STRONG CLASSIFICATION OF EXTENSIONS OF CLASSIFIABLE C-ALGEBRAS

Eilers, Søren; Restorff, Gunnar; Ruiz, Efren

Published in:
Bulletin of the Korean Mathematical Society

DOI:
10.4134/BKMS.b210047

Publication date:
2022

Document version
Early version, also known as pre-print

Document license:
CC BY

Citation for published version (APA):
STRONG CLASSIFICATION OF EXTENSIONS OF CLASSIFIABLE
C^*-ALGEBRAS

SØREN EILERS, GUNNAR RESTORFF, AND EFREN RUIZ

Abstract. We show that certain extensions of classifiable C^*-algebra are strongly classified by the associated six-term exact sequence in K-theory together with the positive cone of K_0-groups of the ideal and quotient. We apply our result to give a complete classification of graph C^*-algebras with exactly one ideal.

1. Introduction

The classification program for C^*-algebras has for the most part progressed independently for the classes of infinite and finite C^*-algebras, and great strides have been made in this program for each of these classes. In the finite case, Elliott’s Theorem classifies all AF-algebras up to stable isomorphism by the ordered K_0-group. In the infinite case, there are a number of results for purely infinite C^*-algebras. The Kirchberg-Phillips Theorem classifies certain simple purely infinite C^*-algebras up to stable isomorphism by the K_0-group together with the K_1-group. For nonsimple purely infinite C^*-algebras many partial results have been obtained: Rørdam has shown that certain purely infinite C^*-algebras with exactly one proper nontrivial ideal are classified up to stable isomorphism by the associated six-term exact sequence of K-groups [34], the second named author has shown that nonsimple Cuntz-Krieger algebras satisfying Condition (II) are classified up to stable isomorphism by their filtered K-theory [31, Theorem 4.2], and Meyer and Nest have shown that certain purely infinite C^*-algebras with a linear ideal lattice are classified up to stable isomorphism by their filtrated K-theory [28, Theorem 4.14]. However, in all of these situations the nonsimple C^*-algebras that are classified have the property that they are either AF-algebras or purely infinite, and consequently all of their ideals and quotients are of the same type.

Recently, the authors have provided a framework for classifying nonsimple C^*-algebras that are not necessarily AF-algebras or purely infinite C^*-algebras. In particular, the authors have shown in [16] that certain extensions of classifiable C^*-algebras may be classified up to stable isomorphism by their associated six-term exact sequence in K-theory. This has allowed for the classification of certain nonsimple C^*-algebras in which there are ideals and quotients of mixed type (some finite and some infinite). The results in [16] was then used by the first named author and Tomforde in [18] to classify a certain class of non-simple graph C^*-algebras, showing that graph C^*-algebras with exactly one non-trivial ideal can be classified up to stable isomorphism by their associated six-term exact sequence in K-theory. The authors in [15] then showed that all non-unital graph C^*-algebras with exactly one
non-trivial ideal can be classified up to isomorphism by their associated six-term exact sequence in K-theory. In this paper, we complete the classification of graph C^*-algebras with exactly one non-trivial ideal by classifying those that are unital. Our methods here differ rather dramatically from the methods in [18] and [15]. In particular, we use the traditional methods of classification via existence and uniqueness theorems. As a consequence, for unital graph C^*-algebras \mathfrak{A} and \mathfrak{B} with exactly one non-trivial ideal, then any isomorphism between the associated six-term exact sequence in K-theory which preserves the unit lifts to an isomorphism from \mathfrak{A} to \mathfrak{B}.

2. Preliminaries

2.1. C^*-algebras over topological spaces. Let X be a topological space and let $\mathcal{O}(X)$ be the set of open subsets of X, partially ordered by set inclusion \subseteq. A subset Y of X is called locally closed if $Y = U \setminus V$ where $U, V \in \mathcal{O}(X)$ and $V \subseteq U$. The set of all locally closed subsets of X will be denoted by $\mathbb{L}(X)$. The set of all connected, non-empty, locally closed subsets of X will be denoted by $\mathbb{L}_c(X)$.

The partially ordered set $(\mathcal{O}(X), \subseteq)$ is a complete lattice, that is, any subset S of $\mathcal{O}(X)$ has both an infimum $\bigwedge S$ and a supremum $\bigvee S$. More precisely, for any subset S of $\mathcal{O}(X)$,

$$\bigwedge_{U \in S} U = \left(\bigcap_{U \in S} U \right)^\circ \quad \text{and} \quad \bigvee_{U \in S} U = \bigcup_{U \in S} U.$$

For a C^*-algebra \mathfrak{A}, let $\mathfrak{l}(\mathfrak{A})$ be the set of closed ideals of \mathfrak{A}, partially ordered by \subseteq. The partially ordered set $(\mathfrak{l}(\mathfrak{A}), \subseteq)$ is a complete lattice. More precisely, for any subset S of $\mathfrak{l}(\mathfrak{A})$,

$$\bigwedge_{J \in S} J = \bigcap_{J \in S} J \quad \text{and} \quad \bigvee_{J \in S} J = \bigcup_{J \in S} J.$$

Definition 2.1. Let \mathfrak{A} be a C^*-algebra. Let $\text{Prim}(\mathfrak{A})$ denote the primitive ideal space of \mathfrak{A}, equipped with the usual hull-kernel topology, also called the Jacobson topology.

Let X be a topological space. A C^*-algebra over X is a pair (\mathfrak{A}, ψ) consisting of a C^*-algebra \mathfrak{A} and a continuous map $\psi : \text{Prim}(\mathfrak{A}) \to X$. A C^*-algebra over X, (\mathfrak{A}, ψ), is separable if \mathfrak{A} is a separable C^*-algebra. We say that (\mathfrak{A}, ψ) is tight if ψ is a homeomorphism.

We always identify $\mathcal{O}(\text{Prim}(\mathfrak{A}))$ and $\mathfrak{l}(\mathfrak{A})$ using the lattice isomorphism

$$U \mapsto \bigcap_{p \in \text{Prim}(\mathfrak{A}) \setminus U} p.$$

Let (\mathfrak{A}, ψ) be a C^*-algebra over X. Then we get a map $\psi^* : \mathcal{O}(X) \to \mathcal{O}(\text{Prim}(\mathfrak{A})) \cong \mathfrak{l}(\mathfrak{A})$ defined by

$$U \mapsto \{ p \in \text{Prim}(\mathfrak{A}) : \psi(p) \in U \} = \mathfrak{A}(U).$$

For $Y = U \setminus V \in \mathbb{L}(X)$, set $\mathfrak{A}(Y) = \mathfrak{A}(U)/\mathfrak{A}(V)$. By Lemma 2.15 of [27], $\mathfrak{A}(Y)$ does not depend on U and V.

Example 2.2. For any C^*-algebra \mathfrak{A}, the pair $(\mathfrak{A}, \text{id}_{\text{Prim}(\mathfrak{A})})$ is a tight C^*-algebra over $\text{Prim}(\mathfrak{A})$. For each $U \in \mathcal{O}(\text{Prim}(\mathfrak{A}))$, the ideal $\mathfrak{A}(U)$ equals $\bigcap_{p \in \text{Prim}(\mathfrak{A}) \setminus U} p$.

Example 2.3. Let $X_n = \{1, 2, \ldots, n\}$ partially ordered with \leq. Equip X_n with the Alexandrov topology, so the non-empty open subsets are
\[[a, n] = \{x \in X : a \leq x \leq n \} \]
for all $a \in X_n$; the non-empty closed subsets are $[1, b]$ with $b \in X_n$, and the non-empty locally closed subsets are those of the form $[a, b]$ with $a, b \in X_n$ and $a \leq b$. Let (\mathcal{A}, ϕ) be a C*-algebra over X_n. We will use the following notation throughout the paper:
\[\mathcal{A}[k] = \mathcal{A}(\{k\}), \mathcal{A}[a, b] = \mathcal{A}(\{a, b\}), \text{ and } \mathcal{A}(i, j) = \mathcal{A}[i + 1, j]. \]

Using the above notation we have ideals $\mathcal{A}[a, n]$ such that
\[\{0\} \leq \mathcal{A}[n] \leq \mathcal{A}[n - 1, n] \leq \cdots \leq \mathcal{A}[2, n] \leq \mathcal{A}[1, n] = \mathcal{A}. \]

Definition 2.4. Let \mathcal{A} and \mathcal{B} be C*-algebras over X. A homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ is X-equivariant if $\phi(\mathcal{A}(U)) \subseteq \mathcal{B}(U)$ for all $U \subset \mathcal{O}(X)$. Hence, for every $Y = U \setminus V$, ϕ induces a homomorphism $\phi_Y : \mathcal{A}(Y) \to \mathcal{B}(Y)$. Let $C^*\text{-alg}(X)$ be the category whose objects are C^*-algebras over X and whose morphisms are X-equivariant homomorphisms.

An X-equivariant homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ is said to be a full X-equivariant homomorphism if for all $Y \in \mathcal{L}(X)$, $\phi_Y(a)$ is norm-full in $\mathcal{B}(Y)$ for all norm-full elements $a \in \mathcal{A}(Y)$, i.e., the closed ideal of $\mathcal{B}(Y)$ generated by $\phi_Y(a)$ is $\mathcal{B}(Y)$ whenever the closed ideal of $\mathcal{A}(Y)$ generated by a is $\mathcal{A}(Y)$.

Remark 2.5. Suppose \mathcal{A} and \mathcal{B} are tight C*-algebras over X_n. Then it is clear that $\phi : \mathcal{A} \to \mathcal{B}$ is an isomorphism if and only if ϕ is a X_n-equivariant isomorphism.

It is easy to see that if \mathcal{A} and \mathcal{B} are tight C*-algebras over X_2, then $\phi : \mathcal{A} \to \mathcal{B}$ is a full X_2-equivariant homomorphism if and only if ϕ is an X_2-equivariant homomorphism and ϕ_1 and ϕ_2 are injective. Also, if \mathcal{A} and $\mathcal{A}[2]$ have non-zero projections p and q respectively, then there exists $\epsilon > 0$ such that if $\phi : \mathcal{A} \to \mathcal{B}$ is a full X_2-equivariant homomorphism and $\psi : \mathcal{A} \to \mathcal{B}$ is a homomorphism such that
\[\|\phi(p) - \psi(p)\| < 1 \quad \|\phi(q) - \psi(q)\| < 1, \]
then ψ is a full X_2-equivariant homomorphism.

Remark 2.6. Let $\epsilon_i : 0 \to \mathcal{B}_i \to \mathcal{E}_i \to \mathcal{A}_i \to 0$ be an extension for $i = 1, 2$. Note that \mathcal{E}_i can be considered as a C*-algebra over $X_2 = \{1, 2\}$ by sending \emptyset to the zero ideal, $\{2\}$ to the image of \mathcal{B}_i in \mathcal{E}_i, and $\{1, 2\}$ to \mathcal{E}_i. Hence, there exists a one-to-one correspondence between X_2-equivariant homomorphisms $\phi : \mathcal{E}_1 \to \mathcal{E}_2$ and homomorphisms from ϵ_1 and ϵ_2.

2.2. The ideal related K-theory of \mathcal{A}.

Definition 2.7. Let X be a topological space and let \mathcal{A} be a C*-algebra over X. For open subsets U_1, U_2, U_3 of X with $U_1 \subseteq U_2 \subseteq U_3$, set $Y_1 = U_2 \setminus U_1, Y_2 = U_3 \setminus U_1, Y_3 = U_3 \setminus U_1 \in \mathcal{L}(X)$. Then the diagram
\[
\begin{array}{ccc}
K_0(\mathcal{A}(Y_1)) & \xrightarrow{\iota_*} & K_0(\mathcal{A}(Y_2)) & \xrightarrow{\pi_*} & K_0(\mathcal{A}(Y_3)) \\
\downarrow{\partial_*} & & & & \downarrow{\partial_*} \\
K_1(\mathcal{A}(Y_3)) & \xrightarrow{\pi_*} & K_1(\mathcal{A}(Y_2)) & \xrightarrow{\iota_*} & K_1(\mathcal{A}(Y_1))
\end{array}
\]
is an exact sequence. The *ideal related K-theory of \(A \), \(K_X(\mathfrak{A}) \), is the collection of all \(K \)-groups thus occurring and the natural transformations \(\{\iota_*, \pi_*, \partial_*\} \). The *ideal related, ordered K-theory of \(A \), \(K^+_X(\mathfrak{A}) \), is \(K_X(\mathfrak{A}) \) of \(A \) together with \(K_0(\mathfrak{A}(Y))_+ \) for all \(Y \in \mathbb{L}(X) \).

Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be \(C^* \)-algebras over \(X \), we will say that \(\alpha : K_X(\mathfrak{A}) \to K_X(\mathfrak{B}) \) is an *isomorphism* if for all \(Y \in \mathbb{L}(X) \), there exists a graded group isomorphism

\[
\alpha_{Y,*} : K_*(\mathfrak{A}(Y)) \to K_*(\mathfrak{B}(Y))
\]

preserving all natural transformations. We say that \(\alpha : K^+_X(\mathfrak{A}) \to K^+_X(\mathfrak{B}) \) is an *isomorphism* if there exists an isomorphism \(\alpha : K_X(\mathfrak{A}) \to K_X(\mathfrak{B}) \) in such a way that \(\alpha_{Y,0} \) is an order isomorphism for all \(Y \in \mathbb{L}(X) \).

Remark 2.8. Meyer-Nest in [28] defined a similar functor \(\text{FK}_X(-) \) which they called filtrated \(K \)-theory. For all known cases in which there exists a UCT, the natural transformation from \(\text{FK}_X(-) \) to \(K_X(-) \) is an equivalence. In particular, this is true for the space \(X_n \).

If \(Y \in \mathbb{L}(X) \) such that \(Y = Y_1 \sqcup Y_2 \) with two disjoint relatively open subsets \(Y_1, Y_2 \subset 0(Y) \subset \mathbb{L}(C) \), then \(\mathfrak{A}(Y) \cong \mathfrak{A}(Y_1) \oplus \mathfrak{A}(Y_2) \) for any \(C^* \)-algebra over \(X \). Moreover, there is a natural isomorphism \(K_*(\mathfrak{A}(Y)) \) to \(K_*(\mathfrak{A}(Y_1)) \oplus K_*(\mathfrak{A}(Y_2)) \) which is a positive isomorphism from \(K_0(\mathfrak{A}(Y)) \) to \(K_0(\mathfrak{A}(Y_1)) \oplus K_0(\mathfrak{A}(Y_2)) \). If \(X \) is finite, then any locally closed subset is a disjoint union of its connected components. Therefore, we lose no information when we replace \(\mathbb{L}(X) \) by the subset \(\mathbb{L}(X)^* \).

Notation 2.9. Let \(\mathcal{N} \) be the bootstrap category of Rosenberg and Schochet in [37].

Let \(\mathfrak{A}(X) \) be the category whose objects are separable \(C^* \)-algebras over \(X \) and the set of morphisms is \(\text{KK}(X; \mathfrak{A}, \mathfrak{B}) \). For a finite topological space \(X \), let \(\mathcal{B}(X) \subset \mathfrak{A}(X) \) be the bootstrap category of Meyer and Nest in [27]. By Corollary 4.13 of [27], if \(\mathfrak{A} \) is a nuclear \(C^* \)-algebra over \(X \), then \(\mathfrak{A} \in \mathcal{B}(X) \) if and only if \(\mathfrak{A} \{ \{ x \} \} \in \mathcal{N} \) for all \(x \in X \).

Theorem 2.10. (Bonkat [4] and Meyer-Nest [28]) Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be in \(\mathfrak{A}(X_n) \) such that \(\mathfrak{A} \) is in \(\mathcal{B}(X_n) \), then the sequence

\[
0 \to \text{Ext}_{\mathcal{N}}(\text{FK}_X(\mathfrak{A})[\mathfrak{A}], \text{FK}_X(\mathfrak{B})) \to \text{KK}(X_n; \mathfrak{A}, \mathfrak{B}) \to \text{Hom}_{\mathcal{N}}(\text{FK}_X(\mathfrak{A}), \text{FK}_X(\mathfrak{B})) \to 0
\]

is exact. Consequently, if \(\mathfrak{B} \) is in \(\mathcal{B}(X_n) \), then an isomorphism from \(\text{FK}_X(\mathfrak{A}) \) to \(\text{FK}_X(\mathfrak{B}) \) lifts to an invertible element in \(\text{KK}(X_n; \mathfrak{A}, \mathfrak{B}) \).

Corollary 2.11. Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be in \(\mathcal{B}(X_n) \). Then an isomorphism from \(K_{X_n}(\mathfrak{A}) \) to \(K_{X_n}(\mathfrak{B}) \) lifts to an invertible element in \(\text{KK}(X_n; \mathfrak{A}, \mathfrak{B}) \).

Proof. This follows from Remark 2.8 and Theorem 2.10

Remark 2.12. Let \(x \in \text{KK}(X_n; \mathfrak{A}, \mathfrak{B}) \) be an invertible element. Then \(K_{X_n}(x) \) will denote the isomorphism from \(K_{X_n}(\mathfrak{A}) \) to \(K_{X_n}(\mathfrak{B}) \) given by \(\Gamma(x) \) where we have identified \(K_{X_n}(\mathfrak{A}) \) with \(\text{FK}_X(\mathfrak{A}) \) and \(K_{X_n}(\mathfrak{B}) \) with \(\text{FK}_X(\mathfrak{B}) \).

2.3. Functors

We now define some functors that will be used throughout the rest of the paper. Let \(X \) and \(Y \) be topological spaces. For every continuous function \(f : X \to Y \) we have a functor

\[
f : E^*\mathfrak{alg}(X) \to E^*\mathfrak{alg}(Y), \quad (A, \psi) \mapsto (A, f \circ \psi).
\]
(1) Define \(g_X^1 : X \to X_1 \) by \(g_X^1(x) = 1 \). Then \(g_X^1 \) is continuous. Note that the induced functor \(g_X^1 : \mathcal{C}\text{-alg}(X) \to \mathcal{C}\text{-alg}(X_1) \) is the forgetful functor.

