STRONG CLASSIFICATION OF EXTENSIONS OF CLASSIFIABLE C-ALGEBRAS

Eilers, Søren; Restorff, Gunnar; Ruiz, Efren

Published in:
Bulletin of the Korean Mathematical Society

DOI:
10.4134/BKMS.b210047

Publication date:
2022

Document version
Early version, also known as pre-print

Document license:
CC BY

Citation for published version (APA):
STRONG CLASSIFICATION OF EXTENSIONS OF CLASSIFIABLE C*-ALGEBRAS

SØREN EILERS, GUNNAR RESTORFF, AND EFREN RUIZ

Abstract. We show that certain extensions of classifiable C*-algebra are strongly classified by the associated six-term exact sequence in K-theory together with the positive cone of K0-groups of the ideal and quotient. We apply our result to give a complete classification of graph C*-algebras with exactly one ideal.

1. Introduction

The classification program for C*-algebras has for the most part progressed independently for the classes of infinite and finite C*-algebras, and great strides have been made in this program for each of these classes. In the finite case, Elliott’s Theorem classifies all AF-algebras up to stable isomorphism by the ordered K0-group. In the infinite case, there are a number of results for purely infinite C*-algebras. The Kirchberg-Phillips Theorem classifies certain simple purely infinite C*-algebras up to stable isomorphism by the K0-group together with the K1-group. For nonsimple purely infinite C*-algebras many partial results have been obtained: Rørdam has shown that certain purely infinite C*-algebras with exactly one proper nontrivial ideal are classified up to stable isomorphism by the associated six-term exact sequence of K-groups [34], the second named author has shown that nonsimple Cuntz-Krieger algebras satisfying Condition (II) are classified up to stable isomorphism by their filtered K-theory [31, Theorem 4.2], and Meyer and Nest have shown that certain purely infinite C*-algebras with a linear ideal lattice are classified up to stable isomorphism by their filtrated K-theory [28, Theorem 4.14]. However, in all of these situations the nonsimple C*-algebras that are classified have the property that they are either AF-algebras or purely infinite, and consequently all of their ideals and quotients are of the same type.

Recently, the authors have provided a framework for classifying nonsimple C*-algebras that are not necessarily AF-algebras or purely infinite C*-algebras. In particular, the authors have shown in [16] that certain extensions of classifiable C*-algebras may be classified up to stable isomorphism by their associated six-term exact sequence in K-theory. This has allowed for the classification of certain nonsimple C*-algebras in which there are ideals and quotients of mixed type (some finite and some infinite). The results in [16] was then used by the first named author and Tomforde in [18] to classify a certain class of non-simple graph C*-algebras, showing that graph C*-algebras with exactly one non-trivial ideal can be classified up to stable isomorphism by their associated six-term exact sequence in K-theory. The authors in [15] then showed that all non-unital graph C*-algebras with exactly one
non-trivial ideal can be classified up to isomorphism by their associated six-term exact sequence in K-theory. In this paper, we complete the classification of graph C^*-algebras with exactly one non-trivial ideal by classifying those that are unital. Our methods here differ rather dramatically from the methods in [13] and [15]. In particular, we use the traditional methods of classification via existence and uniqueness theorems. As a consequence, for unital graph C^*-algebras \mathfrak{A} and \mathfrak{B} with exactly one non-trivial ideal, then any isomorphism between the associated six-term exact sequence in K-theory which preserves the unit lifts to an isomorphism from \mathfrak{A} to \mathfrak{B}.

2. Preliminaries

2.1. C^*-algebras over topological spaces. Let X be a topological space and let $\mathcal{O}(X)$ be the set of open subsets of X, partially ordered by set inclusion \subseteq. A subset Y of X is called \textit{locally closed} if $Y = U \setminus V$ where $U, V \in \mathcal{O}(X)$ and $V \subseteq U$. The set of all locally closed subsets of X will be denoted by $\mathbb{L}(X)$. The set of all connected, non-empty, locally closed subsets of X will be denoted by $\mathbb{L}(X)^\ast$.

The partially ordered set $(\mathcal{O}(X), \subseteq)$ is a \textit{complete lattice}, that is, any subset S of $\mathcal{O}(X)$ has both an infimum $\bigwedge S$ and a supremum $\bigvee S$. More precisely, for any subset S of $\mathcal{O}(X)$,

$$\bigwedge_{U \in S} U = \left(\bigcap_{U \in S} U \right)^{\circ} \quad \text{and} \quad \bigvee_{U \in S} U = \bigcup_{U \in S} U.$$

For a C^*-algebra \mathfrak{A}, let $\mathbb{I}(\mathfrak{A})$ be the set of closed ideals of \mathfrak{A}, partially ordered by \subseteq. The partially ordered set $(\mathbb{I}(\mathfrak{A}), \subseteq)$ is a complete lattice. More precisely, for any subset S of $\mathbb{I}(\mathfrak{A})$,

$$\bigwedge_{\mathfrak{J} \in S} \mathfrak{J} = \bigcap_{\mathfrak{J} \in S} \mathfrak{J} \quad \text{and} \quad \bigvee_{\mathfrak{J} \in S} \mathfrak{J} = \bigcup_{\mathfrak{J} \in S} \mathfrak{J}.$$

\textbf{Definition 2.1.} Let \mathfrak{A} be a C^*-algebra. Let $\text{Prim}(\mathfrak{A})$ denote the \textit{primitive ideal space} of \mathfrak{A}, equipped with the usual hull-kernel topology, also called the Jacobson topology.

