) perennial sea ice (20, 52, 53). Biomarker data from Eirik Drift core-top samples, including that of the core site investigated here, show increased brassicasterol concentrations and decreased IP25 and HBI-III concentrations relative to downcore (13), reflecting the modern open-water conditions south of Greenland (Fig. 3).

The biomarker records of core GS16-204–23CC show concentrations of 0–2.5 μg/gOC for IP25, 0–6.3 μg/gOC for HBI-III (in one sample up to 24.7 μg/gOC), and 0–23.4 μg/gOC for brassicasterol, with all biomarkers varying largely in parallel throughout the record between ~31–42 ka (Fig. 3 C–E and SI Appendix, Fig. S4). IP25, HBI-III, and brassicasterol are low over large parts of the record, in particular during stadials, while increased biomarker abundances are observed in two intervals that correspond to GI-8 and GI-7. An interstadial increase in biomarker values is not resolved for the other shorter-lasting GI, possibly because of the temporal resolution of the records being too low (SI Appendix, Fig. S4). While the core-top of the core site investigated here shows elevated brassicasterol and substantially reduced IP25 and HBI-III concentrations (Fig. 3 C–E), the stadial and interstadial biomarker signals in core GS16-204–23CC resemble biomarker values observed in core-tops from the perennially ice-covered and seasonally ice-covered East Greenland margin, respectively (10). The contemporaneously increased abundance of IP25 and brassicasterol in core GS16-204–23CC thus suggests an enhanced sea ice algae and phytoplankton production under a seasonal sea ice cover. This is also consistent with increased HBI-III values that may indicate a seasonally retreating sea ice edge or marginal ice zone conditions over the core site during interstadials. By contrast, extremely reduced IP25, HBI-III, and brassicasterol values suggest a reduction in both sea ice algae and open-water phytoplankton production, which we interpret as reflecting a more extensive, near-perennial sea ice cover during stadials.

The biomarker-based sea ice record of GS16-204–23CC reflects both generally enhanced sea ice conditions between

Fig. 3. Stable oxygen isotopes and bromine enrichment from NEEM and biomarker proxy records from the Eirik Drift (Labrador Sea). (A) Subdecadal δ¹⁸O (thin line) with 10-points moving average (thick line) (34); (B) NEEM bromine enrichment (thin line) with 10-points moving average (thick line) and low-resolution data from a previous study (yellow dots) (24). (C) GS16-204–23CC record of IP₂₅ (magenta), (D) brassicasterol (green), and (E) HBI-III (light blue). Asterisks indicate GS16-204–23MC core-top values for comparison (10, 53). The chronology is the GICC05modelext-NEEM-1 timescale (26). Shaded bars indicate the GS, which are numerated at the Bottom while white bands indicate GI numerated at the Top.
34 and 42 ka, as compared with modern ice-free conditions, and glacial sea ice reductions during GI-7 and GI-8. Hence, our combined sea ice records from the NEEM ice core and the Eirik Drift sediment core indicate that an extensive MYSI cover prevailed in both the Baffin Bay and in the northern Labrador Sea during stadials and that seasonal sea ice conditions characterized both regions west and south of Greenland during interstadials. As during stadials and that seasonal sea ice conditions prevailed in both the Baffin Bay and Labrador Sea during GSs and Baffin Bay and Labrador Sea during GI-7 and GI-8. Hence, our combined sea ice records from the NEEM ice core and the Eirik Drift sediment core indicate that an extensive MYSI cover prevailed in both the Baffin Bay and in the northern Labrador Sea during stadials and that seasonal sea ice conditions characterized both regions west and south of Greenland during interstadials. As during stadials and that seasonal sea ice conditions prevailed in both the Baffin Bay and Labrador Sea during GSs and Baffin Bay and Labrador Sea during GI-7 and GI-8. Hence, our combined sea ice records from the NEEM ice core and the Eirik Drift sediment core indicate that an extensive MYSI cover prevailed in both the Baffin Bay and in the northern Labrador Sea during stadials and that seasonal sea ice conditions characterized both regions west and south of Greenland during interstadials. As during stadials and that seasonal sea ice conditions prevailed in both the Baffin Bay and Labrador Sea during GSs and Baffin Bay and Labrador Sea during GI-7 and GI-8. Hence, our combined sea ice records from the NEEM ice core and the Eirik Drift sediment core indicate that an extensive MYSI cover prevailed in both the Baffin Bay and in the northern Labrador Sea during stadials and that seasonal sea ice conditions characterized both regions west and south of Greenland during interstadials. As during stadials and that seasonal sea ice conditions prevailed in both the Baffin Bay and Labrador Sea during GSs and Baffin Bay and Labrador Sea during GI-7 and GI-8. Hence, our combined sea ice records from the NEEM ice core and the Eirik Drift sediment core indicate that an extensive MYSI cover prevailed in both the Baffin Bay and in the northern Labrador Sea during stadials and that seasonal sea ice conditions characterized both regions west and south of Greenland during interstadials.