(2) Let \(U \) be an open subset of \(X \). Define \(g_{U,X}^2 : X \to X_2 \) by \(g_{U,X}^2(x) = 1 \) if \(x \notin U \) and \(g_{U,X}^2(x) = 2 \) if \(x \in U \). Then \(g_{U,X}^2 \) is continuous. Thus the induced functor

\[
g_{U,X}^2 : \mathcal{C}\text{-alg}(X) \to \mathcal{C}\text{-alg}(X_2)
\]

is just specifying the extension \(0 \to \mathfrak{A}(U) \to \mathfrak{A} \to \mathfrak{A}/\mathfrak{A}(U) \to 0 \).

(3) We can generalize (2) to finitely many ideals. Let \(U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n = X \) be open subsets of \(X \). Define \(g_{U_1,U_2,\ldots,U_n,X}^n : X \to X_n \) by \(g_{U_1,U_2,\ldots,U_n,X}^n(x) = n - k + 1 \) if \(x \in U_k \setminus U_{k-1} \). Then \(g_{U_1,U_2,\ldots,U_n,X}^n \) is continuous. Therefore, any \(C^* \)-algebra with ideals \(0 \leq \mathcal{J}_1 \leq \mathcal{J}_2 \leq \cdots \leq \mathcal{J}_n = \mathfrak{A} \) can be made into a \(C^* \)-algebra over \(X_n \).

(4) For all \(Y \in \mathbb{L}\mathcal{C}(X) \), \(r_X^Y : \mathcal{C}\text{-alg}(X) \to \mathcal{C}\text{-alg}(Y) \) is the restriction functor defined in Definition 2.19 of [27].

(5) If \(f : X \to Y \) is an embedding of a subset with the subspace topology, we write

\[
i_X^Y = f_* : \mathcal{C}\text{-alg}(X) \to \mathcal{C}\text{-alg}(Y).
\]

By Proposition 3.4 of [27], the functors defined above induce functors from \(\mathfrak{R}(X) \) to \(\mathfrak{R}(Z) \), where \(Z = Y, X_1, X_n \).

2.4. Graph \(C^* \)-algebras. A graph \((E^0, E^1, r, s)\) consists of a countable set \(E^0 \) of vertices, a countable set \(E^1 \) of edges, and maps \(r : E^1 \to E^0 \) and \(s : E^1 \to E^0 \) identifying the range and source of each edge. If \(E \) is a graph, the graph \(C^* \)-algebra \(C^*\langle E \rangle \) is the universal \(C^* \)-algebra generated by mutually orthogonal projections \(\{p_v : v \in E^0\} \) and partial isometries \(\{s_e : e \in E^1\} \) with mutually orthogonal ranges satisfying

\[
\begin{align*}
(1) & \quad s_es_e = p_r(e) \quad \text{for all} \ e \in E^1 \\
(2) & \quad s_es_e^* \leq p_s(e) \quad \text{for all} \ e \in E^1 \\
(3) & \quad p_v = \sum_{e \in E^1 : s(e) = v} s_es_e^* \quad \text{for all} \ v \ \text{with} \ 0 < |s^{-1}(v)| < \infty.
\end{align*}
\]

3. Meta-theorems

In many cases one can obtain a classification result for a class of unital \(C^* \)-algebras \(\mathcal{C} \) by obtaining a classification result for the class \(\mathcal{C} \otimes \mathbb{K} \), where each object in \(\mathcal{C} \otimes \mathbb{K} \) is the stabilization of an object in \(\mathcal{C} \). A meta-theorem of this sort was proved by the first and second named authors in [13] Theorem 11. It was shown there that if \(\mathcal{C} \) is a subcategory of the category of \(C^* \)-algebras, \(\mathcal{C}\text{-alg} \), and if \(F \) is a functor from \(\mathcal{C} \) to an abelian category such that an isomorphism \(F(\mathfrak{A} \otimes \mathbb{K}) \cong F(\mathfrak{B} \otimes \mathbb{K}) \) lifts to an isomorphism in \(\mathfrak{A} \otimes \mathbb{K} \cong \mathfrak{B} \otimes \mathbb{K} \), then under suitable conditions, we have that \(F(\mathfrak{A}) \cong F(\mathfrak{B}) \) implies \(\mathfrak{A} \cong \mathfrak{B} \). In [31], the second and third named authors improved this result by showing that the isomorphism \(F(\mathfrak{A}) \cong F(\mathfrak{B}) \) lifts to an isomorphism from \(\mathfrak{A} \) to \(\mathfrak{B} \).

In this section, we improve these results in order to deal with cases when \(\mathcal{C} \) is a category (not necessarily a subcategory of \(\mathcal{C}\text{-alg} \)) and there exists a functor from \(\mathcal{C} \) to \(\mathcal{C}\text{-alg} \). An example of such a category is the category of \(C^* \)-algebras over \{1, 2\}, where \{1, 2\} is given the discrete topology. Then \(\mathcal{C} \) is not a subcategory of \(\mathcal{C}\text{-alg} \) but the forgetful functor (forgetting the \{1, 2\}-structure) is a functor from \(\mathcal{C} \) to \(\mathcal{C}\text{-alg} \). We also replace the condition of proper pure infiniteness by the stable weak cancellation property.
Definition 3.1. A C*-algebra \mathfrak{A} is said to have the weak cancellation property if p is Murray-von Neumann equivalent to q whenever p and q generate the same ideal \mathcal{J} and $[p] = [q]$ in $K_0(\mathcal{J})$. A C*-algebra is said to have the stable weak cancellation property if $M_n(\mathfrak{A})$ has the weak cancellation property for all $n \in \mathbb{N}$.

Theorem 3.2. (cf. [13] Theorem 11) Let C and D be categories, let $\mathcal{C}^*\text{-alg}$ be the category of C*-algebras, and let \mathbf{Ab} be the category of abelian groups. Suppose we have covariant functors $F : C \to \mathcal{C}^*\text{-alg}$, $G : C \to D$, and $H : D \to \mathbf{Ab}$ such that

1. $H \circ G = K_0 \circ F$.
2. For objects \mathfrak{A} in C, there exist an object \mathfrak{A}_K and a morphism $\kappa_{\mathfrak{A}} : \mathfrak{A} \to \mathfrak{A}_K$ such that $G(\kappa_{\mathfrak{A}})$ is an isomorphism in D, $F(\mathfrak{A}_K) = F(\mathfrak{A}) \otimes K$, and $F(\kappa_{\mathfrak{A}}) = \text{id}_{F(\mathfrak{A})} \otimes e_{11}$.
3. For all objects \mathfrak{A} and \mathfrak{B} in C, every isomorphism $G(\mathfrak{A}_K)$ to $G(\mathfrak{B}_K)$ is induced by an isomorphism from \mathfrak{A}_K to \mathfrak{B}_K.

Let \mathfrak{A} and \mathfrak{B} be given such that $F(\mathfrak{A})$ and $F(\mathfrak{B})$ are unital C*-algebras. Let $\rho : G(\mathfrak{A}) \to G(\mathfrak{B})$ be an isomorphism such that $H(\rho)([1_{F(\mathfrak{A})}]) = [1_{F(\mathfrak{B})}]$. If $F(\mathfrak{B})$ has the stable weak cancellation property, then $F(\mathfrak{A}) \cong F(\mathfrak{B})$.

Proof. Note that $G(\kappa_{\mathfrak{A}})$ and $G(\kappa_{\mathfrak{B}})$ are isomorphisms. Therefore $G(\kappa_{\mathfrak{A}}) \circ \rho \circ G(\kappa_{\mathfrak{B}})^{-1}$ is an isomorphism from $G(\mathfrak{A}_K)$ to $G(\mathfrak{B}_K)$. Thus, there exists an isomorphism $\phi : \mathfrak{A}_K \to \mathfrak{B}_K$ such that $G(\phi) = G(\kappa_{\mathfrak{B}}) \circ \rho \circ G(\kappa_{\mathfrak{A}})^{-1}$.

Set $\psi = F(\phi)$. Then $\psi : F(\mathfrak{A}) \otimes K \to F(\mathfrak{B}) \otimes K$ is a *-isomorphism such that

$K_0(\psi) = K_0(F(\phi)) = H(G(\kappa_{\mathfrak{A}}) \circ \rho \circ G(\kappa_{\mathfrak{B}})^{-1}) = H(G(\kappa_{\mathfrak{B}})) \circ H(\rho) \circ H(G(\kappa_{\mathfrak{A}}))^{-1} = K_0(F(\kappa_{\mathfrak{B}})) \circ H(\rho) \circ K_0(F(\kappa_{\mathfrak{A}}))^{-1} = K_0(\text{id}_{F(\mathfrak{B})} \otimes e_{11}) \circ H(\rho) \circ K_0(\text{id}_{F(\mathfrak{A})} \otimes e_{11})^{-1}$.

Hence,

$K_0(\psi)([1_{F(\mathfrak{A})} \otimes e_{11}]) = K_0(\text{id}_{F(\mathfrak{B})} \otimes e_{11}) \circ H(\rho) \circ K_0(\text{id}_{F(\mathfrak{A})} \otimes e_{11})^{-1}([1_{F(\mathfrak{A})} \otimes e_{11}])$

$= K_0(\text{id}_{F(\mathfrak{B})} \otimes e_{11}) \circ H(\rho)([1_{F(\mathfrak{A})}])$

$= K_0(\text{id}_{F(\mathfrak{B})} \otimes e_{11})([1_{F(\mathfrak{B})}])$

$= [1_{F(\mathfrak{B})} \otimes e_{11}]$.

Stable weak cancellation implies that there exists $v \in F(\mathfrak{B}) \otimes K$ such that $v^*v = \psi(1_{F(\mathfrak{A})} \otimes e_{11})$ and $vv^* = 1_{F(\mathfrak{B})} \otimes e_{11}$ since $\psi(1_{F(\mathfrak{A})} \otimes e_{11})$ and $1_{F(\mathfrak{B})} \otimes e_{11}$ are full projections in $F(\mathfrak{B}) \otimes K$. Set $\gamma(x) = v\psi(x \otimes e_{11})v^*$. Arguing as in the proof of [13] Theorem 11, γ is an isomorphism from $F(\mathfrak{A}) \otimes e_{11}$ to $F(\mathfrak{B}) \otimes e_{11}$. Hence, $F(\mathfrak{A}) \cong F(\mathfrak{B})$. □

Theorem 3.3. (cf. [32] Theorem 2.1) Let C be a subcategory of $\mathcal{C}^*\text{-alg}(X)$. Moreover, C is assumed to be closed under tensoring by $M_2(\mathfrak{C})$ and K and contains the canonical embeddings $\kappa_1 : \mathfrak{A} \to M_2(\mathfrak{A})$ and $\kappa : \mathfrak{A} \to \mathfrak{A} \otimes K$ as morphisms for every object \mathfrak{A} in C. Assume there is a functor $F : C \to D$ satisfying

1. For \mathfrak{A} in C, the embeddings $\kappa_1 : \mathfrak{A} \to M_2(\mathfrak{A})$ and $\kappa : \mathfrak{A} \to \mathfrak{A} \otimes K$ induce isomorphisms $F(\kappa_1)$ and $F(\kappa)$.
2. For all objects \mathfrak{A} and \mathfrak{B} in C that are stable C*-algebras, every isomorphism from $F(\mathfrak{A})$ to $F(\mathfrak{B})$ is induced by an isomorphism from \mathfrak{A} to \mathfrak{B}.
3. There exists a functor G from D to \mathbf{Ab} such that $G \circ F = K_0$.

Assume that every X-equivariant isomorphism between objects in \mathcal{C} is a morphism in \mathcal{C} and that for objects \mathfrak{A} in \mathcal{C}, $F(\text{Ad}(u)|_{\mathfrak{A}}) = \text{id}_{F(\mathfrak{A})}$ for every unitary $u \in \mathcal{M}(\mathfrak{A})$. If \mathfrak{A} and \mathfrak{B} are objects \mathcal{C} that are unital C^*-algebras such that \mathfrak{A} and \mathfrak{B} have the stable weak cancellation property and there is an isomorphism $\alpha : F(\mathfrak{A}) \to F(\mathfrak{B})$ such that $G(\alpha)([1_\mathfrak{A}]) = [1_\mathfrak{B}]$, then there exists an isomorphism $\phi : \mathfrak{A} \to \mathfrak{B}$ in \mathcal{C} such that $F(\phi) = \alpha$.

Proof. The difference between the statement of Theorem 2.1 of [32] and statement of the theorem are

(i) \mathcal{C} is assumed to be a subcategory of \mathcal{C}^*-$\text{alg}(X)$ instead of a subcategory of \mathcal{C}^*-alg.

(ii) \mathfrak{A} and \mathfrak{B} are assumed to have the stable weak cancellation property instead of being properly infinite.

In the proof of Theorem 2.1 of [32], properly infinite was needed to insure that $\psi(1_\mathfrak{A} \otimes e_{11})$ is Murray-von Neumann equivalent to $1_\mathfrak{B} \otimes e_{11}$, where $\psi : \mathfrak{A} \otimes K \to \mathfrak{B} \otimes K$ is the isomorphism from (2) that lifts the isomorphism from $F(\mathfrak{A})$ to $F(\mathfrak{B})$ that is induced by α. As in the proof of Theorem 3.2, we get that $\psi(1_\mathfrak{A} \otimes e_{11})$ is Murray-von Neumann equivalent to $1_\mathfrak{B} \otimes e_{11}$. Arguing as in the proof of Theorem 2.1 of [32], we get the desired result. \square

4. Classification results

In this section, we show that $K^+_X(-)$ is a strong classification functor for a class of C^*-algebras with exactly one proper nontrivial ideal containing C^*-algebras associated to finite graphs. The results of this section will be used in the next section to show that $K^+_X(-)$ together with the appropriate scale is a complete isomorphism invariant for C^*-algebras associated to graphs. Moreover, in a forthcoming paper, we use these results to solve the following extension problem: If \mathfrak{A} fits into the following exact sequence

$$0 \to C^*(E) \otimes K \to \mathfrak{A} \to C^*(G) \to 0,$$

where $C^*(E)$ and $C^*(G)$ are simple C^*-algebras, then when is $\mathfrak{A} \cong C^*(F)$ for some graph F?

Theorem 4.1. (Existence Theorem) Let \mathfrak{A}_1 and \mathfrak{A}_2 be in $\mathcal{B}(X_2)$ and let $x \in KK(X_2; \mathfrak{A}_1, \mathfrak{A}_2)$ be an invertible element such that $\Gamma(x)_Y$ is a positive isomorphism for all $Y \in \mathcal{L}C(X_2)$. Suppose $0 \to \mathfrak{A}_i[2] \to \mathfrak{A}_i \to \mathfrak{A}_i[1] \to 0$ is a full extension, $\mathfrak{A}_i[2]$ is a stable C^*-algebra, \mathfrak{A}_i is a nuclear C^*-algebra with real rank zero, and either

(i) $\mathfrak{A}_i[2]$ is a purely infinite simple C^*-algebra and $\mathfrak{A}_i[1]$ is an AF-algebra;

(ii) $\mathfrak{A}_i[2]$ is an AF-algebra and $\mathfrak{A}_i[1]$ is a purely infinite simple C^*-algebra.

Then there exists an X_2-equivariant homomorphism $\phi : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K$ such that $KK(X_2; \phi) = KK(X_2; \text{id}_{\mathfrak{A}_1} \otimes e_{11})^{-1} \times x \times KK(X_2; \text{id}_{\mathfrak{A}_2} \otimes e_{11})$, and $\phi[2]$ and $\phi[1]$ are injective, where $\{e_{ij}\}$ is a system of matrix units for K.

Proof. Set $y = KK(X_2; \text{id}_{\mathfrak{A}_1} \otimes e_{11})^{-1} \times x \times KK(X_2; \text{id}_{\mathfrak{A}_2} \otimes e_{11})$. Note that by Lemma 3.10 and Theorem 3.8 of [11], $\mathfrak{A}_i[2] \otimes K$ satisfies the corona factorization property (see [21] for the definition of the corona factorization property). Since $\mathfrak{A}_i[k]$ is an AF-algebra or an Kirchberg algebra, $\mathfrak{A}_i[k]$ has the stable weak cancellation. By Lemma 3.15 of [15], \mathfrak{A}_i has stable weak cancellation. Let ξ_i be the extension

$$0 \to \mathfrak{A}_i[2] \otimes K \to \mathfrak{A}_i \otimes K \to \mathfrak{A}_i[1] \otimes K \to 0.$$
By Corollary 3.24 of [15], e_i is a full extension since $\mathfrak{A}_i[1]$ has cancellation of projections (in the AF case) and $\mathfrak{A}_i[1]$ is properly infinite (in the purely infinite case).

Case (i): $\mathfrak{A}_i[2]$ is a purely infinite simple C*-algebra and $\mathfrak{A}_i[1]$ is an AF-algebra. By Theorem 3.3 of [14], $r_{X_2}^{(1)}(y) \times \{r_{X_2}^{(2)}\}$ is invertible in $KK(X_2, \mathfrak{A}_1 \otimes k, \mathfrak{A}_2 \otimes k)$. Since y is invertible in $KK(X_2, \mathfrak{A}_1 \otimes k, \mathfrak{A}_2 \otimes k)$, we have that $r_{X_2}^{(1)}(y)$ is invertible in $KK([1] \otimes k, \mathfrak{A}_2[2] \otimes k)$ and $\Gamma(r_{X_2}^{(1)}(y)) = \Gamma(x_{\{1\}})$ is a positive isomorphism. Thus, by Elliott’s classification [19], there exists an isomorphism $\psi_1 : [1] \otimes k \to \mathfrak{A}_2[1] \otimes k$ such that $KK(\psi_1) = r_{X_2}^{(1)}(y)$. Since y is invertible in $KK(X_2, \mathfrak{A}_1 \otimes k, \mathfrak{A}_2 \otimes k)$, we have that $r_{X_2}^{(2)}(y)$ is invertible in $KK([1] \otimes k, \mathfrak{A}_2[2] \otimes k)$. Thus, by Kirchberg-Phillips classification (see [20] and [29]), there exists an isomorphism $\psi_0 : [2] \otimes k \to \mathfrak{A}_2[2] \otimes k$ such that $KK(\psi_0) = r_{X_2}^{(2)}(y)$. By Lemma 4.5 of [14] and its proof, there exists a unitary $u \in M(\mathfrak{A}[2] \otimes k)$ such that $\psi = (Ad(u) \circ \psi_0, Ad(u) \circ \psi_0)$ is an X₂-equivariant isomorphism from $\mathfrak{A}_1 \otimes k$ to $\mathfrak{A}_2 \otimes k$, where $\psi_0 : M([1] \otimes k) \to M([1] \otimes k)$ is the unique isomorphism extending ψ_0. Note that $KK(\psi_{\{1\}}) = r_{X_2}^{(1)}(y)$ for $k = 1, 2$.