Let X be a topological space. A C^*-\textit{algebra over} X is a pair (\mathfrak{A}, ψ) consisting of a C^*-algebra \mathfrak{A} and a continuous map $\psi : \text{Prim}(\mathfrak{A}) \to X$. A C^*-algebra over X, (\mathfrak{A}, ψ), is \textit{separable} if \mathfrak{A} is a separable C^*-algebra. We say that (\mathfrak{A}, ψ) is \textit{tight} if ψ is a homeomorphism.

We always identify $\mathcal{O}(\text{Prim}(\mathfrak{A}))$ and $\mathbb{I}(\mathfrak{A})$ using the lattice isomorphism

$$U \mapsto \bigcap_{p \in \text{Prim}(\mathfrak{A}) \setminus U} p.$$

Let (\mathfrak{A}, ψ) be a C^*-algebra over X. Then we get a map $\psi^* : \mathcal{O}(X) \to \mathcal{O}(\text{Prim}(\mathfrak{A})) \cong \mathbb{I}(\mathfrak{A})$ defined by

$$U \mapsto \{ p \in \text{Prim}(\mathfrak{A}) : \psi(p) \in U \} = \mathfrak{A}(U).$$

For $Y = U \setminus V \in \mathbb{L}(X)$, set $\mathfrak{A}(Y) = \mathfrak{A}(U)/\mathfrak{A}(V)$. By Lemma 2.15 of [27], $\mathfrak{A}(Y)$ does not depend on U and V.

\textbf{Example 2.2.} For any C^*-algebra \mathfrak{A}, the pair $(\mathfrak{A}, \text{id}_{\text{Prim}(\mathfrak{A})})$ is a tight C^*-algebra over $\text{Prim}(\mathfrak{A})$. For each $U \in \mathcal{O}(\text{Prim}(\mathfrak{A}))$, the ideal $\mathfrak{A}(U)$ equals $\bigcap_{p \in \text{Prim}(\mathfrak{A}) \setminus U} p$.

\[\]
Example 2.3. Let $X_n = \{1, 2, \ldots, n\}$ partially ordered with \leq. Equip X_n with the Alexandrov topology, so the non-empty open subsets are
$$[a, n] = \{x \in X : a \leq x \leq n\}$$
for all $a \in X_n$; the non-empty closed subsets are $[1, b]$ with $b \in X_n$, and the non-empty locally closed subsets are those of the form $[a, b]$ with $a, b \in X_n$ and $a \leq b$. Let (\mathcal{A}, ϕ) be a C^*-algebra over X_n. We will use the following notation throughout the paper:
$$\mathcal{A}[k] = \mathcal{A}([k]), \mathcal{A}[a, b] = \mathcal{A}([a, b]), \text{ and } \mathcal{A}(i, j) = \mathcal{A}[i + 1, j].$$
Using the above notation we have ideals $\mathcal{A}[a, n]$ such that
$$\{0\} \leq \mathcal{A}[n] \leq \mathcal{A}[n - 1, n] \leq \cdots \leq \mathcal{A}[2, n] \leq \mathcal{A}[1, n] = \mathcal{A}.
$$

Definition 2.4. Let \mathcal{A} and \mathcal{B} be C^*-algebras over X. A homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ is X-equivariant if $\phi(\mathcal{A}(U)) \subseteq \mathcal{B}(U)$ for all $U \in \mathcal{O}(X)$. Hence, for every $Y = U \setminus V$, ϕ induces a homomorphism $\phi_Y : \mathcal{A}(Y) \to \mathcal{B}(Y)$. Let $\mathcal{C}^{*}\text{-alg}(X)$ be the category whose objects are C^*-algebras over X and whose morphisms are X-equivariant homomorphisms.

An X-equivariant homomorphism $\phi : \mathcal{A} \to \mathcal{B}$ is said to be a full X-equivariant homomorphism if for all $Y \in \mathcal{L}(X)$, $\phi_Y(a)$ is norm-full in $\mathcal{B}(Y)$ for all norm-full elements $a \in \mathcal{A}(Y)$, i.e., the closed ideal of $\mathcal{B}(Y)$ generated by $\phi_Y(a)$ is $\mathcal{B}(Y)$ whenever the closed ideal of $\mathcal{A}(Y)$ generated by a is $\mathcal{A}(Y)$.

Remark 2.5. Suppose \mathcal{A} and \mathcal{B} are tight C^*-algebras over X_n. Then it is clear that $\phi : \mathcal{A} \to \mathcal{B}$ is an isomorphism if and only if ϕ is a X_n-equivariant isomorphism.

It is easy to see that if \mathcal{A} and \mathcal{B} are tight C^*-algebras over X_2, then $\phi : \mathcal{A} \to \mathcal{B}$ is a full X_2-equivariant homomorphism if and only if ϕ is an X_2-equivariant homomorphism and $\phi_{[1]}$ and $\phi_{[2]}$ are injective. Also, if \mathcal{A} and $\mathcal{A}[2]$ have non-zero projections p and q respectively, then there exists $\epsilon > 0$ such that if $\phi : \mathcal{A} \to \mathcal{B}$ is a full X_2-equivariant homomorphism and $\psi : \mathcal{A} \to \mathcal{B}$ is a homomorphism such that
$$\|\phi(p) - \psi(p)\| < 1 \quad \|\phi(q) - \psi(q)\| < 1,$$
then ψ is a full X_2-equivariant homomorphism.

