Petabit-per-second data transmission using a chip-scale microcomb ring resonator source

Published in:
Nature Photonics

DOI:
10.1038/s41566-022-01082-z

Publication date:
2022

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Petabit-per-second data transmission using a chip-scale microcomb ring resonator source

Optical fibre communication is the backbone of the internet. As essential core technologies are approaching their limits of size, speed and energy-efficiency, there is a need for new technologies that offer further scaling of data transmission capacity. Here we show that a single optical frequency-comb source based on a silicon nitride ring resonator supports data capacities in the petabit-per-second regime. We experimentally demonstrate transmission of 1.84 Pbit s–1 over a 37-core, 7.9-km-long fibre using 223 wavelength channels derived from a single microcomb ring resonator producing a stabilized dark-pulse Kerr frequency comb. We also present a theoretical analysis that indicates that a single, chip-scale light source should be able to support 100 Pbit s–1 in massively parallel space-and-wavelength multiplexed data transmission systems. Our findings could mark a shift in the design of future communication systems, targeting device-efficient transmitters and receivers.

Frequency combs are a special type of light source, characterized by their spectral composition of equidistant frequency components resembling the teeth of a comb. As a source for lightwave transmission, these comb-like structures lend themselves well to wavelength division multiplexing (WDM), where data are modulated onto each comb line separately and transmitted simultaneously. A similar spectral structure can be created by combining an array of individual laser diodes, but this is more hardware intensive and thus less scalable for the growing needs of the internet. Individual lasers will also drift randomly in frequency, making the line spacing between any two lines fluctuate in time. To prevent cross-talk between data channels one therefore needs to account for buffer regions between laser lines where no data can be transmitted. By contrast, the frequency separation between comb lines will stay constant even if the whole comb drifts slightly. This allows for substantially smaller buffer regions, possibly eliminating them altogether. Not only does this allow better utilization of the spectral bandwidth, but a constant line spacing also allows for advanced signal processing. A second, but important property of frequency combs is that all comb lines are phase coherent, which enables joint digital signal processing among channels.

Frequency lines from a fibre-based supercontinuum source have proven useful to demonstrate record data rate transmission of 2.15 Pbit s–1 (ref. 11) and 10.66 Pbit s–1 (ref. 12). For practical applications, more compact solutions are desirable, and by leveraging photonic integration, chip-scale sources have recently been explored intensively. These sources could enable mass production, offer small footprints, low cost, low driving power, and compatibility with other integrated components such as modulators, spatial division multiplexing (SDM) couplers and pump lasers. In an experiment specifically designed to investigate how much data a single source could carry, that is, where the light from the source is distributed evenly among all data channels simultaneously, a single nonlinear chip-based supercontinuum source was found to support 661 Tbit s–1 (ref. 22). Among chip-scale designs, microcombs are attractively simple and
only require a single continuous wave pump laser and an integrated microresonator to generate dissipative Kerr-cavity solitons. Two such rings were spectrally interleaved in ref. 13 to achieve 50 Tbit s⁻¹ through a single-core fibre. Another class of microcomb sources producing dark-pulse Kerr (DPK) combs are gaining interest, as they yield an approximately tenfold higher pump-to-comb conversion efficiency than their bright soliton cousins, thus producing a higher optical signal-to-noise ratio (OSNR) and enabling higher modulation-order coherent communications. A third type of microcomb source that is gaining popularity is soliton crystals. They can potentially outshine DPK combs in conversion efficiency, but are limited to only covering the C-band, as shown in ref. 14, in which a soliton crystal was used to transmit 39.2 Tbit s⁻¹ through a single-core fibre in the C-band alone. A comparison of different dissipative Kerr-cavity soliton combs for transmission demonstrations is shown in Supplementary Note 1.

Here we report on a ring resonator designed to create a DPK comb covering the telecom C + L bands, and we experimentally investigate how much data this light can carry when transmitted through a 37-core single-mode fibre. We compare these results with a first-principles theoretical capacity model. Our results elucidate the potential of chip-scale comb sources to break through the petabit-per-second barrier when combined with advanced space-division multiplexing fibre technology.