Note that

$$0 \to i_{X_2}^{(1)}((\mathfrak{A}_1 \otimes k)[2]) \xrightarrow{\lambda_2} \mathfrak{A}_1 \otimes k \xrightarrow{\beta_1} i_{X_2}^{(1)}((\mathfrak{A}_1 \otimes k)[1]) \to 0$$

is a semi-split extension of C*-algebras over X_2 (see Definition 3.5 of [27]). Set

$$\mathfrak{J}_i = i_{X_2}^{(i)}((\mathfrak{A}_i \otimes k)[2]) \quad \text{and} \quad \mathfrak{B}_i = i_{X_2}^{(1)}((\mathfrak{A}_i \otimes k)[1]).$$

By Theorem 3.6 of [27] (see also Korollar 3.4.6 of [4]),

$$KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{J}_2) \xrightarrow{(\lambda_2)_*} KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{B}_2 \otimes k)$$

and

$$KK(X_2; \mathfrak{B}_1 \otimes k, \mathfrak{J}_2) \xrightarrow{(\beta_2)_*} KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{B}_2)$$

is exact. By Proposition 3.12 of [27], $KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{B}_2)$ and $KK([1] \otimes k, \mathfrak{A}_2[1] \otimes k)$ are naturally isomorphic. Hence, there exists $z \in KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{J}_2)$ such that $y - KK(X_2; \psi) = z \times KK(X_2; \lambda_2)$ since $KK(\psi_{\{1\}}) = r_{X_2}^{(1)}(y)$.

By Proposition 3.13 of [27], $KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{J}_2)$ and $KK([1] \otimes k, \mathfrak{A}_2 \otimes k)[2]$ are isomorphic. By Theorem 8.3.3 of [36] (see also Hauptsatz 4.2 of [20]), there exists a *-homomorphism $\eta : \mathfrak{A}_1 \otimes k \to \mathfrak{A}_2 \otimes k[2]$ such that $KK(\eta) = \pi$, where π is the image of z under the isomorphism $KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{J}_2) \cong KK([1] \otimes k, \mathfrak{A}_2 \otimes k)[2]$. Note that η induces an X₂-equivariant homomorphism $\eta : \mathfrak{A}_1 \otimes k \to \mathfrak{J}_2$ such that $KK(X_2; \eta) = z$.

Set $\phi = \psi + (\lambda_2 \circ \eta)$, where the sum is the Cuntz sum in $M(\mathfrak{B}_2 \otimes k)$. Then $\phi : \mathfrak{A}_1 \otimes k \to \mathfrak{B}_2 \otimes k$ is an X₂-equivariant homomorphism such that $KK(X_2; \phi) = y$. Since $\psi_{\{2\}}$ and $\psi_{\{1\}}$ are injective homomorphisms, $\phi_{\{2\}}$ and $\phi_{\{1\}}$ are injective homomorphisms.

Case (ii): $\mathfrak{A}_i[2]$ is an AF-algebra and $\mathfrak{A}_i[1]$ is a purely infinite simple C*-algebra. By Theorem 3.3 of [14], $r_{X_2}^{(1)}(y) \times \{r_{X_2}^{(2)}\}$ is invertible in $KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{A}_2 \otimes k)$. Since y is invertible in $KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{A}_2 \otimes k)$, we have that $r_{X_2}^{(2)}(y)$ is invertible in $KK([1] \otimes k, \mathfrak{A}_2[2] \otimes k)$ and $\Gamma(r_{X_2}^{(2)}(y)) = \Gamma(x_{\{2\}})$ is an order isomorphism. Thus, by Elliott’s classification [19], there exists an isomorphism $\psi_0 : [2] \otimes k \to \mathfrak{A}_2[2] \otimes k$ such that $KK(\psi_0) = r_{X_2}^{(2)}(y)$. Since y is invertible in $KK(X_2; \mathfrak{A}_1 \otimes k, \mathfrak{A}_2 \otimes k)$, we have that $r_{X_2}^{(1)}(y)$ is invertible in
there exists an isomorphism $\psi : \mathfrak{A}_1[1] \otimes \mathbb{K} \to \mathfrak{A}_2[1] \otimes \mathbb{K}$. Thus, by Kirchberg-Phillips classification (see [20] and [29]), there exists a unitary $u \in M(\mathfrak{A}_2[2] \otimes \mathbb{K})$ such that $KK(\psi) = r_{X_2}^\varepsilon(y)$. By Lemma 4.5 of [14] and its proof, there exists a unitary $u \in M(\mathfrak{A}_2[2] \otimes \mathbb{K})$ such that $\psi = (Ad(u) \circ \psi_0, Ad(u) \circ \psi_0, \psi_1)$ is an X_2-equivalent isomorphism from $\mathfrak{A}_1 \otimes \mathbb{K}$ to $\mathfrak{A}_2 \otimes \mathbb{K}$, where $\psi_0 : M(\mathfrak{A}_1[2] \otimes \mathbb{K}) \to M(\mathfrak{A}_1[2] \otimes \mathbb{K})$ is the unique isomorphism extending ψ_0. Note that $KK(\psi) = r_{X_2}^\varepsilon(y)$ for $k = 1, 2$.

Note that

$$0 \to i_{\{2\}}(\mathfrak{A}_1 \otimes \mathbb{K}[2]) \xrightarrow{\lambda} \mathfrak{A}_1 \otimes \mathbb{K} \xrightarrow{\beta} i_{\{1\}}(\mathfrak{A}_1 \otimes \mathbb{K}[1]) \to 0$$

is a semi-split extension of C^*-algebras over X_2 (see Definition 3.5 of [27]). Set

$$\mathcal{J}_i = i_{\{2\}}(\mathfrak{A}_1 \otimes \mathbb{K}[2]) \quad \text{and} \quad \mathcal{B}_i = i_{\{1\}}(\mathfrak{A}_1 \otimes \mathbb{K}[1]).$$

By Theorem 3.6 of [27] (see also Korollar 3.4.6 [4]), $KK(\mathcal{J}_i, \mathcal{B}_i, \mathfrak{A}_1 \otimes \mathbb{K})$ is exact. By Proposition 3.12 of [27], $KK(\mathcal{J}_i, \mathfrak{A}_1 \otimes \mathbb{K})$ and $KK(\mathfrak{A}_1[2] \otimes \mathbb{K}, \mathfrak{A}_2[2] \otimes \mathbb{K})$ are naturally isomorphic. Hence, there exists $z \in KK(\mathcal{J}_i, \mathcal{B}_i, \mathfrak{A}_1 \otimes \mathbb{K})$ such that $y - KK(X; \psi) = KK(\mathcal{J}_i, \mathcal{B}_i, \mathfrak{A}_1 \otimes \mathbb{K})$ and $KK((\mathfrak{A}_1 \otimes \mathbb{K})[1], \mathfrak{A}_2 \otimes \mathbb{K})$ are isomorphic. Therefore, by Theorem 8.3.3 of [36], there exists a homomorphism $\eta : (\mathfrak{A}_1 \otimes \mathbb{K})[1] \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KK(\eta) = z$, where z is the image of z under the isomorphism $KK(X; \mathcal{J}_i, \mathcal{B}_i, \mathfrak{A}_1 \otimes \mathbb{K})$. The existence of the homomorphism uses the fact that $\mathfrak{A}_2 \otimes \mathbb{K}$ is a proper infinite C^*-algebra which follows from Proposition 3.21 and Theorem 3.22 of [15]. Note that η induces an X_2-equivariant homomorphism $\eta : \mathcal{J}_i \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KK(X_2; \eta) = z$.

Set $\phi = \psi + (\eta \circ \beta_1)$, where the sum is the Cuntz sum in $M(\mathfrak{A}_2 \otimes \mathbb{K})$. Then ϕ is an X_2-equivariant homomorphism such that $KK(X_2; \phi) = z$. Since $\psi[2]$ and $\psi[1]$ are injective homomorphisms, $\phi[2]$ and $\phi[1]$ are injective homomorphisms.

4.1. Strong classification of extensions of AF-algebras by purely infinite C^*-algebras.

Definition 4.2. Let \mathfrak{A} and \mathfrak{B} be separable C^*-algebras over X. Two X-equivariant homomorphisms $\phi, \psi : \mathfrak{A} \to \mathfrak{B}$ are said to be approximately unitarily equivalent if there exists a sequence of unitaries $\{u_n\}_{n=1}^\infty$ in $M(\mathfrak{B})$ such that

$$\lim_{n \to \infty} \|u_n \phi(a) u_n^* - \psi(a)\| = 0$$

for all $a \in \mathfrak{A}$.

We now recall the definition of $KL(\mathfrak{A}, \mathfrak{B})$ from [33].

Definition 4.3. Let \mathfrak{A} be a separable, nuclear C^*-algebra in \mathcal{N} and let \mathfrak{B} be a σ-unital C^*-algebra. Let

$$\text{Ext}^1_\mathcal{L}(K_*(\mathfrak{A}), K_{*+1}(\mathfrak{B})) = \text{Ext}^1_\mathcal{L}(K_0(\mathfrak{A}), K_1(\mathfrak{B})) \oplus \text{Ext}^1_\mathcal{L}(K_1(\mathfrak{A}), K_0(\mathfrak{B})).$$

Since \mathfrak{A} is in \mathcal{N}, by [37], $\text{Ext}^1_\mathcal{L}(K_*(\mathfrak{A}), K_{*+1}(\mathfrak{B}))$ can be identified as a sub-group of the group $KK(\mathfrak{A}, \mathfrak{B})$.
For abelian groups, G and H, let $\text{Pext}_2^1(G, H)$ be the subgroup of $\text{Ext}_2^1(G, H)$ of all pure extensions of G by H. Set
\[
\text{Pext}_2^1(K_*(\mathfrak{A}), K_{*-1}(\mathfrak{B})) = \text{Pext}_2^1(K_0(\mathfrak{A}), K_1(\mathfrak{B})) \oplus \text{Pext}_2^1(K_1(\mathfrak{A}), K_0(\mathfrak{B})).
\]
Define $KL(\mathfrak{A}, \mathfrak{B})$ as the quotient
\[
KL(\mathfrak{A}, \mathfrak{B}) = KK(\mathfrak{A}, \mathfrak{B})/\text{Pext}_2^1(K_*(\mathfrak{A}), K_{*-1}(\mathfrak{B})).
\]
Rørdam in [33] proved that if $\phi, \psi : \mathfrak{A} \to \mathfrak{B}$ are approximately unitarily equivalent, then $KL(\phi) = KL(\psi)$.

Notation 4.4. Let $x \in KK(\mathfrak{A}, \mathfrak{B})$. Then the element $x + \text{Pext}_2^1(K_*(\mathfrak{A}), K_{*-1}(\mathfrak{B}))$ in $KL(\mathfrak{A}, \mathfrak{B})$ will be denoted by $KL(x)$.

A nuclear, purely infinite, separable, simple C^*-algebra will be called a *Kirchberg algebra*.

Theorem 4.5. (Uniqueness Theorem 1) Let \mathfrak{A}_1 and \mathfrak{A}_2 be separable, nuclear, C^*-algebras over X_2 such that \mathfrak{A}_1 has real rank zero, \mathfrak{A}_1 is stable, $\mathfrak{A}_1[2]$ is a Kirchberg algebra in N, $\mathfrak{A}_1[1]$ is an AF-algebra, and $\mathfrak{A}_1[2]$ is an essential ideal of \mathfrak{A}_1. Suppose $\phi, \psi : \mathfrak{A}_1 \to \mathfrak{A}_2$ be X_2-equivariant homomorphism such that $KK(X_2; \phi) = KK(X_2; \psi)$, and $\phi_{(2)}$, $\phi_{(1)}$, $\psi_{(2)}$, and $\psi_{(1)}$ are injective homomorphisms. Then ϕ and ψ are approximately unitarily equivalent.

Proof. Since $\mathfrak{A}_1[1]$ is an AF algebra, every finitely generated subgroup of $K_0(\mathfrak{A}_1[1])$ is torsion free (hence free) and every finitely generated subgroup of $K_1(\mathfrak{A}_1[1])$ is zero. Thus, $\text{Pext}_2^1(K_*(\mathfrak{A}_1[1]), K_{*-1}(Q(\mathfrak{A}_1[2]))) = \text{Ext}_2^1(K_*(\mathfrak{A}_1[1]), K_{*-1}(Q(\mathfrak{A}_1[2])))$ which implies that $KL(\mathfrak{A}_1[1], Q(\mathfrak{A}_1[2])) \cong \text{Hom}(K_*(\mathfrak{A}_1[1]), K_{*-1}(Q(\mathfrak{A}_1[2])))$.

Let ε_i denote the extension $0 \to \mathfrak{A}_i[2] \to \mathfrak{A}_i \to \mathfrak{A}_i[1] \to 0$. Since \mathfrak{A}_i has real rank zero and $K_1(\mathfrak{A}_i[1]) = 0$, we have that $K_j(\varepsilon_i) = 0$, where ε_i is the Busby invariant of ε_i. Hence, $\varepsilon_i = 0$ in $KL(\mathfrak{A}_i[1], Q(\mathfrak{A}_i[2]))$. By Corollary 6.7 of [24], ε_i is quasi-diagonal. Thus, there exists an approximate identity of $\mathfrak{A}_i[2]$ consisting of projections $\{e_k\}_{k \in \mathbb{N}}$ such that
\[
\lim_{n \to \infty} \|e_k x - xe_k\| = 0
\]
for all $x \in \mathfrak{A}_i$.

Since $\mathfrak{A}_1[1]$ is an AF-algebra and \mathfrak{A}_1 has real rank zero, as in the proof of Lemma 9.8 of [10], there exists a sequence of finite dimensional sub-C^*-algebras $\{\mathfrak{B}_k\}_{k=1}^\infty$ of \mathfrak{A}_1 such that $\mathfrak{B}_k \cap \mathfrak{A}_1[2] = \{0\}$ and for each $x \in \mathfrak{A}_1$, there exist $y_1 \in \bigcup_{k=1}^\infty \mathfrak{B}_k$ and $y_2 \in \mathfrak{A}_1[2]$ such that $x = y_1 + y_2$.

Let $\varepsilon > 0$ and \mathcal{F} be a finite subset of \mathfrak{A}_1. Note that we may assume \mathcal{F} is the union of the generators of \mathfrak{B}_m, for some $m \in \mathbb{N}$ and \mathcal{G}, for some finite subset \mathcal{G} of $\mathfrak{A}_1[2]$. Since \mathfrak{B}_m is a finite dimensional C^*-algebra,
\[
\lim_{k \to \infty} \|e_k x - xe_k\| = 0
\]
for all $x \in \mathfrak{A}_1$, and $\{e_k\}_{k \in \mathbb{N}}$ is an approximate identity for $\mathfrak{A}_1[2]$ consisting of projections, there exist $k \in \mathbb{N}$, a finite dimensional sub-C^*-algebra \mathfrak{D} of \mathfrak{A}_1 with $\mathfrak{D} \subseteq (1_{M(\mathfrak{A}_1)} - e_k)\mathfrak{A}_1(1_{M(\mathfrak{A}_1)} - e_k)$ and $\mathfrak{D} \cap \mathfrak{A}_1[2] = \{0\}$, and there exists a finite subset \mathcal{H} of $e_k \mathfrak{A}_1[2] e_k$ such that for all $x \in \mathcal{F}$, there exist $y_1 \in \mathfrak{D}$ and $y_2 \in \mathcal{H}$
\[
\|x - (y_1 + y_2)\| < \varepsilon / 3.
\]
Set \(\mathfrak{D} = \bigoplus_{\ell=1}^{s} M_{n_{\ell}} \) and let \(\{ f_{ij}^{\ell} \}_{i,j=1}^{n_{\ell}} \) be a system of matrix units for \(M_{n_{\ell}} \). Let \(\mathcal{I}_{\ell} \) be the ideal in \(\mathfrak{A}_{i} \) generated by \(f_{11}^{\ell} \). Since \(\mathfrak{A}_{i}[2] \) is simple and \(\mathfrak{A}_{i}[2] \) is an essential ideal of \(\mathfrak{A}_{i} \), we have that \(\mathfrak{A}_{i}[2] \subseteq \mathcal{I}_{i} \) for all nonzero ideal \(\mathcal{I} \) of \(\mathfrak{A}_{i} \). Thus, \(\mathfrak{A}_{i}[2] \subseteq \mathcal{I}_{\ell} \) since \(\mathfrak{D} \cap \mathfrak{A}_{i}[2] = 0 \).