Remark 2.6. Let $\xi_i : 0 \to \mathcal{B}_i \to \mathcal{E}_i \to \mathcal{A}_i \to 0$ be an extension for $i = 1, 2$. Note that \mathcal{E}_i can be considered as a C^*-algebra over $X_2 = \{1, 2\}$ by sending \emptyset to the zero ideal, $\{2\}$ to the image of \mathcal{B}_i in \mathcal{E}_i, and $\{1, 2\}$ to \mathcal{E}_i. Hence, there exists a one-to-one correspondence between X_2-equivariant homomorphisms $\phi : \mathcal{E}_1 \to \mathcal{E}_2$ and homomorphisms from ξ_1 and ξ_2.

2.2. The ideal related K-theory of \mathcal{A}.

Definition 2.7. Let X be a topological space and let \mathcal{A} be a C^*-algebra over X. For open subsets U_1, U_2, U_3 of X with $U_1 \subseteq U_2 \subseteq U_3$, set $Y_1 = U_2 \setminus U_1$, $Y_2 = U_3 \setminus U_1$, $Y_3 = U_3 \setminus U_1 \in \mathcal{L}(X)$. Then the diagram
$$
\begin{array}{ccc}
K_0(\mathcal{A}(Y_1)) & \xrightarrow{i_*} & K_0(\mathcal{A}(Y_2)) & \xrightarrow{\pi_*} & K_0(\mathcal{A}(Y_3)) \\
\downarrow{\partial_*} & & \downarrow{\partial_*} & & \\
K_1(\mathcal{A}(Y_3)) & \xrightarrow{\pi_*} & K_1(\mathcal{A}(Y_2)) & \xrightarrow{i_*} & K_1(\mathcal{A}(Y_1))
\end{array}
$$

where $\pi_* : K_0(\mathcal{A}(Y_2)) \to K_0(\mathcal{A}(Y_3))$ and $i_* : K_1(\mathcal{A}(Y_1)) \to K_1(\mathcal{A}(Y_2))$.
is an exact sequence. The ideal related K-theory of \mathfrak{A}, $K_X(\mathfrak{A})$, is the collection of all K-groups thus occurring and the natural transformations $\{i_*, \pi_*, \partial_*\}$. The ideal related, ordered K-theory of \mathfrak{A}, $K_X^+(\mathfrak{A})$, is $K_X(\mathfrak{A})$ of \mathfrak{A} together with $K_0(\mathfrak{A}(Y))_+$ for all $Y \in \mathcal{L}(X)$.

Let \mathfrak{A} and \mathfrak{B} be C^*-algebras over X, we will say that $\alpha : K_X(\mathfrak{A}) \to K_X(\mathfrak{B})$ is an isomorphism if for all $Y \in \mathcal{L}(X)$, there exists a graded group isomorphism

$$\alpha_{Y,*} : K_*(\mathfrak{A}(Y)) \to K_*(\mathfrak{B}(Y))$$

preserving all natural transformations. We say that $\alpha : K_X^+(\mathfrak{A}) \to K_X^+(\mathfrak{B})$ is an isomorphism if there exists an isomorphism $\alpha : K_X(\mathfrak{A}) \to K_X(\mathfrak{B})$ in such a way that $\alpha_{Y,0}$ is an order isomorphism for all $Y \in \mathcal{L}(X)$.

Remark 2.8. Meyer-Nest in [28] defined a similar functor $FK_X(-)$ which they called filtrated K-theory. For all known cases in which there exists a UCT, the natural transformation from $FK_X(-)$ to $K_X(-)$ is an equivalence. In particular, this is true for the space X_n.

If $Y \in \mathcal{L}(X)$ such that $Y = Y_1 \sqcup Y_2$ with two disjoint relatively open subsets $Y_1, Y_2 \subseteq \overline{Y}(Y) \subseteq \mathcal{L}(X)$, then $\mathfrak{A}(Y) \cong \mathfrak{A}(Y_1) \oplus \mathfrak{A}(Y_2)$ for any C^*-algebra over X. Moreover, there is a natural isomorphism $K_*(\mathfrak{A}(Y))$ to $K_*(\mathfrak{A}(Y_1)) \oplus K_*(\mathfrak{A}(Y_2))$ which is a positive isomorphism from $K_0(\mathfrak{A}(Y))$ to $K_0(\mathfrak{A}(Y_1)) \oplus K_0(\mathfrak{A}(Y_2))$. If X is finite, then any locally closed subset is a disjoint union of its connected components. Therefore, we lose no information when we replace $\mathcal{L}(X)$ by the subset $\mathcal{L}(X)^*$.

Notation 2.9. Let \mathcal{N} be the bootstrap category of Rosenberg and Schochet in [37].

Let $\mathfrak{R}(X)$ be the category whose objects are separable C^*-algebras over X and the set of morphisms is $KK(X; \mathfrak{A}, \mathfrak{B})$. For a finite topological space X, let $\mathcal{B}(X) \subseteq \mathfrak{R}(X)$ be the bootstrap category of Meyer and Nest in [27]. By Corollary 4.13 of [27], if \mathfrak{A} is a nuclear C^*-algebra over X, then $\mathfrak{A} \in \mathcal{B}(X)$ if and only if $\mathfrak{A}(\{x\}) \in \mathcal{N}$ for all $x \in X$.