Results

We begin by analysing the total capacity achievable using a frequency-comb source with a spectrum as the one seen in Fig. 1. Each comb line—with initial comb line power 0 —corresponds to a spectral channel (nsdm), which is power-divided into a number of spatial channels (nsdm). We consider a model (see Fig. 1) similar to those in refs. 13,34,35, which track the noise generated throughout the system to arrive at a received signal-to-noise ratio (SNR) and ultimately set the limit on the achievable data capacity per channel through the Shannon–Hartley theorem. By assuming, for simplicity, no cross-talk between channels, and a flat spectrum, the total capacity is found by summing over all spectral and spatial channels:

\[C_{\text{total}} = n_{\text{WDM}} m_{\text{SDM}} R_s \log_2 (1 + \text{SNR}) \]

(1)

Where \(R_s \) is the symbol rate and the SNR is derived as:

\[\text{SNR} = \frac{P_{\text{signal}}}{(N_{\text{Tx}} + N_{\text{link}}) W_s} \]

(2)

Where \(P_{\text{signal}} \) is the signal power of a single channel (GpreP0), and \(N_{\text{Tx}} \) and \(N_{\text{link}} \) are the noise power spectral densities (PSDs) for the transmitter and link, respectively, with:

\[N_{\text{Tx}} = (N_{\text{comb}} + N_{\text{pre}} + N_{\text{SDM}}) V + N_{\text{mod}} \]

(3)

The transmitter contains a series of amplifiers (Gpre/SDM/mod/link) that counteract losses at each stage at the cost of additional noise. The factor \(V \) accounts for polarization filtering and modulator-induced spectral broadening. Further details and mathematical derivations are presented in the Methods.

Note that the SNR depends on the channel bandwidth (which is equal to \(R_s \)) and the number of SDM channels through the SDM noise term (Ncomb) as the comb lines are power-divided into msdm channels and subsequently amplified, adding noise. The number of WDM channels is generally set by the bandwidth of the comb source and the equipment, whereas the number of possible SDM channels directly relates to how many times the power can be split and amplified before the OSNR is too low to allow data transmission. For telecommunication purposes, we will limit ourselves to a 10 THz bandwidth covering the C- and lower L-bands (1,530–1,610 nm), and compare comb sources of different initial values of P0.

By contrast to ref. 13, we focus on calculating the total capacity as a function of the number of SDM channels for a variety of different sources. This is shown in Fig. 2, in which we used realistic parameters to calculate the SNR (see Methods). The frequency-comb sources are assumed to have full spectral efficiency whereas the multiple laser sources are modelled with an additional spectral guard band of 5 GHz between the lines to compensate for realistic laser frequency drifts. Although full spectral efficiency is difficult to achieve in practice due to non-idealities in the transmitter, the necessary guard band can be substantially reduced below 5 GHz.

The different comb sources have line powers varying from -30 dBm to -10 dBm, based on performances from various published sources.

[Fig 1: The modelled communication system. Graphic of the envisaged transmission system using a frequency comb as the source, with a finite optical power per spectral line P0. The light is power split between m_WDM spectral channels and data modulated.]

Optical amplification balances losses incurred from SDM splitting (G_{SDM}), data modulation (G_{mod}) and transmission (G_{link}). The X next to G_{link} indicates multiplication.
for a number of traditional laser systems (c-wave external-cavity laser with 28 dBm on-chip power at 1,562 nm, mentally investigate a Si 3N4-based microring resonator with a line spacing of 105 GHz (ref. 40). The chip is pumped by a continuous wave sine wave. Figure 3c shows the optical spectrum of the comb with and without modulation, revealing a tripling of the number of lines. The modulation introduces a loss of 10 dB due to modulation and insertion losses. As the average power per line scales, a larger ring with a 35 GHz line spacing would have very similar power per line at the expense of a more challenging fabrication process. In a set-up already employing $n_{\text{SDM}} \times n_{\text{WDM}}$ modulators, a single additional element brings about an insignificant increase in complexity. Furthermore, this can be offset and integrated in the near future with the rise of thin-film lithium-niobate-based modulators.