Conversely to stadial periods, long-lasting interstadials like GI-8 and GI-7 show a relative increase of Brenv in the NEEM ice core accompanied by higher levels of IP\textsubscript{25}, HBI-III, and brassicasterol in the GS16-204–23CC sediment core, suggesting overall enhanced seasonal sea ice conditions. This in turn implies a loss of the prevalent perennial cover and a partial replacement by seasonal sea ice in both the Baffin Bay and northern Labrador Sea. The extensive FYSI conditions originated by the retreat of the MYSI edge support enhanced springtime inorganic bromine recycling on the seasonal sea ice surface (21, 44) with subsequent increase of Brenv levels at the NEEM site (Fig. 5B).

The shift from extensive MYSI to rather FYSI in the Baffin Bay and the Labrador Sea in response to each GS-GI transitions is in agreement with a reinvigoration of the AMOC and an associated increase in northward surface ocean heat transport to the subpolar North Atlantic (54, 55). Reduced, seasonal sea ice conditions reflected in our records for GI-7 and 8 suggest that at least partially ice-free conditions in the Labrador Sea may have been associated with open-ocean convection and deep-water formation in that region. Consistent with model simulation of the glacial climate variability, sea ice retreat and increased deep-water formation in the Labrador Sea might have contributed to a strengthened AMOC during GI (56). On the other hand, extensive near-perennial sea ice conditions in the Baffin Bay and Labrador Sea during GS and associated enhanced sea ice export to the subpolar North Atlantic, where (seasonal) sea ice melting would lead to a surface freshening, argue for suppressed local deep ocean convection in agreement with a reduced AMOC.

Table 2. Year (b2k) of the first significant change of NEEM Brenv

<table>
<thead>
<tr>
<th>D-O event</th>
<th>GI onset (year b2k)</th>
<th>Brenv onset (year b2k)</th>
<th>Max BrenvSSD (year b2k)</th>
<th>Delta (NEEM GI onset − max Brenv SSD) (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>35,473</td>
<td>35,464</td>
<td>34,780</td>
<td>693</td>
</tr>
<tr>
<td>8</td>
<td>38,214</td>
<td>38,214</td>
<td>37,821</td>
<td>393</td>
</tr>
<tr>
<td>9</td>
<td>40,134</td>
<td>40,134</td>
<td>40,064</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>41,448</td>
<td>41,448</td>
<td>41,198</td>
<td>250</td>
</tr>
</tbody>
</table>