Theorem 2.10. (Bonkat [4] and Meyer-Nest [28]) Let \mathfrak{A} and \mathfrak{B} be in $\mathfrak{R}(X_n)$ such that \mathfrak{A} is in $\mathcal{B}(X_n)$, then the sequence

$$0 \to \text{Ext}_{X}^1(FK_{X_n}(\mathfrak{A})[1],FK_{X_n}(\mathfrak{B})) \xrightarrow{\delta} KK(X_n; \mathfrak{A}, \mathfrak{B}) \xrightarrow{\Gamma} \text{Hom}_{X}^1(FK_{X_n}(\mathfrak{A}),FK_{X_n}(\mathfrak{B})) \to 0$$

is exact. Consequently, if \mathfrak{B} is in $\mathcal{B}(X_n)$, then an isomorphism from $FK_{X_n}(\mathfrak{A})$ to $FK_{X_n}(\mathfrak{B})$ lifts to an invertible element in $KK(X_n; \mathfrak{A}, \mathfrak{B})$.

Corollary 2.11. Let \mathfrak{A} and \mathfrak{B} be in $\mathcal{B}(X_n)$. Then an isomorphism from $K_{X_n}(\mathfrak{A})$ to $K_{X_n}(\mathfrak{B})$ lifts to an invertible element in $KK(X_n; \mathfrak{A}, \mathfrak{B})$.

Proof. This follows from Remark 2.8 and Theorem 2.10.

Remark 2.12. Let $x \in KK(X_n; \mathfrak{A}, \mathfrak{B})$ be an invertible element. Then $K_{X_n}(x)$ will denote the isomorphism from $K_{X_n}(\mathfrak{A})$ to $K_{X_n}(\mathfrak{B})$ given by $\Gamma(x)$ where we have identified $K_{X_n}(\mathfrak{A})$ with $FK_{X_n}(\mathfrak{A})$ and $K_{X_n}(\mathfrak{B})$ with $FK_{X_n}(\mathfrak{B})$.

2.3. Functors. We now define some functors that will be used throughout the rest of the paper. Let X and Y be topological spaces. For every continuous function $f : X \to Y$ we have a functor

$$f : \mathcal{C}^*\text{-alg}(X) \to \mathcal{C}^*\text{-alg}(Y), \ (A, \psi) \mapsto (A, f \circ \psi).$$
(1) Define \(g_X^1 : X \to X_1 \) by \(g_X^1(x) = 1 \). Then \(g_X^1 \) is continuous. Note that the induced functor \(g_X^1 : \mathcal{C}^*\text{-alg}(X) \to \mathcal{C}^*\text{-alg}(X_1) \) is the forgetful functor.

(2) Let \(U \) be an open subset of \(X \). Define \(g_{U, X}^2 : X \to X_2 \) by \(g_{U, X}^2(x) = 1 \) if \(x \notin U \) and \(g_{U, X}^2(x) = 2 \) if \(x \in U \). Then \(g_{U, X}^2 \) is continuous. Thus the induced functor

\[
g_{U, X}^2 : \mathcal{C}^*\text{-alg}(X) \to \mathcal{C}^*\text{-alg}(X_2)
\]

is just specifying the extension \(0 \to \mathfrak{A}(U) \to \mathfrak{A} \to \mathfrak{A}/\mathfrak{A}(U) \to 0 \).

(3) We can generalize (2) to finitely many ideals. Let \(U_1 \subseteq U_2 \subseteq \cdots \subseteq U_n = X \) be open subsets of \(X \). Define \(g_{U_1, U_2, \ldots, U_n, X}^n : X \to X_n \) by \(g_{U_1, U_2, \ldots, U_n, X}^n(x) = n - k + 1 \) if \(x \in U_k \setminus U_{k-1} \). Then \(g_{U_1, U_2, \ldots, U_n, X}^n \) is continuous. Therefore, any \(C^*\)-algebra with ideals \(0 \leq \mathfrak{I}_1 \leq \mathfrak{I}_2 \leq \cdots \leq \mathfrak{I}_n = \mathfrak{A} \) can be made into a \(C^*\)-algebra over \(X_n \).

(4) For all \(Y \in \mathbb{L}(\mathcal{C}(X)) \), \(i_X^Y : \mathcal{C}^*\text{-alg}(X) \to \mathcal{C}^*\text{-alg}(Y) \) is the restriction functor defined in Definition 2.19 of [27].

(5) If \(f : X \to Y \) is an embedding of a subset with the subspace topology, we write

\[
i_X^Y = f_* : \mathcal{C}^*\text{-alg}(X) \to \mathcal{C}^*\text{-alg}(Y).
\]

By Proposition 3.4 of [27], the functors defined above induce functors from \(\mathfrak{R}(X) \) to \(\mathfrak{R}(Z) \), where \(Z = Y, X_1, X_n \).

2.4. Graph \(C^*\)-algebras. A graph \((E^0, E^1, r, s)\) consists of a countable set \(E^0 \) of vertices, a countable set \(E^1 \) of edges, and maps \(r : E^1 \to E^0 \) and \(s : E^1 \to E^0 \) identifying the range and source of each edge. If \(E \) is a graph, the graph \(C^*\)-algebra \(C^*(E) \) is the universal \(C^*\)-algebra generated by mutually orthogonal projections \(\{ p_v : v \in E^0 \} \) and partial isometries \(\{ s_e : e \in E^1 \} \) with mutually orthogonal ranges satisfying

1. \(s_e^*s_e = p_r(e) \) for all \(e \in E^1 \)
2. \(s_e s_e^* \leq p_s(e) \) for all \(e \in E^1 \)
3. \(p_v = \sum_{e \in E^1 : s(e) = v} s_es_e^* \) for all \(v \) with \(0 < |s^{-1}(v)| < \infty \).