Let \(\mathcal{I}_{\ell}^{\psi} \) be the ideal in \(\mathfrak{A}_{2} \) generated by \(\phi(f_{11}^{\ell}) \) and let \(\mathcal{I}_{\ell}^{\psi} \) be the ideal in \(\mathfrak{A}_{2} \) generated by \(\psi(f_{11}^{\ell}) \). Since \(\phi \) and \(\psi \) are \(X_{2} \)-equivariant homomorphisms and since \(\phi(1) \) and \(\psi(1) \) are injective homomorphisms, we have that \(\phi(f_{11}^{\ell}) \not\in \mathfrak{A}_{2}[2] \) and \(\psi(f_{11}^{\ell}) \not\in \mathfrak{A}_{2}[2] \). Therefore, \(\mathfrak{A}_{2}[2] \subseteq \mathcal{I}_{\ell}^{\psi} \) and \(\mathfrak{A}_{2}[2] \subseteq \mathcal{I}_{\ell}^{\phi} \). Since \(K_{0}(\phi(1)) = K_{0}(\psi(1)) \) and since \(\mathfrak{A}_{2}[1] \) is an AF-algebra, we have that \(\phi(1)(\mathcal{I}_{11}^{\phi}) \) is Murray-von Neumann equivalent to \(\psi(1)(\mathcal{I}_{11}^{\psi}) \), where \(\mathcal{I}_{11}^{\phi} \) is the image of \(f_{11}^{\ell} \) in \(\mathfrak{A}_{1}[1] \). Thus, they generate the same ideal in \(\mathfrak{A}_{2}[1] \). Since \(\mathfrak{A}_{2}[2] \subseteq \mathcal{I}_{\ell}^{\phi} \) and \(\mathfrak{A}_{2}[2] \subseteq \mathcal{I}_{\ell}^{\psi} \) and since \(\psi(1)(\mathcal{I}_{11}^{\psi}) \) and \(\phi(1)(\mathcal{I}_{11}^{\phi}) \) generate the same ideal in \(\mathfrak{A}_{2}[1] \), we have that \(\mathcal{I} = \mathcal{I}_{\ell}^{\psi} = \mathcal{I}_{\ell}^{\phi} \).

Note that the following diagram

\[
\begin{array}{ccc}
0 & \longrightarrow & K_{0}(\mathfrak{A}_{2}[2]) \\
\downarrow & & \downarrow K_{0}(\mathcal{I}) \\
0 & \longrightarrow & K_{0}(\mathfrak{A}_{2}[2])
\end{array}
\bigg| \quad \begin{array}{ccc}
& & \bigg| \quad 0 \\
& & K_{0}(\mathfrak{A}_{2}[2]) & \longrightarrow & K_{0}(\mathfrak{A}_{2}) & \longrightarrow & K_{0}(\mathfrak{A}_{2}[2]) \\
& & K_{0}(\mathcal{I}) & \bigg| & K_{0}(\mathfrak{A}_{2}) & \bigg| & K_{0}(\mathfrak{A}_{2}[2])
\end{array}
\]

is commutative, the rows are exact, and \(\iota \) and \(\tau \) are the canonical embeddings. Since \(\mathfrak{A}_{2}[1] \) is an AF-algebra, \(K_{0}(\mathcal{I}) \) is injective. A diagram chase shows that \(K_{0}(\iota) \) is injective. Since \(KK(X_{2}; \phi) = KK(X_{2}; \psi) \), we have that \([\phi(f_{11}^{\ell})] = [\psi(f_{11}^{\ell})] \) in \(K_{0}(\mathfrak{A}_{2}) \). Since \(\phi(f_{11}^{\ell}) \) and \(\psi(f_{11}^{\ell}) \) are elements of \(\mathcal{I} \) and \(K_{0}(\iota) \) is injective, we have that \([\phi(f_{11}^{\ell})] = [\psi(f_{11}^{\ell})] \) in \(K_{0}(\mathfrak{A}_{2}) \). Since \(\mathfrak{A}_{i}[1] \) is an AF-algebra and \(\mathfrak{A}_{i}[2] \) is a Kirchberg algebra, they both have stable weak cancellation. By Lemma 3.15 of [15], \(\mathfrak{A}_{i} \) has stable weak cancellation. Thus, \(\phi(f_{11}^{\ell}) \) is Murray-von Neumann equivalent to \(\psi(f_{11}^{\ell}) \). Hence, there exists \(v_{\ell} \in \mathfrak{A}_{2} \) such that \(v_{\ell}^{*}v_{\ell} = \phi(f_{11}^{\ell}) \) and \(v_{\ell}v_{\ell}^{*} = \psi(f_{11}^{\ell}) \).

Set

\[
u_{1} = \sum_{\ell=1}^{s} \sum_{i=1}^{n_{\ell}} \psi(f_{11}^{\ell})v_{\ell}\phi(f_{11}^{\ell})
\]

Then, \(u_{1} \) is a partial isometry in \(\mathfrak{A}_{1} \) such that \(u_{1}^{*}u_{1} = \phi(1_{\mathfrak{D}}) \), \(u_{1}u_{1}^{*} = \psi(1_{\mathfrak{D}}) \), and \(u_{1}\phi(x)u_{1}^{*} = \psi(x) \) for all \(x \in \mathfrak{D} \).

Let \(\beta : e_{k}\mathfrak{A}_{1}[2]e_{k} \to \mathfrak{A}_{1}[2] \) be the usual embedding. Note that \(KK(\phi_{2}\circ\beta) = KK(\psi_{2}\circ\beta) \) and \(\phi_{2} \circ \beta, \psi_{2} \circ \beta \) are monomorphisms. Therefore, by Theorem 6.7 of [23], there exists a partial isometry \(u_{2} \in \mathfrak{A}_{2}[2] \) such that \(u_{2}^{*}u_{2} = \phi(e_{k}) \), \(u_{2}u_{2}^{*} = \psi(e_{k}) \), and

\[
\|u_{2}\phi(x)u_{2}^{*} - \psi(x)\| < \frac{\epsilon}{3}
\]

for all \(x \in \mathcal{H} \).

Since \(\mathfrak{A}_{2} \) is stable, there exists \(u_{3} \in \mathcal{M}(\mathfrak{A}_{2}) \) such that \(u_{3}^{*}u_{3} = 1_{\mathcal{M}(\mathfrak{A}_{2})} - (u_{1} + u_{2})^{*}(u_{1} + u_{2}) \) and \(u_{3}u_{3}^{*} = 1_{\mathcal{M}(\mathfrak{A}_{2})} - (u_{1} + u_{2})(u_{1} + u_{2})^{*} \). Set \(u = u_{1} + u_{2} + u_{3} \in \mathcal{M}(\mathfrak{A}_{2}) \). Then \(u \) is a unitary in \(\mathcal{M}(\mathfrak{A}_{2}) \).
Let $x \in \mathcal{F}$. Choose $y_1 \in \mathcal{D}$ and $y_2 \in \mathcal{H} \subseteq \epsilon_k \mathfrak{A}_1[n]e_k$ such that $\|x - (y_1 + y_2)\| < \frac{\epsilon}{3}$. Then

$$\|u \phi(x) u^* - \psi(x)\| \leq \|u \phi(x) u^* - u \phi(y_1 + y_2) u^*\| + \|u_1 \phi(y_1) u_1^* + u_2 \phi(y_2) u_2^* - \psi(y_1) - \psi(y_2)\| + \|\psi(y_1 + y_2) - \psi(x)\| < \epsilon.$$

We have just shown that for each $\epsilon > 0$ and for each finite subset \mathcal{F} of \mathfrak{A}_1, there exists a unitary $u \in \mathcal{M}(\mathfrak{A}_2)$ such that $\|u \phi(x) u^* - \psi(x)\| < \epsilon$ for all $x \in \mathcal{F}$. Since \mathfrak{A}_1 is a separable C^*-algebra, we have that ϕ is approximately unitarily equivalent to ψ. □

Lemma 4.6. Let \mathfrak{A} be a separable C^*-algebra over a finite topological space X. Let u be unitary in $\mathcal{M}(\mathfrak{A} \otimes \mathbb{K})$. Then $K_X(\text{Ad}(u)|_{\mathfrak{A} \otimes \mathbb{K}}) = \text{id}_{K_X(\mathfrak{A})}$.

Proof. Since $\mathfrak{A} \otimes \mathbb{K}$ is stable, we have that there exists a norm continuous path of unitaries $\{u_t\}$ in $\mathcal{M}(\mathfrak{A} \otimes \mathbb{K})$ such that $u_0 = u$ and $u_1 = 1_{\mathcal{M}(\mathfrak{A} \otimes \mathbb{K})}$. It follows that $K_X(\text{Ad}(u)|_{\mathfrak{A} \otimes \mathbb{K}}) = \text{id}_{K_X(\mathfrak{A})}$.

Theorem 4.7. Let \mathfrak{A}_1 and \mathfrak{A}_2 be in $\mathcal{B}(X_2)$ and let $x \in KK(X_2; \mathfrak{A}_1, \mathfrak{A}_2)$ be an invertible element such that $\Gamma(x)\mathcal{Y}$ is an order isomorphism for all $Y \subseteq \mathcal{L}(X_2)$. Suppose $\mathfrak{A}_1[2]$ is a Kirchberg algebra, $\mathfrak{A}_1[1]$ is an AF-algebra, \mathfrak{A}_1 has real rank zero, and $\mathfrak{A}_2[2]$ is an essential ideal of \mathfrak{A}_1. Then there exists an X_2-equivariant isomorphism $\phi : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KL(\phi) = KL(g_{X_2}^1(y))$ and $K_{X_2}(\phi) = K_{X_2}(y)$, where $y = KK(X_2; \text{id}_{\mathfrak{A}_1} \otimes e_{11})^{-1} \times x \times KK(X_n; \text{id}_{\mathfrak{A}_2} \otimes e_{11})$.

Proof. Since $\mathfrak{A}_1[2]$ is a purely infinite simple C^*-algebra, $\mathfrak{A}_1[2]$ is either unital or stable. Since $\mathfrak{A}_1[2]$ is an essential ideal of \mathfrak{A}_1, $\mathfrak{A}_1[2]$ is non-unital else $\mathfrak{A}_1[2]$ is isomorphic to a direct summand of \mathfrak{A}_1 which would contradict the essential assumption. Therefore, $\mathfrak{A}_1[2]$ is stable. Moreover, $Q(\mathfrak{A}_1[2])$ is simple which implies that $0 \to \mathfrak{A}_1[2] \to \mathfrak{A}_1 \to \mathfrak{A}_1[1] \to 0$ is a full extension. Since $\mathfrak{A}_1[2]$ and $\mathfrak{A}_1[1]$ are nuclear C^*-algebras, \mathfrak{A}_1 is a nuclear C^*-algebra.

Let $z \in KK(X_2; \mathfrak{A}_2 \otimes \mathbb{K}, \mathfrak{A}_1 \otimes \mathbb{K})$ such that $y \times z = [\text{id}_{\mathfrak{A}_1 \otimes \mathbb{K}}]$ and $y \times z = [\text{id}_{\mathfrak{A}_2 \otimes \mathbb{K}}]$. By Theorem 4.1. there exists an X_2-equivariant homomorphism $\psi_1 : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KK(X_2; \psi_1) = x$, and $(\psi_1)_1(1)$ and $(\psi_1)_1(1)$ are injective homomorphisms. By Theorem 4.1. there exists an X_2-equivariant homomorphism $\psi_2 : \mathfrak{A}_2 \otimes \mathbb{K} \to \mathfrak{A}_1 \otimes \mathbb{K}$ such that $KK(X_2; \psi_2) = y$, and $(\psi_2)_1(1)$ and $(\psi_2)_1(1)$ are injective homomorphisms. Using Theorem 4.5 and a typical approximate intertwining argument, there exists an isomorphism $\phi : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that ϕ and ψ_1 are approximately unitarily equivalent.

Let $\tau_2 : \mathfrak{A}_2 \to \mathfrak{A}_2[1]$ be the canonical quotient map. Then $\tau_2 \circ \phi|_{\mathfrak{A}_2[2]}$ is either zero or injective since $\mathfrak{A}_2[2]$ is simple. Since $\mathfrak{A}_2[2]$ is purely infinite and $\mathfrak{A}_2[1]$ is an AF-algebra, we must have that $\tau_2 \circ \phi|_{\mathfrak{A}_2[2]} = 0$. Thus, ϕ is an X_2-equivariant homomorphism. Similarly, ϕ^{-1} is an X_2-equivariant homomorphism. Hence, ϕ is an X_2-equivariant isomorphism. By construction, $KL(\phi) = KL(\psi_1) = KL(g_{X_2}^1(y))$. By Lemma 4.4, $K_{X_2}(\phi) = K_{X_2}(x)$. □

Corollary 4.8. Let \mathfrak{A}_1 and \mathfrak{A}_2 be in $\mathcal{B}(X_2)$ and let $x \in KK(X_2; \mathfrak{A}_1, \mathfrak{A}_2)$ be an invertible element such that $\Gamma(x)\mathcal{Y}$ is an order isomorphism for all $Y \subseteq \mathcal{L}(X_2)$. Suppose $\mathfrak{A}_1[2]$ is a Kirchberg algebra, $\mathfrak{A}_1[1]$ is an AF-algebra, \mathfrak{A}_1 has real rank zero, $\mathfrak{A}_2[2]$ is an essential ideal of \mathfrak{A}_1, and $K_i(\mathfrak{A}[Y])$ and $K_i(\mathfrak{B}[Y])$ are finitely generated for all $Y \subseteq \mathcal{L}(X_2)$. Then there exists an X_2-equivariant isomorphism $\phi : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KK(\phi) = KK(g_{X_2}^1(y))$ and $K_{X_2}(\phi) = K_{X_2}(y)$, where $y = KK(X_2; \text{id}_{\mathfrak{A}_1} \otimes e_{11})^{-1} \times x \times KK(X_n; \text{id}_{\mathfrak{A}_2} \otimes e_{11})$.
Proof. This follows from Theorem 4.7 and the fact that if G is finitely generated, then $\text{Pext}_2^1(G, H) = 0$. □

4.2. Strong classification of extensions of purely infinite by \mathcal{K}. We recall the following from [1] p. 341. Let $\psi : \mathfrak{A} \to B(\mathcal{H})$ be a representation of \mathfrak{A}. Let \mathcal{H}_e denote the subspace of \mathcal{H} spanned by the ranges of all compact operators in $\psi(\mathfrak{A})$. Since $\psi(\mathfrak{A}) \cap \mathcal{K}$ is an ideal of $\psi(\mathfrak{A})$, we have that \mathcal{H}_e reduces $\pi(\mathfrak{A})$, and so the decomposition $\mathcal{H} = \mathcal{H}_e \oplus \mathcal{H}_e^\perp$ induces a decomposition of ψ into sub-representations $\psi = \psi_e \oplus \psi'$. The summand ψ_e, considered as a representation of \mathfrak{A} on \mathcal{H}_e, will be called the essential part of ψ and \mathcal{H}_e is called the essential subspace for ψ.

Let \mathfrak{B} be a tight C^*-algebra over X_2. Consider the essential extension

$$\epsilon_{\mathfrak{B}} : 0 \to \mathfrak{B}[1] \to \mathfrak{B} \to \mathfrak{B}[1] \to 0.$$

If $\tau_{\mathfrak{B}} : \mathfrak{B}[1] \to Q(\mathfrak{B}[2])$ is the Busby invariant of ϵ, then there exists an injective homomorphism $\sigma_{\mathfrak{B}} : \mathfrak{B} \to \mathcal{M}(\mathfrak{B}[2])$ such that the diagram

$$\begin{array}{ccc}
0 & \to & \mathfrak{B}[2] \\
\pi_{\mathfrak{B}} & & \pi_{\mathfrak{B}} \\
\tau_{\mathfrak{B}} & & \tau_{\mathfrak{B}} \\
0 & \to & \mathfrak{B}[1] \\
\pi_{\mathfrak{B}} & & \pi_{\mathfrak{B}} \\
\tau_{\mathfrak{B}} & & \tau_{\mathfrak{B}} \\
0 & \to & \mathcal{M}(\mathfrak{B}[2]) \\
\pi_{\mathfrak{B}} & & \pi_{\mathfrak{B}} \\
\tau_{\mathfrak{B}} & & \tau_{\mathfrak{B}} \\
0 & \to & Q(\mathfrak{B}[2]) \\
\pi_{\mathfrak{B}} & & \pi_{\mathfrak{B}} \\
\tau_{\mathfrak{B}} & & \tau_{\mathfrak{B}} \\
0 & \to & 0
\end{array}$$

If $\mathfrak{B}[2] \cong \mathcal{K}$, let $\eta_{\mathfrak{B}} : \mathcal{M}(\mathfrak{B}[2]) \to B(\ell^2)$ be the isomorphism extending the isomorphism $\mathfrak{B}[2] \cong \mathcal{K}$ and let $\eta_{\mathfrak{B}} : Q(\mathfrak{B}[2]) \to B(\ell^2)/\mathcal{K}$ be the induced isomorphism.

Lemma 4.9. Let \mathfrak{A} and \mathfrak{B} be separable, tight C^*-algebras over X_2 such that $\mathfrak{A}[2] \cong \mathfrak{B}[2] \cong \mathcal{K}$. Let $\psi_1, \psi_2 : \mathfrak{A} \to \mathfrak{B}$ be two, full X_2-equivariant homomorphisms such that $K_0(\psi_1(\mathfrak{A}[2])) = K_0(\psi_2(\mathfrak{A}[2]))$ and $\eta_{\mathfrak{B}} \circ \sigma_{\mathfrak{B}} \circ \psi_1$ is a non-degenerate representation of \mathfrak{A}. Then there exists a sequence of unitaries $\{U_n\}_{n=1}^{\infty}$ in $\mathcal{M}(\mathfrak{B}[2])$ such that

$$U_n(\sigma_{\mathfrak{B}} \circ \psi_1)(a)U_n^* - (\sigma_{\mathfrak{B}} \circ \psi_2)(a) \in \mathfrak{B}[2]$$

for all $a \in \mathfrak{A}$ and for all $n \in \mathbb{N}$, and

$$\lim_{n \to \infty} \| U_n(\sigma_{\mathfrak{B}} \circ \psi_1)(a)U_n^* - (\sigma_{\mathfrak{B}} \circ \psi_2)(a) \| = 0$$

for all $a \in \mathfrak{A}$.

Proof. We argue as in the proof of Lemma 2.8 of [22]. Set $\sigma_i = \eta_{\mathfrak{B}} \circ \sigma_{\mathfrak{B}} \circ \psi_i$. By assumption, $\sigma_i : \mathfrak{A} \to B(\ell^2)$ is a non-degenerated representation of \mathfrak{A}. We claim that there exists a sequence of unitaries $\{V_n\}_{n=1}^{\infty}$ in $B(\ell^2)$ such that $V_n \sigma_1(a) V_n^* - \sigma_2(a) \in \mathcal{K}$ for all $n \in \mathbb{N}$ and

$$\lim_{n \to \infty} \| V_n \sigma_1(a) V_n^* - \sigma_2(a) \| = 0$$

for all $a \in \mathfrak{A}$. This will be a consequence of Theorem 5(iii) of [1].