Chip-scale comb performance of DPK

To illustrate the potential of chip-scale DPK combs, we experimentally investigate a Si3N4-based microring resonator with a line spacing of 105 GHz (ref. 24). The chip is pumped by a continuous wave external-cavity laser with 28 dBm on-chip power at 1,562 nm, to generate a DPK comb identical to the set-up in Fig. 2e. An illustration of the ring resonator and the simulated time-domain profile is shown in Fig. 3a.

As opposed to bright solitons, the DPK comb consists of a broad high intensity background with a periodic dip; the dip is caused by switching waves connecting two stable points in parameter space and allows for a generally higher output power (with a conversion efficiency of 13% in this experiment), quantified as the fraction of the pump (other than the pump line) converted into comb power. The chip’s output spectrum can be seen in Fig. 3b together with a numerical simulation. The power in the lowest line is –13 dBm, which is consistent with the parameters investigated in Fig. 2a and shows the possibility of using DPK combs to reach multi-petabit-per-second transmission rates.

The 105 GHz line spacing is too large for most widely accessible high intensity background to transmit 1 Pbit s$^{-1}$, over 80 km using 32 Gbaud. However, the comb-based sources all have a higher spectral efficiency due to the buffer region omission. Figure 2a clearly shows that a frequency comb-based source is a competitive option for fibre-based communication compared with an array of lasers, even with the considerably lower power available. For short transmission distances and fewer than 100 SDM channels, combs with a power per line as low as –20 dBm already show comparable performances with laser-array and one-laser-per-channel systems. At a lower number of channels, the frequency combs outperform the laser array due to the higher spectral efficiency. From 200 SDM channels onwards, the one-laser-per-channel case outperforms the comb sources due to the much larger SNR, but at the cost of being more hardware intensive (Fig. 2b). Here we see that the number of lasers needed in comb and one-laser-per-channel systems differs by several orders of magnitude, but only by a factor of two in the number of amplifiers. This advantage will decrease as the number of SDM channels grow and the number of modulators become the overwhelming majority of the required components.

It is observed that petabit-per-second-class systems can be achieved for this ideal system when the number of SDM channels is above 15, and the green star in Fig. 2a indicates our achievement of 1.84 Pbit s$^{-1}$ using 37 SDM channels (see below). We also find that 100 Pbit s$^{-1}$ may be achieved for about 1,500 SDM channels using a comb source with a realistic –10 dBm line power. The laser array requires a 13% increase in SDM channel count to reach 100 Pbit s$^{-1}$ due to the lower spectral efficiency. Such high SDM channel counts may be achieved using bundled single-mode fibres or a few ultrahigh-count multicore fibres.

Petabit-per-second transmission

To investigate the scalability of a chip-scale comb source for data transmission, we performed a transmission system experiment using the 105 GHz (modulated to 35 GHz) DPK comb source described above. Through thermal feedback to on-chip micro-heaters, the DPK comb...
found by summing up the rate of all 223 wavelength channels across with the highest loss, and kept constant across all 37 cores, each core across the comb bandwidth. As the shaping was adapted to the core due to the adaptive signal shaping that matches the varying SNRs per core. The achieved rate varies across different wavelength channels for each wavelength channel in Fig. 4 in terms of bit per symbol per error-free transmission after an additional outer forward error correction (FEC; see Methods for details). The achieved rate is plotted of <10⁻⁵ after a low-density parity-check (LDPC) decoding, assuring the middle lines due to filtering away the pump, and the outer lines due to bandwidth limitations of our optical filters. This leads to a total transmitted bandwidth of 7.8 THz. After data modulation, all wavelength channels are combined in the same fibre and split 37 ways. We modulate 223 different comb lines with data (WDM = 223), omitting the middle lines due to filtering away the pump, and the outer lines due to bandwidth limitations of our optical filters. This leads to a total transmitted bandwidth of 7.8 THz. After data modulation, all wavelength channels are combined in the same fibre and split 37 ways. The 37 paths are decorrelated and propagated in parallel through a 7.9-km-long 37 core fibre. We modulate 223 different comb lines with data (WDM = 223), omitting the middle lines due to filtering away the pump, and the outer lines due to bandwidth limitations of our optical filters. This leads to a total transmitted bandwidth of 7.8 THz. After data modulation, all wavelength channels are combined in the same fibre and split 37 ways. The 37 paths are decorrelated and propagated in parallel through a 7.9-km-long 37 core fibre.