3. Meta-theorems

In many cases one can obtain a classification result for a class of unital \(C^*\)-algebras \(\mathcal{C} \) by obtaining a classification result for the class \(\mathcal{C} \otimes \mathbb{K} \), where each object in \(\mathcal{C} \otimes \mathbb{K} \) is the stabilization of an object in \(\mathcal{C} \). A meta-theorem of this sort was proved by the first and second named authors in [13] Theorem 11. It was shown there that if \(\mathcal{C} \) is a subcategory of the category of \(C^*\)-algebras, \(\mathcal{C}^*\text{-alg} \), and if \(F \) is a functor from \(\mathcal{C} \) to an abelian category such that an isomorphism \(F(\mathfrak{A} \otimes \mathbb{K}) \cong F(\mathfrak{B} \otimes \mathbb{K}) \) lifts to an isomorphism in \(\mathfrak{A} \otimes \mathbb{K} \cong \mathfrak{B} \otimes \mathbb{K} \), then under suitable conditions, we have that \(F(\mathfrak{A}) \cong F(\mathfrak{B}) \) implies \(\mathfrak{A} \cong \mathfrak{B} \). In [31], the second and third named authors improved this result by showing that the isomorphism \(F(\mathfrak{A}) \cong F(\mathfrak{B}) \) lifts to an isomorphism from \(\mathfrak{A} \) to \(\mathfrak{B} \).

In this section, we improve these results in order to deal with cases when \(\mathcal{C} \) is a category (not necessarily a subcategory of \(\mathcal{C}^*\text{-alg} \)) and there exists a functor from \(\mathcal{C} \) to \(\mathcal{C}^*\text{-alg} \). An example of such a category is the category of \(C^*\)-algebras over \(\{1, 2\} \), where \(\{1, 2\} \) is given the discrete topology. Then \(\mathcal{C} \) is not a subcategory of \(\mathcal{C}^*\text{-alg} \) but the forgetful functor (forgetting the \(\{1, 2\}\)-structure) is a functor from \(\mathcal{C} \) to \(\mathcal{C}^*\text{-alg} \). We also replace the condition of proper pure infiniteness by the stable weak cancellation property.
Definition 3.1. A C^*-algebra \mathfrak{A} is said to have the weak cancellation property if p is Murray-von Neumann equivalent to q whenever p and q generate the same ideal \mathfrak{I} and $[p] = [q]$ in $K_0(\mathfrak{I})$. A C^*-algebra is said to have the stable weak cancellation property if $M_n(\mathfrak{A})$ has the weak cancellation property for all $n \in \mathbb{N}$.

Theorem 3.2. (cf. [13] Theorem 11) Let \mathcal{C} and \mathcal{D} be categories, let $\mathfrak{C}^*{\text{-alg}}$ be the category of C^*-algebras, and let \mathfrak{Ab} be the category of abelian groups. Suppose we have covariant functors $F: \mathcal{C} \to \mathfrak{C}^*{\text{-alg}}$, $G: \mathcal{C} \to \mathcal{D}$, and $H: \mathcal{D} \to \mathfrak{Ab}$ such that

1. $H \circ G = K_0 \circ F$.
2. For objects \mathfrak{A} in \mathcal{C}, there exist an object \mathfrak{A}_K and a morphism $\kappa_{\mathfrak{A}}: \mathfrak{A} \to \mathfrak{A}_K$ such that $G(\kappa_{\mathfrak{A}}) = 1$ is an isomorphism in \mathcal{D}, $F(\mathfrak{A}_K) = F(\mathfrak{A}) \otimes K$, and $F(\kappa_{\mathfrak{A}}) = 1_F \otimes e_{11}$.
3. For all objects \mathfrak{A} and \mathfrak{B} in \mathcal{C}, every isomorphism $G(\mathfrak{A}_K)$ to $G(\mathfrak{B}_K)$ is induced by an isomorphism from \mathfrak{A}_K to \mathfrak{B}_K.

Let \mathfrak{A} and \mathfrak{B} be given such that $F(\mathfrak{A})$ and $F(\mathfrak{B})$ are unital C^*-algebras. Let $\rho: G(\mathfrak{A}) \to G(\mathfrak{B})$ be an isomorphism such that $H(\rho)\{[1_F(\mathfrak{A})]\} = [1_F(\mathfrak{B})]$. If $F(\mathfrak{B})$ has the stable weak cancellation property, then $F(\mathfrak{A}) \cong F(\mathfrak{B})$.

Proof. Note that $G(\kappa_{\mathfrak{A}})$ and $G(\kappa_{\mathfrak{B}})$ are isomorphisms. Therefore $G(\kappa_{\mathfrak{A}}) \circ \rho \circ G(\kappa_{\mathfrak{B}})^{-1}$ is an isomorphism from $G(\mathfrak{A}_K)$ to $G(\mathfrak{B}_K)$. Thus, there exists an isomorphism $\phi: \mathfrak{A}_K \to \mathfrak{B}_K$ such that $G(\phi) = G(\kappa_{\mathfrak{B}}) \circ \rho \circ G(\kappa_{\mathfrak{A}})^{-1}$.