Let $\rho : \mathfrak{A} \to B(\ell^2)$ be the unique irreducible faithful representation defined by the isomorphism $\mathfrak{A}[2] \cong \mathcal{K}$. Since $\psi_i, \sigma_{\mathfrak{B}}, \eta_{\mathfrak{B}}$ are injective homomorphisms, σ_i is injective. Therefore, $\ker(\sigma_1) = \ker(\sigma_2) = \{0\}$. Let $\pi : B(\ell^2) \to B(\ell^2)/\mathcal{K}$ be the natural projection. Note that

$$\pi \circ \sigma_1 = \pi \circ \eta_{\mathfrak{B}} \circ \sigma_{\mathfrak{B}} \circ \psi_1 = \pi_{\mathfrak{B}} \circ \pi_{\mathfrak{B}} \circ \sigma_{\mathfrak{B}} \circ \psi_1 = \pi_{\mathfrak{B}} \circ \pi_{\mathfrak{B}} \circ \pi_{\mathfrak{B}} \circ \psi_1 = \pi_{\mathfrak{B}} \circ \pi_{\mathfrak{B}} \circ (\psi_1)(1) \circ \pi_{\mathfrak{A}}.$$
It now follows that \(\ker(\pi \circ \sigma_1) = \ker(\pi \circ \sigma_2) = \mathfrak{A}[2] \) since \(\pi_{\mathfrak{B}}, \tau_{\mathfrak{B}}, \) and \(\{\psi_i\}_{\{1\}} \) are injective homomorphisms.

Let \(H_1 \) be the essential subspace of \(\sigma_1 \). Since \(\sigma_1(\mathfrak{A}[2]) \subseteq \mathbb{K} \) and for each \(x \notin \mathfrak{A}[2] \), we have that \(\sigma_1(x) \notin \mathbb{K} \), we have that \(H_1 = \sigma_1(\mathfrak{A}[2])^{\ell^2} \). Similarly, we have that \(H_2 = \sigma_2(\mathfrak{A}[2])^{\ell^2} \), where \(H_2 \) is the essential subspace of \(\sigma_2 \). Let \(e \) be a minimal projection of \(\mathfrak{A}[2] \cong \mathbb{K} \). Suppose \(\sigma_1(e) \) has rank \(k \). Standard representation theory now implies that \(\sigma_1(-)|_{H_1} \) is unitarily equivalent to the direct sum of \(k \) copies of \(\rho \). Since \(K_0((\psi_1)(2)) = K_0((\psi_2)(2)) \), we have that \(\sigma_1(e) \) is Murray-von Neumann equivalent to \(\sigma_2(e) \). Hence, \(\sigma_2(e) \) has rank \(k \). Standard representation theory now implies that \(\sigma_2(-)|_{H_2} \) is unitarily equivalent to the direct sum of \(k \) copies of \(\rho \).

The above paragraph imply that \(\sigma_2(-)|_{H_2} \) and \(\sigma_1(-)|_{H_1} \) are unitarily equivalent. Since \(\ker(\sigma_1) = \ker(\sigma_2) \) and \(\ker(\pi \circ \sigma_1) = \ker(\pi \circ \sigma_2) \) by Theorem 5(iii) of \([1]\), there exists a sequence of unitaries \(\{V_n\}_{n=1}^{\infty} \) in \(B(\ell^2) \) such that \(V_n \sigma_1(a) V_n^* - \sigma_2(a) \in \mathbb{K} \) for all \(n \in \mathbb{N} \) and for all \(a \in \mathfrak{A} \), and

\[
\lim_{n \to \infty} \|V_n \sigma_1(a) V_n^* - \sigma_2(a)\| = 0
\]

for all \(a \in \mathfrak{A} \).

Set \(U_n = \eta^{-1}(V_n) \). Then \(\{U_n\}_{n=1}^{\infty} \) is a sequence of unitaries in \(\mathcal{M}(\mathfrak{B}[2]) \) such that \(U_n(\sigma_{\mathfrak{B}} \circ \psi_1)(a) U_n^* - (\sigma_{\mathfrak{B}} \circ \psi_2)(a) \in \mathfrak{B}[2] \) for all \(n \in \mathbb{N} \) and for all \(a \in \mathfrak{A} \), and

\[
\lim_{n \to \infty} \|U_n(\sigma_{\mathfrak{B}} \circ \psi_1)(a) U_n^* - (\sigma_{\mathfrak{B}} \circ \psi_2)(a)\| = 0
\]

for all \(a \in \mathfrak{A} \).

Definition 4.10. A \(C^* \)-algebra \(\mathfrak{A} \) is called *weakly semiprojective* if we can always solving the *-homomorphism lifting problem

\[
\begin{array}{ccc}
\mathfrak{A} & \xrightarrow{\phi} & \prod_{n=1}^{\infty} \mathfrak{B}_n \\
\downarrow{\rho_N} & & \downarrow{(b_N, b_{N+1}, \ldots)} \\
\prod_{n=1}^{\infty} \mathfrak{B}_n / \bigoplus_{n=1}^{\infty} \mathfrak{B}_n & & [0, \ldots, 0, b_N, b_{N+1}, \ldots]
\end{array}
\]

and \(\mathfrak{A} \) is called *semiprojective* if we can always solve the lifting problem

\[
\begin{array}{ccc}
\mathfrak{A} & \xrightarrow{\phi} & \mathfrak{B} / \bigcup_{n=1}^{\infty} \mathfrak{I}_n \\
\downarrow{\rho_N} & & (\mathfrak{I}_1 \subseteq \mathfrak{I}_2 \subseteq \cdots \subseteq \mathfrak{B})
\end{array}
\]

Lemma 4.11. Let \(\mathfrak{A}_0 \) be a unital, separable, nuclear, tight \(C^* \)-algebra over \(X_2 \) such that \(\mathfrak{A}_0[2] \cong \mathbb{K} \) and \(\mathfrak{A}_0 \) has the stable weak cancellation property. Set \(\mathfrak{A} = \mathfrak{A}_0 \otimes \mathbb{K} \). Suppose \(\beta : \mathfrak{A} \rightarrow \mathfrak{A} \) is a full \(X_2 \)-equivariant homomorphism such that \(K_{X_2}(\beta) = K_{X_2}(\text{id}_{\mathfrak{A}}) \) and \(\beta_{\{1\}} = \text{id}_{\mathfrak{A}[1]} \). Then there exists a sequence of contractive, completely positive, linear maps \(\{\alpha_n : \mathfrak{A} \rightarrow \mathfrak{A}\}_{n=1}^{\infty} \) such that

1. \(\alpha_n \mid e_{n, \mathfrak{A}_0} \) is a homomorphism for all \(n \in \mathbb{N} \) and
2. for all \(a \in \mathfrak{A} \),

\[
\lim_{n \to \infty} \|\alpha_n \circ \beta(a) - a\| = 0
\]
where \(e_n = \sum_{k=1}^{n} 1_{\mathbb{A}_0} \otimes e_{kk} \) and \(\{ e_{ij} \}_{i,j} \) is a system of matrix units for \(\mathbb{K} \). If, in addition, \(\mathbb{A} \) is assumed to be weakly semiprojective, then \(\alpha_n \) can be chosen to be a homomorphism for all \(n \in \mathbb{N} \).

Proof. Since \(\beta \) is a full \(X_2 \)-equivariant homomorphism and the ideal in \(\mathbb{A} \) generated by \(e_n \) is \(\mathbb{A} \), we have that the ideal in \(\mathbb{A} \) generated by \((e_n) \) is \(\mathbb{A} \). Since \(K_{X_2}(\beta) = K_{X_2}([1]) \), we have that \([\beta(e_n)] = [e_n] \) in \(K_{0}(\mathbb{A}) \). It now follows that \(\beta(e_n) \) and \(e_n \) are Murray-von Neumann equivalent since \(\mathbb{A}_0 \) has the stable weak cancellation property. Since \(\mathbb{A} \) is stable, there exists a unitary \(v_n \) in the unitization of \(\mathbb{A} \) such that \(v_n \beta(e_n) v_n^{\ast} = e_n \).

Fix \(n \in \mathbb{N} \). Let \(\epsilon \) be the extension \(0 \to e_n \mathbb{A}[2] e_n \to e_n \mathbb{A} e_n \to \tau_{\mathbb{A}}[1] \mathbb{A} e_n \to 0 \). By Lemma 1.5 of [16], \(\epsilon \) is a full extension. Therefore, \(\sigma_{\epsilon}(e_n) \) is Murray-von Neumann equivalent to \(1_{\mathcal{M}(\mathbb{A}[2])} \). Hence, \(e_n \mathbb{A}[2] e_n \cong \mathbb{A}[2] \cong \mathbb{K} \). Set \(\mathbb{A}_n = e_n \mathbb{A} e_n \) and define \(\beta_n : \mathbb{A}_n \to \mathbb{A}_n \) by \(\beta_n(x) = \text{Ad}(v_n) \circ \beta(x) \). Then \(\beta_n \) is a unital, full \(X_2 \)-equivariant homomorphism. Since \(\eta_{\mathbb{A}_n} \circ \sigma_{\epsilon_n} \circ \beta_n \) is a unital representation of \(\mathbb{A}_n \), the closed subspace of \(\ell^2 \) generated by \(\{ (\eta_{\mathbb{A}_n} \circ \epsilon_n \circ \beta_n)(x)\} : x \in \mathbb{A}_n, \xi \in \ell^2 \} \) is \(\ell^2 \). Therefore, \(\eta_{\mathbb{A}_n} \circ \sigma_{\epsilon_n} \circ \beta_n \) is a non-degenerate representation of \(\mathbb{A}_n \).

Since \(K_{X_2}(\beta) = K_{X_2}([1]) \) and the \(X_2 \)-equivariant embedding of \(\mathbb{A}_n \) as a sub-algebra of \(\mathbb{A} \) induces an isomorphism in ideal related \(K \)-theory, we have that \(K_{X_2}(\beta_n) = K_{X_2}([1]) \).

By Lemma 4.9 there exists a sequence of unitaries \(W_{k,n} \in \mathcal{M}(\mathbb{A}_n[2]) \) such that

\[
(\text{Ad}(W_{k,n}) \circ \sigma_{\epsilon_n} \circ \beta_n)(x) - \sigma_{\epsilon_n}(x) \in \mathbb{A}_n[2]
\]

for all \(x \in \mathbb{A}_n \) and for all \(k \in \mathbb{N} \), and

\[
\lim_{k \to \infty} \|(\text{Ad}(W_{k,n}) \circ \sigma_{\epsilon_n} \circ \beta_n)(x) - \sigma_{\epsilon_n}(x)\| = 0
\]

for all \(x \in \mathbb{A}_n \).

Note that \(\mathcal{M}(\mathbb{A}_n[2]) \cong \sigma_{\epsilon}(e_n) \mathcal{M}(\mathbb{A}[2]) \sigma_{\epsilon}(e_n) \) with an isomorphism mapping \(\mathbb{A}_n[2] \) onto \(e_n \mathbb{A}[2] e_n \). Thus, we get a partial isometry \(\tilde{W}_{k,n} \in \mathcal{M}(\mathbb{A}[2]) \) such that \(\tilde{W}_{k,n}^{\ast} \tilde{W}_{k,n} = \tilde{W}_{k,n} \tilde{W}_{k,n}^{\ast} = \sigma_{\epsilon}(e_n) \) and

\[
(\text{Ad}(\tilde{W}_{k,n}) \circ \sigma_{\epsilon} \circ \text{Ad}(v_n) \circ \beta)(x) - \sigma_{\epsilon}(x) \in \mathbb{A}[2]
\]

for all \(x \in \mathbb{A}_n \) and for all \(k \in \mathbb{N} \), and

\[
\lim_{k \to \infty} \|(\text{Ad}(\tilde{W}_{k,n}) \circ \sigma_{\epsilon} \circ \text{Ad}(v_n) \circ \beta)(x) - \sigma_{\epsilon}(x)\| = 0
\]

for all \(x \in \mathbb{A}_n \).

Set \(V_{k,n} = (\tilde{W}_{k,n} + 1_{\mathcal{M}(\mathbb{A}[2])} - \sigma_{\epsilon}(e_n)) \sigma_{\epsilon}(e_n) \). Then \(V_{k,n} \) is a unitary in \(\mathcal{M}(\mathbb{A}[2]) \) such that

\[
(\text{Ad}(V_{k,n}) \circ \sigma_{\epsilon} \circ \beta)(x) - \sigma_{\epsilon}(x) \in \mathbb{A}[2]
\]

for all \(x \in e_n \mathbb{A} e_n \) and for all \(k \in \mathbb{N} \), and

\[
\lim_{k \to \infty} \|(\text{Ad}(V_{k,n}) \circ \sigma_{\epsilon} \circ \beta)(x) - \sigma_{\epsilon}(x)\| = 0
\]

for all \(x \in e_n \mathbb{A} e_n \). A consequence of the first part is that \((\text{Ad}(V_{k,n}) \circ \sigma_{\epsilon} \circ \beta)(x) \in \sigma_{\epsilon}(e_n \mathbb{A} e_n) + \mathbb{A}[2] \) for all \(x \in e_n \mathbb{A} e_n \). Since \(\beta_{[1]} = \text{id}_{\mathbb{A}[2]} \), we have that \(x - \beta(x) \in \mathbb{A}[2] \) for all \(x \in e_n \mathbb{A} e_n \). Therefore,

\[
\text{Ad}(V_{k,n})(\sigma_{\epsilon}(x)) = \text{Ad}(V_{k,n}) \circ \sigma_{\epsilon}(x - \beta(x)) + \text{Ad}(V_{k,n}) \circ \beta(x) \in \sigma_{\epsilon}(e_n \mathbb{A} e_n) + \mathbb{A}[2]
\]

Thus, \(\alpha_{k,n} = \sigma_{\epsilon}^{-1} \circ (\text{Ad}(V_{k,n}) \circ \sigma_{\epsilon} \circ \text{Ad}(v_n)) | e_n \mathbb{A} e_n \) is a homomorphism from \(e_n \mathbb{A} e_n \) to \(\mathbb{A} \).
Since
\[
\lim_{k \to \infty} \|(\text{Ad}(V_{k,n}) \circ \sigma_t \circ \beta)(x) - \sigma_t(x)\| = 0
\]
for all \(x \in e_n \mathfrak{A}_n \) and \(e_n \mathfrak{A}_n \subseteq e_{n+1} \mathfrak{A}_{n+1} \), there exists a strictly increasing sequence \(\{k(n)\}_{n=1}^\infty \) of positive integers such that
\[
\lim_{n \to \infty} \|\alpha_{k(n),n} \circ \beta(x) - x\| = 0
\]
for all \(x \in \bigcup_{n=1}^\infty e_n \mathfrak{A}_n \). Let \(\alpha_n \) be a completely, contractive, positive linear extension of \(\alpha_{k(n),n} \). Since \(\bigcup_{n=1}^\infty e_n \mathfrak{A}_n \) is dense in \(\mathfrak{A} \), we have that
\[
\lim_{n \to \infty} \|\alpha_n \circ \beta(x) - x\| = 0
\]
for all \(x \in \mathfrak{A} \). We have just proved the first part of the lemma.

We now show that \(\mathfrak{A} \) is weakly semiprojective. Suppose \(\mathfrak{A} \) is weakly semiprojective. Let \(\epsilon > 0 \) and \(\mathcal{F} \) be a finite subset of \(\mathfrak{A} \). By Theorem 2.4 of [23] (see also Definition 2.1 and Theorem 2.3 of [25], and Theorem 19.1.3 of [26]), there exist a \(\delta > 0 \) and a finite subset \(\mathcal{G} \) of \(\mathfrak{A} \) such that for any \(C^* \)-algebra \(\mathfrak{B} \) and any contractive, completely positive, linear map \(L : \mathfrak{A} \to \mathfrak{B} \) such that
\[
\|L(ab) - L(a)L(b)\| < \delta
\]
for all \(a, b \in \mathcal{G} \), there exists a homomorphism \(h : \mathfrak{A} \to \mathfrak{B} \) such that
\[
\|h(x) - L(x)\| < \frac{\epsilon}{2}
\]
for all \(x \in \beta(\mathcal{F}) \).

Without loss of generality, we may assume that \(\epsilon < 1 \) and \(\delta < 1 \). Set
\[
M = 1 + \max \left(\{|a| : a \in \mathcal{G} \} \cup \{|x| : x \in \mathcal{F} \} \right)
\]
Since \(e_n \mathfrak{A}_n \subseteq e_{n+1} \mathfrak{A}_{n+1} \) and \(\bigcup_{n=1}^\infty e_n \mathfrak{A}_n \) is dense in \(\mathfrak{A} \), there exist \(n \in \mathbb{N} \) and a finite subset \(\mathcal{H} \subseteq e_n \mathfrak{A}_n \) such that for each \(a \in \mathcal{G} \), there exists \(y \in \mathcal{H} \) such that \(\|a - y\| < \frac{\delta}{4M} \) and
\[
\|\alpha_n \circ \beta(x) - x\| < \frac{\epsilon}{2}
\]
for all \(x \in \mathcal{F} \). Let \(a, b \in \mathcal{G} \). Choose \(x, y \in \mathcal{H} \subseteq e_n \mathfrak{A}_n \) such that \(\|a - x\| < \frac{\delta}{4M} \) and \(\|b - y\| < \frac{\delta}{4M} \). Note that \(|x| \leq 1 + |a| \leq M \) and \(|y| \leq 1 + |b| \leq M \). Then
\[
\|\alpha_n(ab) - \alpha_n(a)\alpha_n(b)\| = \|\alpha_n(ab - xb + xb - xy) + \alpha_n(xy) - \alpha_n(a)\alpha_n(b)\|
\leq \|\alpha_n(ab - xb + xb - xy)\| + \|\alpha_n(xy) - \alpha_n(a)\alpha_n(b)\|
\leq 2M\|a - x\| + 2M\|b - y\|
< 4M\frac{\delta}{4M} = \delta.
\]
By the choice of \(\delta \) and \(\mathcal{G} \), there exists a homomorphism \(\psi : \mathfrak{A} \to \mathfrak{A} \) such that
\[
\|\psi(t) - \alpha_n(t)\| < \frac{\epsilon}{2}
\]
for all $t \in \beta(\mathcal{F})$. Let $x \in \mathcal{F}$. Then

$$\|\psi \circ \beta(x) - x\| \leq \|\psi(\beta(x)) - \alpha_n(\beta(x))\| + \|\alpha_n(\beta(x)) - x\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

We have just shown that for every $\epsilon > 0$ and for every finite subset \mathcal{F} of \mathcal{A}, there exists a homomorphism $\psi : \mathcal{A} \rightarrow \mathcal{A}$ such that

$$\|\psi \circ \beta(x) - x\| < \epsilon$$

for all $x \in \mathcal{F}$. Consequently, there exists a sequence of endomorphisms $\{\psi_n : \mathcal{A} \rightarrow \mathcal{A}\}_{n=1}^{\infty}$ such that

$$\lim_{n \rightarrow \infty} \|\psi_n \circ \beta(x) - x\| = 0$$

for all $x \in \mathcal{A}$ since \mathcal{A} is separable. \hfill \Box

To prove a uniqueness theorem involving tight C^*-algebras \mathcal{A} over X_2, we require that $\mathcal{A}[1]$ belongs to a class of C^*-algebras whose injective homomorphisms between two objects in this class are classified by KK.