A switch and an optical passband filter selects one core and one comb line at a time. In this way, all 8,251 (WDM × SDM) channels are individually detected, demodulated and processed to estimate the information transfer rate.

The data are processed offline and verified to have a bit error ratio of <10⁻⁵ after a low-density parity-check (LDPC) decoding, assuring error-free transmission after an additional outer forward error correction (FEC; see Methods for details). The achieved rate is plotted for each wavelength channel in Fig. 4 in terms of bit per symbol per core. The achieved rate varies across different wavelength channels due to the adaptive signal shaping that matches the varying SNRs across the comb bandwidth. As the shaping was adapted to the core with the highest loss, and kept constant across all 37 cores, each core contributes the same achieved rate. The total achieved data rate is found by summing up the rate of all 223 wavelength channels across all 37 cores, and accounting for any extra overhead. This leads to a total achieved rate of 1.84 Pbit s⁻¹ and a spectral efficiency of 6.4 bit s⁻¹ Hz⁻¹ per core, which demonstrates the capability of microcomb sources for petabit-per-second data transmission.

Furthermore, from each individual channel, the decoding process allows us to extract the measured SNR, from which we can calculate the highest theoretically possible channel capacity for this system using the Shannon–Hartley theorem. The result is also plotted in Fig. 4 and follows the shape of the achieved data rate. Fluctuations from core to core are observed between 1,570 nm and 1,585 nm, and probably stem from technical limitations in the amplifiers used. If we sum up the theoretical capacity for all 8,251 channels, we arrive at 2.67 Pbit s⁻¹. If we calculate the theoretically best performance of our system using equation (2), based on the OSNR, line spacing and modulation rate used in our systems experiment, we predict 2.7 Pbit s⁻¹, which is in excellent agreement with the calculated value.

In summary we have analysed the capacity of massively parallel space and wavelength division multiplexing systems driven by frequency combs. We demonstrate that chip-scale microcomb sources can break through the petabit-per-second frontier in spite of the frequency lines being two orders of magnitude lower in power than multi-laser sources, and only utilizing 91% of the channel bandwidth.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41566-022-01082-z.
Methods
Capacity model

Our model is based on estimating the SNR of the transmission signal by starting with the initial comb source’s noise PSD, \(N_0\). This noise is then amplified by the preamplifier with gain \(G_{\text{pre}}\), which amplifies the comb lines to the desired signal launch power:

\[N_{\text{comb}} = N_0 G_{\text{pre}} \]

(4)

The laser sources assume a minimum line power of 15 dBm, which means the preamplifier and modulation amplifier are unnecessary and \(G_{\text{pre}} = G_{\text{mod}} = 1\) (which leads to \(N_{\text{pre}} = N_{\text{mod}} = 0\)).

Furthermore, the one-laser-per-channel source also assumes \(G_{\text{link}} = 1\), as each laser is not split by a power divider.

For all types of sources we assume a single link span of 80 km. Although it is not shown here, our model predicts the same as ref. 34 for longer spans, where the signal becomes dominated by the link noise. In this case the frequency-comb sources are still competitive due to their improved spectral efficiency.

Comb generation, operation and electro-optic modulation

The microring resonator is fabricated in Si\(_3\)N\(_4\) with a SiO\(_2\) cladding on silicon using a subtractive processing method\(^{40}\) with a width and a height of 1,850 nm and 600 nm, respectively. The device has a circular geometry with a radius of 227 \(\mu\)m. The device features a mean intrinsic Q-value of 10.9 \(\times 10^6\), and a platinum micro-heater. We initialize the comb by thermally shifting the resonance towards the pump laser using the micro-heater\(^{41}\). The initialization is assisted by an avoided mode crossing between transversal modes\(^{41}\). Although the location of the modal crossing cannot be engineered with this geometry, recent advances in photonic molecules allow for generating DPK microcombs in a controllable and reproducible manner\(^{38,46}\), with a comparable bandwidth, line spacing stability and power per line to the microcomb in this experiment\(^{42}\). During initialization and operation, the pump stays blue-detuned with respect to the resonance, enabling a passive thermal locking of the detuning\(^{39,42}\). The comb state is actively stabilized by monitoring the comb power, filtering the pump from the output and feeding back to the micro-heater.