Set $\psi = F(\phi)$. Then $\psi: F(\mathfrak{A}) \otimes K \to F(\mathfrak{B}) \otimes K$ is an $*$-isomorphism such that

\[K_0(\psi) = K_0(F(\phi)) = H(G(\kappa_{\mathfrak{B}}) \circ \rho \circ G(\kappa_{\mathfrak{A}})^{-1}) = H(G(\kappa_{\mathfrak{B}})) \circ H(\rho) \circ H(G(\kappa_{\mathfrak{A}})^{-1}) = K_0(F(\mathfrak{B})) \circ H(\rho) \circ K_0(F(\mathfrak{A}))^{-1} = K_0(id_{F(\mathfrak{B})} \otimes e_{11}) \circ H(\rho) \circ K_0(id_{F(\mathfrak{A})} \otimes e_{11})^{-1}. \]

Hence,

\[K_0(\psi)[1_{F(\mathfrak{A})} \otimes e_{11}] = K_0(id_{F(\mathfrak{B})} \otimes e_{11}) \circ H(\rho) \circ K_0(id_{F(\mathfrak{A})} \otimes e_{11})^{-1}([1_{F(\mathfrak{A})} \otimes e_{11}]) = K_0(id_{F(\mathfrak{B})} \otimes e_{11}) \circ H(\rho)([1_{F(\mathfrak{A})}]) = K_0(id_{F(\mathfrak{B})} \otimes e_{11})([1_{F(\mathfrak{B})}]) = [1_{F(\mathfrak{B})} \otimes e_{11}]. \]

Stable weak cancellation implies that there exists $v \in F(\mathfrak{B}) \otimes K$ such that $v^*v = \psi(1_{F(\mathfrak{A})} \otimes e_{11})$ and $vv^* = 1_{F(\mathfrak{B})} \otimes e_{11}$ since $\psi(1_{F(\mathfrak{A})} \otimes e_{11})$ and $1_{F(\mathfrak{B})} \otimes e_{11}$ are full projections in $F(\mathfrak{B}) \otimes K$. Set $\gamma(x) = v\psi(x \otimes e_{11})v^*$. Arguing as in the proof of [13] Theorem 11], γ is an isomorphism from $F(\mathfrak{A}) \otimes e_{11}$ to $F(\mathfrak{B}) \otimes e_{11}$. Hence, $F(\mathfrak{A}) \cong F(\mathfrak{B})$.

Theorem 3.3. (cf. [32] Theorem 2.1) Let \mathcal{C} be a subcategory of $\mathfrak{C}^*{\text{-alg}}(X)$. Moreover, \mathcal{C} is assumed to be closed under tensoring by $\mathbb{M}_2(\mathbb{C})$ and K and contains the canonical embeddings $\kappa_1: \mathfrak{A} \to \mathbb{M}_2(\mathfrak{A})$ and $\kappa: \mathfrak{A} \to \mathfrak{A} \otimes K$ as morphisms for every object \mathfrak{A} in \mathcal{C}. Assume there is a functor $F: \mathcal{C} \to \mathcal{D}$ satisfying

1. For \mathfrak{A} in \mathcal{C}, the embeddings $\kappa_1: \mathfrak{A} \to \mathbb{M}_2(\mathfrak{A})$ and $\kappa: \mathfrak{A} \to \mathfrak{A} \otimes K$ induce isomorphisms $F(\kappa_1)$ and $F(\kappa)$.
2. For all objects \mathfrak{A} and \mathfrak{B} in \mathcal{C} that are stable C^*-algebras, every isomorphism from $F(\mathfrak{A})$ to $F(\mathfrak{B})$ is induced by an isomorphism from \mathfrak{A} to \mathfrak{B}.
3. There exists a functor G from \mathcal{D} to \mathfrak{Ab} such that $G \circ F = K_0$.

\[\min(\mathfrak{A}) \to \max(\mathfrak{A}) \]
Assume that every X-equivariant isomorphism between objects in \mathcal{C} is a morphism in \mathcal{C} and that for objects \mathfrak{A} in \mathcal{C}, $F(\text{Ad}(u)|_{\mathfrak{A}}) = \text{id}_{F(\mathfrak{A})}$ for every unitary $u \in M(\mathfrak{A})$. If \mathfrak{A} and \mathfrak{B} are objects \mathcal{C} that are unital C^*-algebras such that \mathfrak{A} and \mathfrak{B} have the stable weak cancellation property and there is an isomorphism $\alpha : F(\mathfrak{A}) \rightarrow F(\mathfrak{B})$ such that $G(\alpha)([1_{\mathfrak{A}}]) = [1_{\mathfrak{B}}]$, then there exists an isomorphism $\phi : \mathfrak{A} \rightarrow \mathfrak{B}$ in \mathcal{C} such that $F(\phi) = \alpha$.

Proof. The difference between the statement of Theorem 2.1 of [32] and statement of the theorem are

(i) \mathcal{C} is assumed to be a subcategory of C^*-alg(X) instead of a subcategory of C^*-alg.

(ii) \mathfrak{A} and \mathfrak{B} are assumed to have the stable weak cancellation property instead of being properly infinite.