Definition 4.12. We will be interested in classes \mathcal{C} of separable, nuclear, simple C^*-algebras satisfying the following property that if $\mathcal{A}, \mathcal{B} \in \mathcal{C}$ and $\phi, \psi : \mathcal{A} \otimes K \rightarrow \mathcal{B} \otimes K$ are two injective homomorphisms such that $KK(\phi) = KK(\psi)$, then ϕ and ψ are approximately unitarily equivalent.

Remark 4.13.

(1) By Theorem 4.1.3 of [29] if \mathcal{C} is the class of Kirchberg algebras, then \mathcal{C} satisfies the property in Definition 4.12.

(2) Let \mathcal{C} be the class of unital, separable, nuclear, simple tracially AF C^*-algebras in \mathcal{N}. Then \mathcal{C} satisfies the property in Definition 4.12.

Theorem 4.14. (Uniqueness Theorem 2) Let \mathcal{C} be a class of C^*-algebras satisfying the property in Definition 4.12 and let \mathcal{A} be a unital, separable, nuclear, tight C^*-algebra over X_2 such that $\mathcal{A}[2] \cong K$ and $\mathcal{A}[1] \in \mathcal{C}$. Suppose $\mathcal{A} \otimes K$ is semiprojective and \mathcal{A} has the stable weak cancellation property. Let $\phi : \mathcal{A} \otimes K \rightarrow \mathcal{A} \otimes K$ be a full X_2-equivariant homomorphism such that $KK(X_2; \phi) = KK(X_2; id_{\mathcal{A} \otimes K})$. Then there exists a sequence of full X_2-equivariant endomorphisms $\{\alpha_n : \mathcal{A} \otimes K \rightarrow \mathcal{A} \otimes K\}_{n=1}^{\infty}$ such that $KK(X_2; \alpha_n) = KK(X_2; id_{\mathcal{A} \otimes K})$ and

$$\lim_{n \rightarrow \infty} \|(\alpha_n \circ \phi)(x) - x\| = 0$$

for all $x \in \mathcal{A} \otimes K$.

Proof. Set $\mathcal{B} = \mathcal{A} \otimes K$. Note that \mathcal{B} is a tight C^*-algebra over X_2 with $\mathcal{B}[2] \cong K$. Throughout the proof, $\pi : \mathcal{B} \rightarrow \mathcal{B}[1]$ will denote the canonical projection. Note that $KK(\phi_{[1]}) = KK(id_{\mathcal{B}[1]})$ since $KK(X_2; \phi) = KK(X_2; id_{\mathcal{B}})$. Since $\mathcal{A}[1] \in \mathcal{C}$, there exists a sequence of unitaries $\{z_k\}_{k=1}^{\infty}$ in $\mathcal{M}(\mathcal{B}[1])$ such that

$$\lim_{k \rightarrow \infty} \|z_k \phi_{[1]}(\pi(b)) z_k^* - \pi(b)\| = 0$$

for all $b \in \mathcal{B}$. Using the fact that ϕ is an X_2-equivariant homomorphism, we have that $\pi \circ \phi = \phi_{[1]} \circ \pi$, and hence

$$\lim_{k \rightarrow \infty} \|z_k (\pi \circ \phi(b)) z_k^* - \pi(b)\| = 0$$
for all $b \in \mathcal{B}$.

Let $\pi : \mathcal{M}(\mathcal{B}) \to \mathcal{M}(\mathcal{B}[1])$ be the surjective homomorphism induced by π. Since \mathcal{B} is stable, by Corollary 2.3 of [35], we have that $\mathcal{B}[1]$ is stable. Thus, the unitary group of $\mathcal{M}(\mathcal{B}[1])$ is path-connected, which implies that every unitary in $\mathcal{M}(\mathcal{B}[1])$ lifts to a unitary in $\mathcal{M}(\mathcal{B})$. Hence, there exists a sequence of unitaries $\{w_k\}_{k=1}^{\infty}$ in $\mathcal{M}(\mathcal{B})$ such that $\pi(w_k) = z_k$.

Since \mathcal{B} is semiprojective, by Proposition 2.2 of [7] (see [20]), there exists a sequence of homomorphisms $\{\beta_\ell : \mathcal{B} \to \mathcal{B}\}_{\ell=1}^{\infty}$ and a strictly increasing sequence $\{k(\ell)\}_{\ell=1}^{\infty}$ of positive integers such that $\pi \circ \beta_\ell = \pi$ and

$$\lim_{\ell \to \infty} \|\text{Ad}(w_{k(\ell)}) \circ \phi(b) - \beta_\ell(b)\| = 0$$

for all $b \in \mathcal{B}$.

By Remark 2.5 there exists $N_1 \in \mathbb{N}$ such that β_ℓ is a full X_2-equivariant homomorphism for all $\ell \geq N_1$. By Proposition 2.3 of [7], we may choose $N_2 \geq N_1$ such that for all $\ell \geq N_2$, we have that β_ℓ and $\text{Ad}(w_{k(\ell)}) \circ \phi$ is homotopic. It follows from Theorem 5.5 of [8] that $KK(X_2; \beta_\ell) = KK(X_2; \text{Ad}(w_{k(\ell)}) \circ \phi) = KK(X_2; \phi) = KK(X_2; \text{id}_\mathcal{B})$.

Let $\ell \geq N_2$. Note that $(\beta_\ell)^{(1)} = \text{id}_\mathcal{B}[1]$ since $\pi \circ \beta_\ell = \pi$. Since \mathcal{B} is semiprojective, by Corollary 3.6 of [6] (also see Chapter 19 of [26]), \mathcal{B} is weakly semiprojective. Hence, by Lemma 4.11 there exists a sequence of homomorphisms $\{\alpha_{m,\ell} : \mathcal{B} \to \mathcal{B}\}_{m=1}^{\infty}$ such that

$$\lim_{m \to \infty} \|\alpha_{m,\ell} \circ \beta_\ell(x) - x\| = 0$$

for all $x \in \mathcal{B}$. Since β_ℓ and $\text{id}_\mathcal{B}$ are full X_2-equivariant homomorphisms, by Remark 2.5 there exists N_3 such that, for all $m \geq N_3$, we have that $\alpha_{m,\ell}$ is a full X_2-equivariant homomorphism. Moreover, by Proposition 2.3 of [7], we can choose $N_3 \geq N_2$ such that $\alpha_{m,\ell} \circ \beta_\ell$ and $\text{id}_\mathcal{B}$ are homotopic. It follows from Theorem 5.5 of [8] that $KK(X_2; \alpha_{m,\ell} \circ \beta_\ell) = KK(X_2; \text{id}_\mathcal{B})$ for all $m \geq N_3$. Consequently, $KK(X_2; \alpha_{m,\ell}) = KK(X_2; \text{id}_\mathcal{B})$ for all $m \geq N_3$ since $KK(X_2; \beta_\ell) = KK(X_2; \text{id}_\mathcal{B})$.

Let \mathcal{F} be a finite subset of \mathcal{B} and $\epsilon > 0$. Then there exists $\ell \geq N_2$ such that

$$\|\text{Ad}(w_{k(\ell)}) \circ \phi(b) - \beta_\ell(b)\| < \frac{\epsilon}{2}$$

for all $b \in \mathcal{F}$. Moreover, there exists $m \geq N_3$ such that

$$\|\alpha_{m,\ell} \circ \beta_\ell(b) - b\| < \frac{\epsilon}{2}$$

for all $b \in \mathcal{F}$. Set $\alpha_1 = \text{Ad}(w_{k(\ell)})|_{\mathcal{B}}$ and $\alpha = \alpha_{m,\ell} \circ \alpha_1$. Since $w_{k(\ell)}$ is a unitary in $\mathcal{M}(\mathcal{B})$, we have that α_1 is an automorphism of \mathcal{B} and $KK(X_2; \alpha_1) = KK(X_2; \text{id}_\mathcal{B})$. Therefore, α is a full X_2-equivariant homomorphism. Since $\ell \geq N_2$ and $m \geq N_3$, we have that $KK(X_2; \alpha_{m,\ell}) = KK(X_2; \text{id}_\mathcal{B})$. Therefore, $KK(X_2; \alpha) = KK(X_2; \text{id}_\mathcal{B})$. Let $b \in \mathcal{F}$. Then

$$\|\alpha \circ \phi(b) - b\| = \|\alpha_{m,\ell} \circ \text{Ad}(w_{k(\ell)}) \circ \phi(b) - b\|$$

$$\leq \|\alpha_{m,\ell} \circ \text{Ad}(w_{k(\ell)}) \circ \phi(b) - \alpha_{m,\ell} \circ \beta_\ell(b)\| + \|\alpha_{m,\ell} \circ \beta_\ell(b) - b\|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$
for all \(b \in \mathcal{B} \). Since \(\mathcal{B} \) is a separable \(C^* \)-algebra, there exists a sequence of full \(X_2 \)-equivariant homomorphisms \(\{ \alpha_n : \mathcal{B} \to \mathbb{B} \}_{n=1}^{\infty} \) such that \(KK(X_2; \alpha_n) = KK(X_2; \text{id}_{\mathbb{B}}) \) and

\[
\lim_{n \to \infty} \| \alpha_n \circ \phi(b) - b \| = 0
\]

for all \(b \in \mathcal{B} \).

\[\Box \]

Theorem 4.15. Let \(C \) be a class of \(C^* \)-algebras satisfying the property in Definition 4.12 and let \(\mathfrak{A}_1 \) and \(\mathfrak{A}_2 \) be unital, separable, nuclear, tight \(C^* \)-algebras over \(X_2 \) such that \(\mathfrak{A}_i[2] \cong K \) and \(\mathfrak{A}_i[1] \in C \). Suppose \(\mathfrak{A}_i \otimes K \) is semi-projective and \(\mathfrak{A}_i \) has the stable weak cancellation property. If there exist full \(X_2 \)-equivariant homomorphisms, \(\phi : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K \) and \(\psi : \mathfrak{A}_2 \otimes K \to \mathfrak{A}_1 \otimes K \), such that \(KK(X_2; \phi \circ \psi) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K}) \) and \(KK(X_2; \psi \circ \phi) = KK(X_2; \text{id}_{\mathfrak{A}_1 \otimes K}) \), then for any finite subset \(\mathcal{F} \) and \(\epsilon > 0 \), there exists an isomorphism \(\gamma : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K \) such that \(KK(X_2; \gamma) = KK(\phi) \) and

\[
\| \gamma(x) - \phi(x) \| < \epsilon
\]

for all \(x \in \mathcal{F} \).

Proof. Let \(\{ \mathcal{F}_n \}_{n=1}^{\infty} \) be a sequence of finite subsets of \(\mathfrak{A}_1 \otimes K \) such that \(\mathcal{F}_n \subseteq \mathcal{F}_{n+1} \) and \(\bigcup_{n=1}^{\infty} \mathcal{F}_n \) is dense in \(\mathfrak{A}_1 \otimes K \) and let \(\{ \mathcal{F}_n \}_{n=1}^{\infty} \) be a sequence of finite subsets of \(\mathfrak{A}_2 \otimes K \) such that \(\mathcal{F}_n \subseteq \mathcal{F}_{n+1} \) and \(\bigcup_{n=1}^{\infty} \mathcal{F}_n \) is dense in \(\mathfrak{A}_2 \otimes K \).

Let \(\epsilon > 0 \) and \(\mathcal{F} \) be a finite subset of \(\mathfrak{A}_1 \). Set \(\mathcal{F}_1 = \mathcal{F} \cup \mathcal{F}_1 \) and choose \(m_1 \in \mathbb{N} \) such that \(\sum_{k=m_1}^{\infty} \frac{1}{2^k} < \epsilon \). By Theorem 4.14 there exists a full \(X_2 \)-equivariant homomorphism \(\alpha_1 : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_1 \otimes K \) such that \(KK(X_2; \alpha_1) = KK(X_2; \text{id}_{\mathfrak{A}_1 \otimes K}) \) and

\[
\| \alpha_1 \circ \psi \circ \phi(a) - a \| < \frac{1}{2m_1 + 1}
\]

for all \(a \in \mathcal{F}_1 \). Set \(\phi_1 = \phi \) and \(\psi_1 = \alpha_1 \circ \psi \). Then \(KK(X_2; \psi_1) = KK(X_2; \phi) \) and \(\| \psi_1 \circ \phi_1(a) - a \| < \frac{1}{2m_1 + 1} \) for all \(a \in \mathcal{F}_1 \).

Set \(\mathcal{G}_1 = \mathcal{G}_1 \cup \phi_1(\mathcal{F}_1) \). Note that \(KK(X_2; \phi \circ \psi_1) = KK(X_2; \phi \circ \psi) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K}) \). Hence, by Theorem 4.14 there exists a full \(X_2 \)-equivariant homomorphism \(\beta_1 : \mathfrak{A}_2 \otimes K \to \mathfrak{A}_2 \otimes K \) such that \(KK(X_2; \beta_1) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K}) \) and

\[
\| \beta_1 \circ \phi \circ \psi_1(x) - x \| < \frac{1}{2m_1 + 1}
\]

for all \(x \in \mathcal{G}_1 \). Set \(\phi_2 = \beta_1 \circ \phi \). Then \(KK(X_2; \phi_2) = KK(X_2; \phi) \) and

\[
\| \phi_2 \circ \psi_1(x) - x \| < \frac{1}{2m_1 + 1}
\]

for all \(x \in \mathcal{G}_1 \). Note that for all \(x \in \mathcal{F}_1 \), then

\[
\| \phi(x) - \phi_2(x) \| \leq \| \phi_1(x) - \phi_2 \circ \psi_1(\phi_1(x)) \| + \| \phi_2 \circ \psi_1(\phi_1(x)) - \phi_2(x) \|
\]

\[
< \frac{1}{2m_1 + 1} + \| \psi_1 \circ \phi_1(x) - x \| < \frac{1}{2m_1}.
\]

Set \(\mathcal{F}_2 = \mathcal{F}_2 \cup \phi_2(\mathcal{G}_1) \). Note that \(KK(X_2; \psi \circ \phi_2) = KK(X_2; \psi \circ \phi) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K}) \). Hence, by Theorem 4.14 there exists a full \(X_2 \)-equivariant homomorphism \(\alpha_2 : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K \) such that

\[
\| \alpha_2 \circ \psi \circ \phi_2(a) - a \| < \frac{1}{2m_2 + 1}
\]

for all \(a \in \mathcal{F}_2 \). Set \(\phi_3 = \alpha_2 \circ \psi \circ \phi_2 \) and \(\psi_3 = \alpha_2 \circ \psi \circ \psi_1 \). Then \(KK(X_2; \phi_3) = KK(X_2; \phi) \) and \(KK(X_2; \psi_3) = KK(X_2; \psi) \) and

\[
\| \phi_3 \circ \phi_3(x) - x \| < \frac{1}{2m_2 + 1}
\]

for all \(x \in \mathcal{F}_2 \). Note that for all \(x \in \mathcal{F}_2 \), then

\[
\| \phi(x) - \phi_3(x) \| \leq \| \phi_2(x) - \phi_3 \circ \phi_2(\phi_2(x)) \| + \| \phi_3 \circ \phi_2(\phi_2(x)) - \phi_3(x) \|
\]

\[
< \frac{1}{2m_2 + 1} + \| \phi_2 \circ \psi_2(\phi_2(x)) - \phi_2(x) \| < \frac{1}{2m_2}.
\]
$\mathfrak{A} \otimes K$ such that $KK(X_2; \alpha_2) = KK(X_2; \text{id}_{\mathfrak{A} \otimes K})$ and

$$\|\alpha_2 \circ \psi \circ \phi_2(a) - a\| < \frac{1}{2m_1 + 2}$$

for all $a \in \mathcal{F}_2$. Set $\psi_2 = \alpha_2 \circ \psi$. Then $KK(X_2; \psi_2) = KK(X_2; \psi)$ and

$$\|\psi_2 \circ \phi_2(a) - a\| < \frac{1}{2m_1 + 2}$$

for all $x \in \mathcal{F}_2$.

Set $\mathcal{G}_2 = \mathcal{F}_2 \cup \phi_2(\mathcal{F}_2)$. Note that $KK(X_2; \phi \circ \psi_2) = KK(X_2; \phi \circ \psi) = KK(X_2; \text{id}_{\mathfrak{A} \otimes K})$.