The feedback system is a field-programmable gate array-based proportional-integral control loop that allows for advanced relocking patterns, enabling practical day-to-day operation of the comb. The open loop 3 dB feedback bandwidth of the micro-heater system is 10 kHz. When locking the comb state to a specific comb power level, a stable DPK comb state can be maintained over days (with a standard deviation of the peak amplitude fluctuations of 3.5%). The comb is pumped with a continuous wave external-cavity laser at 1,562 nm with a 10 kHz linewidth and an output power of 6 dBm. The pump is amplified by a high-power erbium-doped fibre amplifier, and coupled on and off the chip with lensed fibres with a coupling loss of 2 dB per facet. The on-chip power was estimated to 28 dBm by comparing detailed simulations with the output spectrum of the comb. The lensed fibres are mounted to piezo controlled stages, which continuously reoptimize the alignment using an external feedback loop. The spectrum of the comb right after the chip spans 90 nm, has 105 GHz line spacing and −13 dBm power in the lowest line. Amplification is done right after the chip by separating the comb into the C- and L-bands, separately, each driven by a pure 35 GHz sinusoidal feedback loop. The spectrum of the comb right after the chip spans 90 nm, has 105 GHz line spacing and −13 dBm power in the lowest line. Amplification is done right after the chip by separating the comb into the C- and L-bands, separately, each driven by a pure 35 GHz sinusoidal feedback loop. The spectrum of the comb right after the chip spans 90 nm, has 105 GHz line spacing and −13 dBm power in the lowest line. Amplification is done right after the chip by separating the comb into the C- and L-bands, separately, each driven by a pure 35 GHz sinusoidal feedback loop. The spectrum of the comb right after the chip spans 90 nm, has 105 GHz line spacing and −13 dBm power in the lowest line.

The laser sources assume a minimum line power of 15 dBm, which means the preamplifier and modulation amplifier are unnecessary and \(G_{\text{pre}} = G_{\text{mod}} = 1\) (which leads to \(N_{\text{pre}} = N_{\text{mod}} = 0\)).

Furthermore, the one-laser-per-channel source also assumes \(G_{\text{link}} = 1\), as each laser is not split by a power divider.

For all types of sources we assume a single link span of 80 km. Although it is not shown here, our model predicts the same as ref. 34 for longer spans, where the signal becomes dominated by the link noise. In this case the frequency-comb sources are still competitive due to their improved spectral efficiency.

System experimental scheme

The system-level experiment uses the generated comb specified above. For data modulation the wavelength channels are separated into odd and even channels, and data modulated with independent dummy data at a rate of 32 Gbaud. A single-wavelength channel is loaded with a third set of data and designated the channel-under-test (CUT). All of
the wavelength channels are successively designated as CUT to evaluate the comb performance in the entire bandwidth.

Data modulation is performed by single polarization I/Q modulators and an arbitrary waveform generator with a sampling rate of 64 Gs s\(^{-1}\). Forward error correction is applied to the data using LDPC block codes with 33% overhead for the 64 QAM formats, and 50% for the 256 QAM formats. The modulation format is chosen depending on the SNR of each wavelength channel. This SNR is measured by sending a pilot transmission through the fibre core with the highest loss. We employ probabilistic shaping following a Maxwell–Boltzmann distribution and tailored to the SNR of each channel with the help of a distribution match\(^{36,37}\). The modulation signal is pulse shaped by root-raised cosine filter with a roll-off factor of 0.01 and 401 taps. A polarization multiplexing emulator with a 1924 symbol delay between the two polarizations is used to decorrelate the data in each polarization. After data modulation all wavelength channels are combined in the same fibre and split 37 ways. An amplifier is used before the splitting to ensure a minimum of 0 dBm in each path. The 37 paths are decorrelated and propagated in parallel through a 7.9-km multicore fibre\(^{3}\). The launch power into the fibre is 9 ± 1 dBm per core.