The first column shows the year (b2k) of the GI onsets defined from the structural changes in the NEEM δ18O record. The second column show the year (b2k) of the first significant change of the Brenv profile. The third column displays the year of maxim smoothed squared deviations (SSD) of Brenv. The last column reports the time interval (Delta) between the NEEM GI onset and the maxima of SSD.
The glacial millennial-scale sea ice changes reconstructed for the Baffin Bay and the northern Labrador Sea are generally consistent with those reconstructed for the Nordic Seas. While sea ice reductions in the Nordic Seas were found to have occurred within 250 y or less at or just before the onset of a D-O event (9, 10), our data indicate that the breakup of the perennial sea ice cover and the shift to increased seasonal sea ice conditions west and south of Greenland occurred within a decade and synchronously with the D-O climate warming transitions. The tight coupling between sea ice changes and Greenland temperature changes during the D-O cycles and their nonlinear climate transitions (7) is further illustrated by the threshold behavior that we identified in the δ 18O series; (B) NEEM BrF 5 data plotted on a log2 scale with blown-up views centered on each stadial/interstadial transition plotted on a normal scale; (C) smoothed squared deviations from the mean of BrF 5 series. The black vertical dashed lines indicate the onset of each D-O event using NEEM δ 18O data (SI Appendix, Materials and Methods for more details) while the red vertical dashed lines indicate the maxima of the smoothed squared deviations from the mean of BrF 5. The chronology is the GICC05modelext-NEEM-1 timescale (26).

Fig. 4. NEEM stable oxygen isotopes and bromine enrichment variability across D-O 7–10. (A) Black segments indicate the estimated structural changes in the δ 18O series; (B) NEEM BrF 5 data plotted on a log2 scale with blown-up views centered on each stadial/interstadial transition plotted on a normal scale; (C) smoothed squared deviations from the mean of BrF 5 series. The black vertical dashed lines indicate the onset of each D-O event using NEEM δ 18O data (SI Appendix, Materials and Methods for more details) while the red vertical dashed lines indicate the maxima of the smoothed squared deviations from the mean of BrF 5. The chronology is the GICC05modelext-NEEM-1 timescale (26).

The glacial millennial-scale sea ice changes reconstructed for the Baffin Bay and the northern Labrador Sea are generally consistent with those reconstructed for the Nordic Seas. While sea ice reductions in the Nordic Seas were found to have occurred within 250 y or less at or just before the onset of a D-O event (9, 10), our data indicate that the breakup of the perennial sea ice cover and the shift to increased seasonal sea ice conditions west and south of Greenland occurred within a decade and synchronously with the D-O climate warming transitions. The tight coupling between sea ice changes and Greenland temperature changes during the D-O cycles and their nonlinear climate transitions (7) is further illustrated by the threshold behavior that we identified in the δ 18O series; (B) NEEM BrF 5 data plotted on a log2 scale with blown-up views centered on each stadial/interstadial transition plotted on a normal scale; (C) smoothed squared deviations from the mean of BrF 5 series. The black vertical dashed lines indicate the onset of each D-O event using NEEM δ 18O data (SI Appendix, Materials and Methods for more details) while the red vertical dashed lines indicate the maxima of the smoothed squared deviations from the mean of BrF 5. The chronology is the GICC05modelext-NEEM-1 timescale (26).

Finally, the marked increase in BrF 5 and its variability observed during the mid-to-late phase of GI is indicative of the most extended seasonal sea ice condition in the NEEM aerosols source region. This could be achieved both with an expansion of seasonal sea ice at the expense of perennial sea ice across all of Baffin Bay and/or with an expansion of seasonal sea ice southward of the perennial sea ice edge.

Since we have no direct evidence of sea ice regimes in the Baffin Bay during interstadial periods, none of the hypothesis can be discarded. However, available sea ice reconstructions for the Holocene suggest the presence of a perennial sea ice cover in the central Baffin Bay during the Early Holocene (~9.5 ka (60)), when atmospheric temperatures, sea surface temperatures, and solar insolation were significantly higher than during interstadial climate warmings (24, 60). This, in turn, corroborates the second scenario in which, during GI, a mixture of (reduced-) perennial and seasonal sea ice cover spreads over the northern and central Baffin Bay and events of rapid southward expansion of seasonal sea ice occurred, delayed 0.1–0.6 ky after the D-O onsets (Fig. 5C).