Hence, by Theorem 4.14 there exists a full X_2-equivariant homomorphism $\beta_2 : \mathfrak{A} \otimes K \to \mathfrak{A} \otimes K$ such that $KK(X_2; \beta_2) = KK(X_2; \text{id}_{\mathfrak{A} \otimes K})$ and

$$\|\beta_2 \circ \phi \circ \psi_2(x) - x\| < \frac{1}{2m_1 + 2}$$

for all $x \in \mathcal{G}_2$. Set $\phi_3 = \beta_2 \circ \phi$. Then $KK(X_2; \phi_3) = KK(X_2; \phi)$ and

$$\|\phi_3 \circ \psi_2(x) - x\| < \frac{1}{2m_1 + 2}$$

for all $x \in \mathcal{G}_2$. Note that for all $x \in \mathcal{F}_2$, we have that

$$\|\phi_2(x) - \phi_3(x)\| \leq \|\phi_2(x) - \phi_3 \circ \psi_2(\phi_2(x))\| + \|\phi_3 \circ \psi_2(\phi_2(x)) - \phi_3(x)\|$$

$$< \frac{1}{2m_1 + 2} + \|\psi_2(\phi_2(x)) - x\| < \frac{1}{2m_1 + 1}.$$

Continuing this process, we have constructed a sequence $\{\mathcal{F}_n\}_{n=1}^{\infty}$ of finite subsets of $\mathfrak{A} \otimes K$, a sequence $\{\mathcal{G}_n\}_{n=1}^{\infty}$ of finite subsets of $\mathfrak{A}_2 \otimes K$, a sequence of full X_2-equivariant homomorphisms $\{\phi_n : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K\}_{n=1}^{\infty}$, and a sequence of full X_2-equivariant homomorphisms $\{\psi_n : \mathfrak{A}_2 \otimes K \to \mathfrak{A}_1 \otimes K\}_{n=1}^{\infty}$ such that

1. $KK(X_2; \phi_n) = KK(X_2; \phi)$ for all $n \in \mathbb{N}$ and $\phi_1 = \phi$;
2. $KK(X_2; \psi_n) = KK(X_2; \psi)$ for all $n \in \mathbb{N}$;
3. $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ and $\mathcal{F}_n \subseteq \mathcal{F}_n$;
4. $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$ and $\mathcal{G}_n \subseteq \mathcal{G}_n$;
5. for each $x \in \mathcal{F}_n$ and for each $x \in \mathcal{G}_n$

$$\|\psi_n \circ \phi_n(x) - x\| < \frac{1}{2m_1 + n} \quad \text{and} \quad \|\phi_{n+1} \circ \psi_n(x) - x\| < \frac{1}{2m_1 + n}$$

6. for each $x \in \mathcal{F}_n$,

$$\|\phi_n(x) - \phi_{n+1}(x)\| < \frac{1}{2m_1 + n}$$

Since $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is dense in $\mathfrak{A}_1 \otimes K$ and $\mathcal{F}_n \subseteq \mathcal{F}_n$, we have that $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is dense in $\mathfrak{A}_1 \otimes K$. Similarly, $\bigcup_{n=1}^{\infty} \mathcal{G}_n$ is dense in $\mathfrak{A}_2 \otimes K$. Therefore, there exists an isomorphism $\gamma : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K$ such that

$$\|\gamma(a) - \phi_n(a)\| < \sum_{k=m_1+n-1}^{\infty} \frac{1}{2^k}$$
for all $a \in \mathcal{A}_n$. Since $\mathcal{F} \subseteq \mathcal{F}_1$, we have that
\[
\|\phi(x) - \gamma(x)\| = \|\phi_1(x) - \gamma(x)\| < \sum_{k=m_1}^{\infty} \frac{1}{2^k} < \epsilon.
\]
Since
\[
\lim_{n \to \infty} \sum_{k=m_1+n-1}^{\infty} \frac{1}{2^k} = 0,
\]
we have that
\[
\lim_{n \to \infty} \|\gamma(a) - \phi_n(a)\| = 0
\]
for all $a \in \mathcal{A}_1 \otimes \mathcal{K}$. Since $\mathcal{A}_1 \otimes \mathcal{K}$ is semiprojective, by Proposition 2.3 of [7], there exists $\gamma_{\mathcal{A}_1,n} \otimes \mathcal{K}$ such that γ and $\phi_{\mathcal{A}_1,n}$ are homotopic. Hence, by Theorem 5.5 of [8], $KK(X_2;\gamma) = KK(X_2;\phi_{\mathcal{A}_1,n})$.

4.3. Unital Classification. We now combine the above results with the Meta-theorem of Section 3 (see Theorem 3.3) to get a strong classification for a class of unital C^*-algebras which includes all unital graph C^*-algebras with exactly one non-trivial ideal.

Corollary 4.16. Let \mathcal{A}_1 and \mathcal{A}_2 be unital, tight C^*-algebras over X_n such that \mathcal{A}_i has real rank zero, $\mathcal{A}_i[n]$ is a Kirchberg algebra in \mathcal{N}, and $\mathcal{A}_i[1,n-1]$ is an AF-algebra. Let $x \in KK(X_2;\mathcal{A}_1,\mathcal{A}_2)$ be an invertible such that $K_{X_n}(x)|_{Y}$ is an order isomorphism for each $Y \in \mathcal{L}(\mathcal{C}(X_n))$ and $K_{X_n}(X_2)(\mathcal{A}_1[n]) = [1_{\mathcal{A}_1}]$ in $K_0(\mathcal{A}_2)$. Then there exists an isomorphism $\phi : \mathcal{A}_1 \to \mathcal{B}$ such that $K_{X_n}(\phi) = K_{X_n}(x)$.

Proof. Since $\mathcal{A}_i[1]$ and $\mathcal{A}_i[2]$ are separable and nuclear, we have that \mathcal{A}_i is separable and nuclear. Since $\mathcal{A}_i[1,n-1]$ is an AF-algebra and $\mathcal{A}_i[n]$ is a Kirchberg algebra, they both have the stable weak cancellation property. By Lemma 3.15 of [15], \mathcal{A}_i has stable weak cancellation property. By Lemma 4.6 for each tight C^*-algebra \mathcal{A} over X_n, we have that $K_{X_n}(\text{Ad}(u)|_{\mathcal{A}})$ for each unitary $u \in \mathcal{M}(\mathcal{A})$. A computation shows that $K_{X_n}(-)$ satisfies (1), (2), and (3) of Theorem 3.3 since $K_{\mathcal{A}_1,n}(-)$ does. The corollary now follows from Theorem 3.3 and Theorem 4.7.

Corollary 4.17. Let \mathcal{A}_1 and \mathcal{A}_2 be unital, tight C^*-algebras over X_2 such that $\mathcal{A}_i[2] \cong \mathcal{K}$ and $\mathcal{A}_i[1]$ is a Kirchberg algebra in \mathcal{N}. Let $x \in KK(X_2;\mathcal{A}_1,\mathcal{A}_2)$ be an invertible such that $K_{X_2}(x)|_{Y}$ is an order isomorphism for each $Y \in \mathcal{L}(\mathcal{C}(X_2))$ and $K_{X_2}(X_2)(\mathcal{A}_1[1]) = [1_{\mathcal{A}_1}]$ in $K_0(\mathcal{A}_2)$. If $\mathcal{A}_i \otimes \mathcal{K}$ is semiprojective, then there exists an isomorphism $\gamma : \mathcal{A}_1 \otimes \mathcal{K} \to \mathcal{A}_2 \otimes \mathcal{K}$ such that $KK(X_2;\gamma) = x$.

Proof. Since $\mathcal{A}_i[1]$ and $\mathcal{A}_i[2]$ are separable and nuclear, we have that \mathcal{A}_i is separable and nuclear. Since $\mathcal{A}_i[2]$ and $\mathcal{A}_i[1]$ have real rank zero and $K_1(\mathcal{A}_i[2]) = 0$, we have that \mathcal{A} has real rank zero. Since $\mathcal{A}_i[2]$ is an AF-algebra and $\mathcal{A}_i[1]$ is a Kirchberg algebra, they both have the stable weak cancellation property. Therefore, by Lemma 3.15 of [15], \mathcal{A} has the stable weak cancellation property.

By Lemma 1.5 of [16], the extension $0 \to \mathcal{A}_i[2] \to \mathcal{A}_i \to \mathcal{A}_i[1] \to 0$ is full, and hence by Proposition 1.6 of [16], $0 \to \mathcal{A}_i[2] \otimes \mathcal{K} \to \mathcal{A}_i \otimes \mathcal{K} \to \mathcal{A}_i[1] \otimes \mathcal{K} \to 0$ is full. The corollary now follows from Theorem 4.1(ii), Theorem 4.15 and Theorem 3.3.
It is an open question to determine if every unital, separable, nuclear, tight C^*-algebra \mathfrak{A} over X_2 whose unique proper nontrivial ideal is isomorphic to K and quotient is a Kirchberg algebra in \mathcal{N} with finitely generated K-theory is semiprojective. The following results show that under some K-theoretical conditions, \mathfrak{A} is semiprojective.

Lemma 4.18. Let E be a graph with finitely many vertices such that $C^*(E)$ is a tight C^*-algebra over X_2 with $C^*(E)[1]$ being purely infinite. Then $C^*(E)$ and $C^*(E) \otimes K$ are semiprojective.

Proof. The fact that $C^*(E)$ is semiprojective follows from the results of [12]. By Proposition 6.4 of [18], $C^*(E)[2]$ is stable. Since $C^*(E)$ is a unital C^*-algebra, by Lemma 1.5 of [16], the extension $\varepsilon : 0 \to C^*(E)[2] \to C^*(E) \to C^*(E)[1] \to 0$ is a full extension. By Proposition 3.21 and Corollary 3.22 of [15], $C^*(E)$ is properly infinite. Therefore, by Theorem 4.1 of [3], $C^*(E) \otimes K$ is semiprojective. □

Proposition 4.19. Let \mathfrak{A} be unital, separable, nuclear, tight C^*-algebras over X_2. If $\mathfrak{A}[2] \cong K$ and $\mathfrak{A}[1]$ is a Kirchberg algebra in \mathcal{N} such that $\text{rank}(K_1(\mathfrak{A}[1])) \leq \text{rank}(K_0(\mathfrak{A}[1]))$, $K_1(\mathfrak{A}[1])$ is free, and the K-groups of $\mathfrak{A}[i]$ are finitely generated, then \mathfrak{A} and $\mathfrak{A} \otimes K$ are semiprojective. Consequently, \mathfrak{A} semiprojective.

Proof. By Lemma 1.5 of [16], $\varepsilon : 0 \to \mathfrak{A}[2] \to \mathfrak{A} \to \mathfrak{A}[1] \to 0$ is a full extension. By Corollary 3.22 of [15], $K_0(\mathfrak{A})_+ = K_0(\mathfrak{A})$. By Theorem 6.4 of [11], there exists a graph E with finitely many vertices such that $K^+_{X_2}(\mathfrak{A}) \cong K^+_{X_2}(C^*(E))$ such that $C^*(E)$ is a tight C^*-algebra over X_2. Since E has finitely many vertices, $C^*(E)$ is unital. Since $K^+_{X_2}(\mathfrak{A}) \cong K^+_{X_2}(C^*(E))$, we have that $C^*(E)[1]$ is a Kirchberg algebra. By Theorem 3.9 of [16], we have that $\mathfrak{A} \otimes K \cong C^*(E) \otimes K$. By Lemma 4.18, $C^*(E)$ and $C^*(E) \otimes K$ are semiprojective. Hence, by Proposition 2.7 of [3], \mathfrak{A} and $\mathfrak{A} \otimes K$ are semiprojective. □

Corollary 4.20. Let \mathfrak{A}_1 and \mathfrak{A}_2 be unital, tight C^*-algebras over X_2 such that $\mathfrak{A}_1[2] \cong K$ and $\mathfrak{A}_1[1]$ is a Kirchberg algebra in \mathcal{N} such that $\text{rank}(K_1(\mathfrak{A}_1[1])) \leq \text{rank}(K_0(\mathfrak{A}_1[1]))$, $K_1(\mathfrak{A}_1[1])$ is free, and the K-groups of \mathfrak{A}_1 are finitely generated. Let $x \in KK(X_2; \mathfrak{A}_1, \mathfrak{A}_2)$ be an invertible such that $K_{X_2}(x)_Y$ is an order isomorphism for each $Y \in \mathbb{L}(X_2)$ and $K_{X_2}(x)_{\mathfrak{A}_2}(\mathfrak{I}_{\mathfrak{A}_2}) = \mathfrak{I}_{\mathfrak{A}_2}$ in $K_0(\mathfrak{A}_2)$. Then there exists an isomorphism $\gamma : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K$ such that $KK(X_2; \gamma) = x$.

Proof. This follows from Proposition 4.19 and Corollary 4.17 □

5. Applications

Let E be a graph satisfying Condition (K) (in particular, if $C^*(E)$ has finitely many ideals, then E satisfies Condition (K)). Let $\mathfrak{J}_1, \mathfrak{J}_2$ be ideals of $C^*(E)$ such that $\mathfrak{J}_1 \subseteq \mathfrak{J}_2$ and $\mathfrak{J}_2/\mathfrak{J}_1$ is simple. Then by Theorem 5.1 of [38] and Corollary 3.5 of [2], $\mathfrak{J}_2/\mathfrak{J}_1$ is a simple graph C^*-algebra. Hence, $\mathfrak{J}_2/\mathfrak{J}_1$ is either a Kirchberg algebra or an AF algebra.

5.1. Classification of graph C^*-algebras with exactly one ideal.

Lemma 5.1. Let E be a graph with finitely many vertices such that $C^*(E)$ is a simple AF-algebra. Then $C^*(E) \otimes K \cong K$. Consequently, if F is a graph with finitely many vertices such that $C^*(F)$ is a tight C^*-algebra over X_2 and $C^*(F)[2]$ is an AF-algebra, then $C^*(F)[2] \cong K$.

Proof. We claim that E is a finite graph. By Corollary 2.13 and Corollary 2.15 of [9], E has no cycles, and for every vertex v_0 that emits infinitely many edges and for each vertex v, there exists a path from v to v_0. Since E has no cycles, we have that every vertex of E emits only finitely many edges. Hence, E is a finite graph. By Proposition 1.18 of [30], $C^*(E) \cong M_n$.

We now prove the second statement. First note that $C^*(F)[2]$ is a simple AF-algebra. Since $C^*(F)[2]$ is stably isomorphic to a subgraph of E, $C^*(F)[2] \otimes K \cong C^*(E)$ for some graph E with finitely many vertices. Since $C^*(E)$ is a simple AF-algebra, we have that $C^*(E) \otimes K \cong K$. Hence, $C^*(F)[2] \otimes K \cong K$ which implies that $C^*(F)[2] \cong M_n$ or $C^*(F)[2] \cong K$. Since $C^*(F)[2]$ is a non-unital C^*-algebra ($C^*(E)$ is a tight C^*-algebra over X_2), we have that $C^*(F)[2] \cong K$.

Definition 5.2. For a C^*-algebra \mathfrak{A}, set

$$\Sigma \mathfrak{A} = \{ x \in K_0(\mathfrak{A}) : x = [p] \text{ for some projection } p \text{ in } \mathfrak{A} \}.$$

Let \mathfrak{B} be a C^*-algebra. An order isomorphism $\alpha : K_0(\mathfrak{A}) \rightarrow K_0(\mathfrak{B})$ is scale preserving if one of the following holds:

1. \mathfrak{A} is unital if and only if \mathfrak{B} unital and $\alpha([1_\mathfrak{A}]) = [1_\mathfrak{B}]$.
2. \mathfrak{A} is non-unital if and only if \mathfrak{B} is non-unital and $\alpha(\Sigma \mathfrak{A}) = \Sigma \mathfrak{B}$.

Theorem 5.3. Let E_1 and E_2 be graphs with finitely many vertices and $C^*(E_i)$ is a tight C^*-algebra over X_2. If $\alpha : K_{X_2}^+(C^*(E_1)) \rightarrow K_{X_2}^+(C^*(E_2))$ is an isomorphism such that αY is scale preserving for all $Y \in \mathbb{LC}(X_2)$, then there exists an isomorphism $\phi : C^*(E_1) \rightarrow C^*(E_2)$ such that $K_{X_2}^+(\phi) = \alpha$.

Proof. Since E_i has finitely many vertices, $C^*(E_1)$ and $C^*(E_2)$ are unital C^*-algebras.

Case 1: Suppose $C^*(E_1)$ is an AF-algebra. Then $C^*(E_2)$ is an AF-algebra. Hence, the result follows from Elliott’s classification of AF-algebras [19].

Case 2: Suppose $C^*(E_1)$ is not an AF-algebra. Then $C^*(E_2)$ is not an AF-algebra.

Subcase 2.1: Suppose $C^*(E_1)[1]$ is an AF-algebra. Then $C^*(E_2)[1]$ is an AF-algebra. By Corollary 1.10 and Corollary 2.11 there exists an isomorphism $\phi : C^*(E_1) \rightarrow C^*(E_2)$ such that $K_{X_2}^+(\phi) = \alpha$.

Subcase 2.2: Suppose $C^*(E_1)[1]$ is a Kirchberg algebra. Then $C^*(E_2)[1]$ is a Kirchberg algebra. Since $C^*(E_1)$ is not an AF-algebra, either $C^*(E_1)[2]$ is Kirchberg algebra or an AF-algebra.

Suppose $C^*(E_1)[2]$ is a Kirchberg algebra. By Theorem 2.4 of [32], there exists an isomorphism $\phi : C^*(E_1) \rightarrow C^*(E_2)$ such that $K_{X_2}^+(\phi) = \alpha$. Suppose $C^*(E_1)[2]$ is an AF-algebra. Then, by Lemma 5.1 $C^*(E_1)[2] \cong K$. By Corollary 4.20 and Corollary 2.11 there exists an isomorphism $\phi : C^*(E_1) \rightarrow C^*(E_2)$ such that $K_{X_2}^+(\phi) = \alpha$. □

The following theorem completes the classification of graph C^*-algebras with exactly one non-trivial ideal.

Corollary 5.4. Let E_1 and E_2 be graphs such that $C^*(E_i)$ is a tight C^*-algebra over X_2. Then $C^*(E_1) \cong C^*(E_2)$ if and only if there exists an isomorphism $\alpha : K_{X_2}^+(C^*(E_1)) \rightarrow K_{X_2}^+(C^*(E_2))$ such that αY is a scale preserving isomorphism for all $Y \in \mathbb{LC}(X_2)$.