This set-up differs from the theoretical model in that we assume the spatial splitting happens before data modulation. This is done due to the limited number of available data modulators. In practice, this decreases the transmitted OSNR, as the noise from the amplifier used before the splitting is not filtered by the polarizer in the data modulator. We therefore have more noise in our experimental system than in the equivalent theoretical model, and our experiment therefore constitutes a worst case scenario.

A switch on the receiver side selects one core at a time, which is spectrally filtered to isolate the CUT before being detected in a standard dual-polarization coherent receiver. We observe a total average loss of 26 dB from input to the 1:37 splitter to the output of the receiver switch. This loss includes the power splitting, free space fan-in/out and fibre propagation losses. The average signal power into the receiver is −4 dBm, together with a 15 dBm local oscillator based on an external-cavity laser. One million data samples taken at 80 Gs s\(^{-1}\) on a 33 GHz bandwidth digital storage oscilloscope are used for offline digital signal processing. The transmission experiment was repeated for each wavelength channel through each of the 37 fibre cores.

The digital signal processing flow starts with low-pass filtering, resampling and synchronization. A T/2-spaced pilot-aided radius-directed adaptive equalization with 221 taps is used for polarization demultiplexing, chromatic dispersion compensation, and compensating the imperfect frequency response of the transmitter and receiver. The pilot overhead is 4%. A decision-directed phase-locked loop is then used for frequency offset correction and carrier phase recovery. The signal is LDPC decoded to evaluate performance. The bit error ratio is verified to be below 10\(^{-5}\) as this well-known error floor caused by LDPC codes can be removed using an outer hard-decision forward error correction (HD-FEC) code with 1% overhead\(^{38}\). Both the pilot overhead and the HD-FEC overhead are subtracted from the total capacity to arrive at 1.84 Pbit s\(^{-1}\). A detailed description and illustration of the experimental set-up is available in Supplementary Note 3.

Data availability

The datasets and code for recreating the figures are available at ref.\(^{53}\) as processed measurement results. The raw oscilloscope traces are available on reasonable request. Source Data are provided with this paper.

Code availability

The algorithms used for the digital signal processing at the transmitter and the coherent receiver are standard and are outlined in detail in the Methods. MATLAB scripts can be provided by the corresponding authors on reasonable request.

References

Acknowledgements

This work by supported by the SPOC Centre (ref. DNRF123), the Swedish Research Council (grant no. 2016-06077, project iTRAN, VR-2020-00453 and VR-2015-00538), the ERC CoG (GA 771410), the H2020 Marie Skodowska Curie Innovative Training Network Microcomb (GA 812818), and the EU–Japan coordinated R&D project SAFARI supported by the MIC of Japan and EC Horizon 2020.

Author contributions

A.A.J, M.R.H and Z.Y. developed the technique for generating and stabilizing the DKP comb source, and were supervised by M.G., J.W.T. and V.T.-C. D.K. designed the transmission experiment set-up, and H.H. and M.G. provided suggestions. A.A.J., D.K., M.R.H. and F.K. constructed the experimental set-up and performed the transmission experiment, and were supervised by H.H., M.G, J.W.T. and L.K.O. D.K. performed the data analysis of the transmission experiment data. L.K.O., D. K. and A.A.J. performed the theoretical modelling of transmission capacity. The overall concept was conceived by L.K.O., M.G., P.A., A.L., M.K., V.T.-C. and T.M. H.E.H., M.Y. and S.F. wrote and implemented the probabilistic shaping technique. Z.Y. fabricated the microring resonator, and was supervised by V.T.-C. and P.A. O.B.H. aided in numerical simulations of DKP combs, and was supervised by V.T.-C., P.A. and J.S. Y.S. and K.A. designed and produced the multicore fibre. T.M. Identified the fibre for the experiment. The manuscript was written by A.A.J, D.K., L.K.O and V.T.-C. All authors discussed the data.

Competing interests

V.T.-C and O.B.H. are co-founders of floomina, a start-up company that offers prototyping services for silicon nitride.
Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41566-022-01082-z.

Correspondence and requests for materials should be addressed to A. A. Jørgensen.

Peer review information Nature Photonics thanks Heng Zhou, Stojan Radic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.