Such mid-to-late interstadial seasonal sea ice expansions, also consistent with the GS16-204–23CC biomarker records and modeled sea ice edge position during D-O events (46), could be related to injections of freshwater from the melting of Laurentide and Greenland continental ice masses into the Baffin Bay and the Labrador Sea (32) as a consequence of increased atmospheric temperatures (4, 7, 33). The consequent increase of sea ice export likely led to a freshening of the subpolar North Atlantic through sea ice melting, which would have reduced deep-water formation. The seasonal sea ice expansion and freshening of the subpolar North Atlantic may thus have contributed to a gradual cooling of the North Atlantic preceding the
transition to stadial conditions (61). Once a critical threshold was reached, the gradual cooling and underlying processes would have led to a rapid reduction of deep-water formation and the AMOC, as well as rapid Greenland cooling at the onset of the stadial period (Fig. 5A) (62, 63). In this sense, the expansion of an extended FYSI and consequently the build-up of MYSI west and south of Greenland acted as an efficient driver of climate cooling through the ice-albedo feedback, as well as by affecting the North Atlantic ocean circulation.

In conclusion, our results suggest and support that sea ice decline occurred rapidly and synchronously with abrupt high-latitude warming during the D-O events, similarly to what is observed in recent decades in the Arctic region (13, 64). In addition, the seasonal sea ice formation and short-term, large-amplitude fluctuations during the mid-to-late interstadial periods could have played a central role in the subpolar North Atlantic feedback loop that led to a gradual cooling and conditions that would result in a nonlinear, abrupt AMOC reduction and Greenland cooling.

Materials and Methods

Concentrations of Br and Na were determined by Inductively Coupled Plasma Sector Field Mass Spectrometry (ICP-SFMS; Element2, ThermoFischer, Bremen, Germany) equipped with a cyclonic Peltier-cooled spray chamber (ESI, Omaha, USA) (24, 42) (SI Appendix, Materials and Methods). High-resolution (0.05 cm) NEEM δ18O analysis were performed with Cavity Ring Down Spectroscopy (CRDS) in the near Infra-Red region (34). The age model of sediment core GS16-204–23CC is based on stratigraphic alignment of marine proxy records and the NEEM δ18O record, using signals in ARM, near-surface temperature, and cryptotephra layers (SI Appendix, Materials and Methods). Biomarkers were extracted from freeze-dried and homogenized sediment samples using dichloromethane:methanol (2:1, vol/vol) as solvent, separated into hydrocarbon and sterol fractions, and analyzed by gas chromatography/mass spectrometry. The methodology and the age model of core GS16-204–23CC are detailed in SI Appendix, Materials and Methods.

Data, Materials, and Software Availability. Sea ice proxy data from the NEEM ice core and GS16-204-23CC marine core presented in this study have been deposited in Zenodo repository (10.5281/zenodo.7180408) (66). All study data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013) grant agreements #243908 “Past4Future. Climate change—Learning from the past climate” and #610035 “Ice2Ice”. We thank our colleagues at Centre for Ice and Climate (Copenhagen, Denmark) for their generous contribution and providing the NEEM ice core samples. NEEM is directed and organized by the Center of Ice and Climate at the Niels Bohr Institute and US NSF, Office of Polar Programs. It is supported by funding agencies and institutions in Belgium (FNRS-CBF and FWO), Canada (NRCan/GSC), China (CAS), Denmark (FIST), France (IPEV, CNRS/INSU, CEA and ANR), Germany (AWI), Iceland (RannIs), Japan (NIPR), Korea (KOPRI), The Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), United Kingdom (NERC), and the USA (US NSF, Office of Polar Programs).

Author affiliations: 1Institute of Atmospheric Sciences and Climate - National Research Council of Italy, ISAC-CNR, University Campus Ecotekne, 73100 Lecce (LE), Italy; 2Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, 30170 Venice, Italy; 3Marine Geology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany; 4Institute of Polar Sciences - National Research Council of Italy, ISAC-CNR, University Campus Ecotekne, 73100 Lecce (LE), Italy; 5Department of Statistical Sciences, University of Padua, 35121 Padua, Italy; 6Physics of Ice Climate and Earth, Niels Bohr Institute, Denmark.