In the proof of Theorem 2.1 of [32], properly infinite was needed to insure that $\psi(1_{\mathfrak{A}} \otimes e_{11})$ is Murray-von Neumann equivalent to $1_{\mathfrak{B}} \otimes e_{11}$, where $\psi : \mathfrak{A} \otimes K \rightarrow \mathfrak{B} \otimes K$ is the isomorphism from (2) that lifts the isomorphism from $F(\mathfrak{A})$ to $F(\mathfrak{B})$ that is induced by α. As in the proof of Theorem 3.2 we get that $\psi(1_{\mathfrak{A}} \otimes e_{11})$ is Murray-von Neumann equivalent to $1_{\mathfrak{B}} \otimes e_{11}$. Arguing as in the proof of Theorem 2.1 of [32], we get the desired result.

\[\square \]

4. Classification results

In this section, we show that $K^+_X(-)$ is a strong classification functor for a class of C^*-algebras with exactly one proper nontrivial ideal containing C^*-algebras associated to finite graphs. The results of this section will be used in the next section to show that $K^+_X(-)$ together with the appropriate scale is a complete isomorphism invariant for C^*-algebras associated to graphs. Moreover, in a forthcoming paper, we use these results to solve the following extension problem: If \mathfrak{A} fits into the following exact sequence

\[0 \rightarrow C^*(E) \otimes K \rightarrow \mathfrak{A} \rightarrow C^*(G) \rightarrow 0, \]

where $C^*(E)$ and $C^*(G)$ are simple C^*-algebras, then when is $\mathfrak{A} \cong C^*(F)$ for some graph F?

Theorem 4.1. (Existence Theorem) Let \mathfrak{A}_1 and \mathfrak{A}_2 be in $\mathcal{B}(X)$ and let $x \in KK(X; \mathfrak{A}_1, \mathfrak{A}_2)$ be an invertible element such that $\Gamma(x)_Y$ is a positive isomorphism for all $Y \in \mathfrak{L}(X)$. Suppose $0 \rightarrow \mathfrak{A}_i[2] \rightarrow \mathfrak{A}_i \rightarrow \mathfrak{A}_i[1] \rightarrow 0$ is a full extension, $\mathfrak{A}_i[2]$ is a stable C^*-algebra, \mathfrak{A}_i is a nuclear C^*-algebra with real rank zero, and either

(i) $\mathfrak{A}_i[2]$ is a purely infinite simple C^*-algebra and $\mathfrak{A}_i[1]$ is an AF-algebra; or

(ii) $\mathfrak{A}_i[2]$ is an AF-algebra and $\mathfrak{A}_i[1]$ is a purely infinite simple C^*-algebra.

Then there exists an X_2-equivariant homomorphism $\phi : \mathfrak{A}_1 \otimes K \rightarrow \mathfrak{A}_2 \otimes K$ such that $KK(X_2; \phi) = KK(X_2; \text{id}_{\mathfrak{A}_1} \otimes e_{11})^{-1} \times \times KK(X_2; \text{id}_{\mathfrak{A}_2} \otimes e_{11})$, and $\phi[2]$ and $\phi[1]$ are injective, where $\{e_{ij}\}$ is a system of matrix units for K.

Proof. Set $y = KK(X_2; \text{id}_{\mathfrak{A}_1} \otimes e_{11})^{-1} \times \times KK(X_2; \text{id}_{\mathfrak{A}_2} \otimes e_{11})$. Note that by Lemma 3.10 and Theorem 3.8 of [14], $\mathfrak{A}_i[2] \otimes K$ satisfies the corona factorization property (see [21] for the definition of the corona factorization property). Since $\mathfrak{A}_i[k]$ is an AF-algebra or an Kirchberg algebra, $\mathfrak{A}_i[k]$ has the stable weak cancellation. By Lemma 3.15 of [15], \mathfrak{A}_i has stable weak cancellation. Let \mathfrak{c}_i be the extension

\[0 \rightarrow \mathfrak{A}_i[2] \otimes K \rightarrow \mathfrak{A}_i \otimes K \rightarrow \mathfrak{A}_i[1] \otimes K \rightarrow 0. \]
By Corollary 3.24 of [15], ε is a full extension since A_i[1] has cancellation of projections (in the AF case) and A_i[1] is properly infinite (in the purely infinite case).

Case (i): A_2[2] is a purely infinite simple C*-algebra and A_i[1] is an AF-algebra. By Theorem 3.3 of [14], r^{(1)}_{\chi_2}(y) × [τ_{ε2}] = [r_{ε2}] × r^{(2)}_{\chi_2}(y) in KK^1(A_i[1]⊗ K, A_2[2]⊗ K). Since y is invertible in KK(X_2, A_i⊗ K, A_2⊗ K), we have that r^{(1)}_{\chi_2}(y) is invertible in KK(A_i[1]⊗ K, A_2[1]⊗ K) and Γ(r^{(1)}_{\chi_2}(y)) = Γ(x)_{i1} is a positive isomorphism. Thus, by Elliott’s classification [19], there exists an isomorphism ψ_i : A_i[1]⊗ K → A_2[1]⊗ K such that KK(ψ_i) = r^{(1)}_{\chi_2}(y).

By Corollary 3.24 of [15], ε is a full extension since A_i[1] has cancellation of projections (in the AF case) and A_i[1] is properly infinite (in the purely infinite case).

Since y is invertible in KK(X_2, A_i⊗ K, A_2⊗ K), we have that r^{(2)}_{\chi_2}(y) is invertible in KK(A_i[1]⊗ K, A_2[1]⊗ K) and Γ(r^{(2)}_{\chi_2}(y)) = Γ(x)_{i2} is a positive isomorphism. Thus, by Elliott’s classification [19], there exists an isomorphism ψ_i : A_i[1]⊗ K → A_2[1]⊗ K such that KK(ψ_i) = r^{(2)}_{\chi_2}(y).