Proof. The only case that is not covered by Theorem 4.9 of [15] is the case that $C^*(E_i)$ is unital. The unital case follows from Theorem 5.3 because of Theorem 3.3.

5.2. Classification of graph C^*-algebras with more than one ideal. For a tight C^*-algebra \mathfrak{A} over X_n, the finite and infinite simple sub-quotients of \mathfrak{A} are separated if there exists $U \in \mathfrak{O}(X_n)$ such that either

(1) $\mathfrak{A}(U)$ is an AF-algebra and $\mathfrak{A}(X_n \setminus U) \otimes \mathcal{O}_\infty \cong \mathfrak{A}(X_n \setminus U)$ or

(2) $\mathfrak{A}(X_n \setminus U)$ is an AF-algebra and $\mathfrak{A}(U) \otimes \mathcal{O}_\infty \cong \mathfrak{A}(U)$.

In [14], the authors proved that if \mathfrak{A}_1 and \mathfrak{A}_2 are graph C^*-algebras that are tight C^*-algebras over X_n such that the finite and infinite simple sub-quotients are separated, then $\mathfrak{A}_1 \otimes \mathcal{K} \cong \mathfrak{A}_2 \otimes \mathcal{K}$ if and only if $K^+_X(\mathfrak{A}_1) \cong K^+_X(\mathfrak{A}_2)$. We will show in this section that under mild K-theoretical conditions, we may remove the separated condition for the case $n = 3$.

Lemma 5.5. Let E be a graph such that $C^*(E)$ is a tight C^*-algebra over X_n.

(i) If $C^*(E)[n]$ and $C^*(E)[1]$ are purely infinite and $C^*(E)[2, n - 1]$ is an AF-algebra, then

$$\varepsilon_1 : 0 \to C^*(E)[2, n] \otimes \mathcal{K} \to C^*(E) \otimes \mathcal{K} \to C^*(E)[1] \otimes \mathcal{K} \to 0$$

is a full extension.

(ii) If $C^*(E)[k, n]$ and $C^*(E)[1, k - 2]$ are AF-algebras and $C^*(E)[k - 1]$ is purely infinite, then

$$\varepsilon_2 : 0 \to C^*(E)[k, n] \otimes \mathcal{K} \to C^*(E) \otimes \mathcal{K} \to C^*(E)[1, k - 1] \otimes \mathcal{K} \to 0$$

is a full extension.

Proof. Suppose $C^*(E)[n]$ and $C^*(E)[1]$ are purely infinite and $C^*(E)[2, n - 1]$ is an AF-algebra. Note that $C^*(E)[1, n - 1]/C^*(E)[2, n - 1] \cong C^*(E)[1]$ and $C^*(E)[2, n - 1]$ is the largest ideal of $C^*(E)[1, n - 1]$ which is an AF-algebra. Since $C^*(E)[1, n - 1]$ is isomorphic to a graph C^*-algebra, by Proposition 3.10 of [18],

$$0 \to C^*(E)[2, n - 1] \otimes \mathcal{K} \to C^*(E)[1, n - 1] \otimes \mathcal{K} \to C^*(E)[1] \otimes \mathcal{K} \to 0$$

is a full extension. Since $C^*(E)[n] \otimes \mathcal{K}$ is a purely infinite simple C^*-algebra, we have that

$$0 \to C^*(E)[n] \otimes \mathcal{K} \to C^*(E)[2, n] \otimes \mathcal{K} \to C^*(E)[2, n - 1] \otimes \mathcal{K} \to 0$$

is a full extension. Hence, by Proposition 3.2 of [17], ε_1 is a full extension.

Suppose $C^*(E)[k, n]$ and $C^*(E)[1, k - 2]$ are AF-algebras and $C^*(E)[k - 1]$ is purely infinite. Note that $C^*(E)[k, n]$ is the largest ideal of $C^*(E)[k - 1, n]$ such that $C^*(E)[k, n]$ is an AF-algebra and $C^*(E)[k - 1, n]/C^*(E)[k, n] \cong C^*(E)[k - 1]$ is purely infinite. Since $C^*(E)[k - 1, n] \otimes \mathcal{K}$ is isomorphic to a graph C^*-algebra, by Proposition 3.10 of [18],

$$0 \to C^*(E)[k, n] \otimes \mathcal{K} \to C^*(E)[k - 1, n] \otimes \mathcal{K} \to C^*(E)[k - 1] \otimes \mathcal{K} \to 0$$

is a full extension. By Proposition 5.4 of [14], ε_2 is a full extension.

Theorem 5.6. Let E_1 and E_2 be graphs such that $C^*(E_i)$ is a tight C^*-algebra over X_n. Suppose

(i) $C^*(E_1)[n]$ and $C^*(E_1)[1]$ are purely infinite;

(ii) $C^*(E_2)[2, n - 1]$ is an AF-algebra; and
(iii) $KK^1(C^*(E_1)[1], C^*(E_2)[2, n]) = KL^1(C^*(E_1)[1], C^*(E_2)[2, n])$.

Then $C^*(E_1) \otimes K \cong C^*(E_2) \otimes K$ if and only if $K^+_{X_n}(C^*(E_1) \otimes K) \cong K^+_{X_n}(C^*(E_2) \otimes K)$.

Proof. Let ξ_i be the extension

$$0 \to C^*(E_i)[2, n] \otimes K \to C^*(E_i) \otimes K \to C^*(E_i)[1] \otimes K \to 0.$$

By Lemma 5.5(i), ξ_i is a full extension. Suppose $\alpha : K^+_{X_n}(C^*(E_1) \otimes K) \to K^+_{X_n}(C^*(E_2) \otimes K)$.

Lift α to an invertible element $x \in KK(X_n; C^*(E_1) \otimes K, C^*(E_2) \otimes K)$. Note that $r_{X_n}^{[2, n]}(x)$ is invertible in $KK([2, n]; C^*(E_1)[2, n] \otimes K, C^*(E_2)[2, n] \otimes K)$ and $r_{X_n}^{[1]}(x)$ is invertible in $KK(C^*(E_1)[1] \otimes K, C^*(E_2)[1] \otimes K)$. By Theorem 4.7 there exists an isomorphism $\phi_0 : C^*(E_1)[2, n] \otimes K \to C^*(E_2)[2, n] \otimes K$ such that $KL(\phi_0) = z$, where z is the invertible element of $KL(C^*(E_1)[2, n] \otimes K, C^*(E_2)[2, n] \otimes K)$ induced by $r_{X_n}^{[2, n]}(x)$. By the Kirchberg-Phillips classification (27) and (29), there exists an isomorphism $\phi_2 : C^*(E_1)[1] \otimes K \to C^*(E_2)[1] \otimes K$ such that $KK(\phi_2) = r_{X_n}^{[1]}(x).

Consider $C^*(E_i)$ as a C^*-algebra over X_2 by setting $C^*(E_i)[2] = C^*(E_i)[2, n]$ and $C^*(E_i)[1, 2] = C^*(E_i)$. Let y be the invertible element of $KK(X_2, C^*(E_1), C^*(E_2))$ induced by x. Note that $r_{X_2}^{[1]}(y) = r_{X_2}^{[1]}(x) = KK(\phi_2)$ and $KL(r_{X_2}^{[2]}(y)) = z = KL(\phi_0)$ in $KL(C^*(E_1)[2, n], C^*(E_2)[2, n])$.

By Theorem 3.7 of [14],

$$r_{X_2}^{[1]}(y) \times [r_{X_2}^{[2]}(y)] = [r_{X_2}^{[1]}(y)] \times r_{X_2}^{[2]}(y)$$

in $KK^1(C^*(E_1)[1] \otimes K, C^*(E_2)[2, n] \otimes K)$, where ξ_1 is the extension

$$0 \to C^*(E_i)[2, n] \otimes K \to C^*(E_i) \otimes K \to C^*(E_i)[1] \otimes K \to 0.$$

Thus,

$$KL(\phi_2) \times [r_{X_2}^{[2]}(y)] = [r_{X_2}^{[1]}(y)] \times KL(\phi_0)$$

in $KL^1(C^*(E_1)[1] \otimes K, C^*(E_2)[2, n] \otimes K)$. Since $KL^1(C^*(E_1)[1] \otimes K, C^*(E_2)[2, n] \otimes K) = KK^1(C^*(E_1)[1] \otimes K, C^*(E_2)[2, n] \otimes K)$,

$$KK(\phi_2) \times [r_{X_2}^{[2]}(y)] = [r_{X_2}^{[1]}(y)] \times KK(\phi_0)$$

in $KK^1(C^*(E_1)[1] \otimes K, C^*(E_2)[2, n] \otimes K)$. By Lemma 4.5 of [14], $C^*(E_1) \otimes K \cong C^*(E_2) \otimes K$. □

Theorem 5.7. Let E_1 and E_2 be graphs such that $C^*(E_i)$ is a tight C^*-algebra over X_n.

Suppose

(i) $C^*(E_i)[k, n]$ and $C^*(E_i)[1, k - 2]$ are AF-algebras;

(ii) $C^*(E_i)[k - 1]$ is purely infinite; and

(iii) $KK^1(C^*(E_i)[k, k - 1], C^*(E_i)[k, n]) = KL^1(C^*(E_i)[k, k - 1], C^*(E_i)[k, n])$.

Then $C^*(E_1) \otimes K \cong C^*(E_2) \otimes K$ if and only if $K^+_{X_n}(C^*(E_1) \otimes K) \cong K^+_{X_n}(C^*(E_2) \otimes K)$.

Proof. Let ξ_i be the extension $0 \to C^*(E_i)[k, n] \otimes K \to C^*(E_i) \otimes K \to C^*(E_i)[1] \otimes K \to 0$.

By Lemma 5.5(ii), ξ_i is a full extension. Suppose $\alpha : K^+_{X_n}(C^*(E_1) \otimes K) \to K^+_{X_n}(C^*(E_2) \otimes K)$.

Lift α to an invertible element $x \in KK(X_n; C^*(E_1) \otimes K, C^*(E_2) \otimes K)$. Note that $r_{X_n}^{[k, n]}(x)$ is invertible in $KK([k, n]; C^*(E_1)[k, n] \otimes K, C^*(E_2)[k, n] \otimes K)$ and $r_{X_n}^{[1, k - 1]}(x)$ is invertible in $KK(C^*(E_1)[1, k - 1], C^*(E_2)[1, k - 1])$. By Theorem 4.7 there exists an isomorphism
\[\phi_2 : C^*(E_1)[1,k-1] \otimes K \to C^*(E_2)[1,k-1] \otimes K \text{ such that } KL(\phi_2) = z_2, \text{ where } z_2 \text{ is the invertible element in } KL(C^*(E_1)[1,k-1], C^*(E_2)[1,k-1]) \text{ induced by } r_{X_2}^{[1,k-1]}(x). \]

By Elliott’s classification [10], there exists an isomorphism \(\phi_0 : C^*(E_1)[k,n] \otimes K \to C^*(E_2)[k,n] \otimes K \) such that \(KK(\phi_0) = z_0 \), where \(z_0 \) is the invertible element in \(KK(C^*(E_1)[k,n] \otimes K, C^*(E_2)[k,n] \otimes K) \) induced by \(r_{X_2}^{[k,n]}(x) \).

Consider \(C^*(E_i) \) as a C*-algebra over \(X_2 \) by setting \(C^*(E_i)[2] = C^*(E_i)[k,n] \) and \(C^*(E_i)[1,2] = C^*(E_i) \). Let \(y \) be the invertible element in \(KK(X_2, C^*(E_1), C^*(E_2)) \) induced by \(x \). Note that \(KL(r_{X_2}^{[1]}(y)) = z_2 = KL(\phi_2) \) and \(r_{X_2}^{[2]}(y) = z_0 = KK(\phi_0) \). By Theorem 3.7 of [14],

\[
\tau_{\xi_2} \times [\tau_{\xi_2}] = [\tau_{\xi_2}] \times r_{X_2}^{[1]}(y) \text{ in } KK(C^*(E_1)[1,k-1] \otimes K, C^*(E_2)[k,n] \otimes K), \text{ where } \xi_2 \text{ is the extension}
\]

\[0 \to C^*(E_i)[k,n] \otimes K \to C^*(E_i) \otimes K \to C^*(E_i)[1,k-1] \otimes K \to 0. \]

Thus,

\[KL(\phi_2) \times [\tau_{\xi_2}] = [\tau_{\xi_2}] \times KL(\phi_0) \]

in \(KL(C^*(E_1)[1,k-1] \otimes K, C^*(E_2)[k,n] \otimes K) \). Since \(KL(C^*(E_1)[1,k-1] \otimes K, C^*(E_2)[k,n] \otimes K) = KK(C^*(E_1)[1,k-1] \otimes K, C^*(E_2)[k,n] \otimes K), \)

\[KK(\phi_2) \times [\tau_{\xi_2}] = [\tau_{\xi_2}] \times KK(\phi_0) \]

in \(KK(C^*(E_1)[1,k-1] \otimes K, C^*(E_2)[k,n] \otimes K) \). By Lemma 4.5 of [14], \(C^*(E_1) \otimes K \cong C^*(E_2) \otimes K. \)

Theorem 5.8. Let \(E_1 \) and \(E_2 \) be graphs such that \(C^*(E_i) \) is a tight C*-algebra over \(X_3 \). Suppose \(K_0(C^*(E_1)[1]) \) is the direct sum of cyclic groups if \(C^*(E_1)[1] \) is purely infinite and \(K_0(C^*(E_1)[1,2]) \) is the direct sum of cyclic groups if \(C^*(E_1)[1] \) is an AF-algebra. Then \(C^*(E_1) \otimes K \cong C^*(E_2) \otimes K \) if and only if \(K_{X_3}^+(C^*(E_1)) \cong K_{X_3}^+(C^*(E_2)). \)

Proof. The “only if” direction is clear. Suppose \(K_{X_3}^+(C^*(E_1)) \cong K_{X_3}^+(C^*(E_2)). \) Suppose \(C^*(E_1)[1] \) is purely infinite. Then \(K_0(C^*(E_1)[1]) \) is the direct sum of cyclic groups. Thus, \(\text{Pext}_1^3(K_0(C^*(E_1)[1]), K_0(C^*(E_2)[2])) = 0. \) Since \(K_1(C^*(E_1)[1]) \) is a free group, \(\text{Pext}_1^3(K_1(C^*(E_1)[1]), K_1(C^*(E_2)[2])) = 0. \) Hence,

\[KK^1(C^*(E_1)[1], C^*(E_2)[2,3]) = KL^1(C^*(E_1)[1], C^*(E_2)[2,3]). \]

Suppose \(C^*(E_1)[1] \) is an AF-algebra. Then \(K_0(C^*(E_1)[1,2]) \) is the direct sum of cyclic groups. Thus, \(\text{Pext}_1^3(K_0(C^*(E_1)[1,2]), K_0(C^*(E_2)[2,3])) = 0. \) Since \(K_1(C^*(E_1)[1,2]) \) is a free group, \(\text{Pext}_1^3(K_1(C^*(E_1)[1,2]), K_1(C^*(E_2)[2,3])) = 0. \) Therefore,

\[KK^1(C^*(E_1)[1,2], C^*(E_2)[3]) = KL^1(C^*(E_1)[1,2], C^*(E_2)[3]). \]

Case 1: Suppose the finite and infinite simple sub-quotients of \(C^*(E_1) \) are separated. Then the finite and infinite simple sub-quotients of \(C^*(E_2) \) are separated. Hence, by Theorem 6.9 of [14], \(C^*(E_1) \otimes K \cong C^*(E_2) \otimes K. \)

Case 2: Suppose the finite and infinite simple sub-quotients of \(C^*(E_1) \) are not separated. Then the finite and infinite simple sub-quotients of \(C^*(E_2) \) are not separated.
Subcase 2.1: Suppose $C^*(E_1)[3]$ and $C^*(E_1)[1]$ are purely infinite and $C^*(E_1)[2]$ is an AF-algebra. Then $C^*(E_2)[3]$ and $C^*(E_2)[1]$ are purely infinite and $C^*(E_2)[2]$ is an AF-algebra. Then by the above paragraph we have that $KK^1(C^*(E_1)[1], C^*(E_2)[2,3]) = KL^1(C^*(E_1)[1], C^*(E_2)[2,3])$. Hence, by Theorem 5.6, $C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K}$.

Subcase 2.2: Suppose $C^*(E_1)[3]$ and $C^*(E_1)[1]$ are AF-algebras and $C^*(E_1)[2]$ is purely infinite. Then $C^*(E_2)[3]$ and $C^*(E_2)[1]$ are AF-algebras and $C^*(E_2)[2]$ is purely infinite. Then by the above paragraph we have that $KK^1(C^*(E_1)[1,2], C^*(E_2)[3]) = KL^1(C^*(E_1)[1,2], C^*(E_2)[3])$.

Hence, by Theorem 5.7, $C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K}$.

\begin{corollary}
Let E_1 and E_2 be graphs such that $C^*(E_i)$ is a tight C^*-algebra over X_3. Suppose that $K_0(C^*(E_i))$ is finitely generated. Then $C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K}$ if and only if $K^+_X(C^*(E_1)) \cong K^+_X(C^*(E_2))$.
\end{corollary}

\begin{proof}
Since $C^*(E_1)$ is real rank zero, the canonical projection $\pi : C^*(E_1) \rightarrow C^*(E_1)[1]$ induces a surjective homomorphism $\pi : K_0(C^*(E_1)) \rightarrow K_0(C^*(E_1)[1])$. Hence, $K_0(C^*(E_1)[1])$ is finitely generated since $K_0(C^*(E_1))$ is finitely generated. The corollary now follows from Theorem 5.8.
\end{proof}

\begin{thebibliography}{99}
\end{thebibliography}

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
E-mail address: eilers@math.ku.dk

Faculty of Science and Technology, University of Faroe Islands, Nóatún 3, FO-100 Tórshavn, Faroe Islands
E-mail address: gunnarr@setur.fo

Department of Mathematics, University of Hawaii, Hilo, 200 W. Kawili St., Hilo, Hawaii, 96720-4091 USA
E-mail address: ruize@hawaii.edu