By Theorem 3.6 of [27] (see also Hauptsatz 4.2 of [20]), there exists a η-isomorphic to KK(A_i[2]⊗ K) such that KK(η) = r^{(1)}_{\chi_2}(y). By Lemma 4.5 of [14] and its proof, there exists a unitary u ∈ M(A_2[2]⊗ K) such that ψ = (Ad(u) ◦ ψ_0, Ad(u) ◦ ψ_0, ψ_i) is an X_2-equivariant isomorphism from A_i[1]⊗ K to A_2⊗ K, where ψ_0 : M(A_i[2]⊗ K) → M(A_i[1]⊗ K) is the unique isomorphism extending ψ_0. Note that KK(ψ_{i,k}) = r^{(k)}_{\chi_2}(y) for k = 1, 2.

Note that

0 → i^{X_2}_{(2)}((A_i⊗ K)[2]) → A_i⊗ K[2] → i^{X_2}_{(1)}((A_i⊗ K)[1]) → 0

is a semi-split extension of C*-algebras over X_2 (see Definition 3.5 of [27]). Set

J_i = i^{X_2}_{(2)}((A_i⊗ K)[2]) and B_i = i^{X_2}_{(1)}((A_i⊗ K)[1]).

By Theorem 3.6 of [27] (see also Korollar 3.4.6 of [4]),

KK(X_2, A_i⊗ K, J_i) → KK(X_2, A_i⊗ K, B_i) → KK(X_2, A_i⊗ K, B_i) → ...

is exact. By Proposition 3.12 of [27], KK(X_2, A_i⊗ K, J_i) and KK(A_i[1]⊗ K, A_2[1]⊗ K) are naturally isomorphic. Hence, there exists z ∈ KK(X_2, A_i⊗ K, J_i) such that y = KK(X_2, ψ) = z × KK(X_2, λ_2) since KK(ψ_{i1}) = r^{(1)}_{\chi_2}(y).

Case (ii): A_i[2] is an AF-algebra and A_i[1] is a purely infinite simple C*-algebra. By Theorem 3.3 of [14], r^{(1)}_{\chi_2}(y) × [τ_{ε2}] = [r_{ε2}] × r^{(2)}_{\chi_2}(y) in KK^1(A_i[1]⊗ K, A_2[2]⊗ K). Since y is invertible in KK(X_2, A_i⊗ K, A_2⊗ K), we have that r^{(1)}_{\chi_2}(y) is invertible in KK(A_i[2]⊗ K, A_2[2]⊗ K) and Γ(r^{(1)}_{\chi_2}(y)) = Γ(x)_{i2} is an order isomorphism. Thus, by Elliott’s classification [19], there exists an isomorphism ψ_i : A_i[2]⊗ K → A_2[2]⊗ K such that KK(ψ_i) = r^{(2)}_{\chi_2}(y).

Since y is invertible in KK(X_2, A_i⊗ K, A_2⊗ K), we have that r^{(1)}_{\chi_2}(y) is invertible in...
\(KK(\mathfrak{A}_1[1] \otimes \mathbb{K}, \mathfrak{A}_2[1] \otimes \mathbb{K}) \). Thus, by Kirchberg-Phillips classification (see [20] and [29]), there exists an isomorphism \(\psi_1 : \mathfrak{A}_1[1] \otimes \mathbb{K} \to \mathfrak{A}_2[1] \otimes \mathbb{K} \) such that \(KK(\psi_1) = r_{X_2}^{(2)}(y) \). By Lemma 4.5 of [14] and its proof, there exists a unitary \(u \in \mathcal{M}(\mathfrak{A}_2[2] \otimes \mathbb{K}) \) such that

\[
\psi = (\text{Ad}(u) \circ \psi_0, \text{Ad}(u) \circ \tilde{\psi}_0, \psi_1) \text{ is an } X_2\text{-equivariant isomorphism from } \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K},
\]

where \(\psi_0 : \mathcal{M}(\mathfrak{A}_1[2] \otimes \mathbb{K}) \to \mathcal{M}(\mathfrak{A}_1[2] \otimes \mathbb{K}) \) is the unique isomorphism extending \(\psi_0 \). Note that \(KK(\psi_{\{k\}}) = r_{X_2}^{(k)}(y) \) for \(k = 1,2 \).

Note that

\[
0 \to i_{\{2\}}^{X_2}((\mathfrak{A}_i \otimes \mathbb{K})[2]) \xrightarrow{\lambda} \mathfrak{A}_i \otimes \mathbb{K} \xrightarrow{\beta_i} i_{\{1\}}^{X_2}((\mathfrak{A}_i \otimes \mathbb{K})[1]) \to 0
\]

is a semi-split extension of \(C^*\)-algebras over \(X_2 \) (see Definition 3.5 of [27]). Set

\[
\mathcal{J}_i = i_{\{2\}}^{X_2}((\mathfrak{A}_i \otimes \mathbb{K})[2]) \quad \text{and} \quad \mathcal{B}_i = i_{\{1\}}^{X_2}((\mathfrak{A}_i \otimes \mathbb{K})[1]) .
\]

By Theorem 3.6 of [27] (see also Korollar 3.4.6 [4])

\[
KK(X_2; \mathcal{B}_1, \mathfrak{A}_2 \otimes \mathbb{K}) \xrightarrow{(\beta_i)^*} KK(X_2; \mathfrak{A}_1 \otimes \mathbb{K}, \mathfrak{A}_2 \otimes \mathbb{K}) \xrightarrow{(\lambda_i)^*} KK(X_2; \mathcal{J}_1, \mathfrak{A}_2 \otimes \mathbb{K})
\]

is exact. By Proposition 3.12 of [27], \(KK(X_2; \mathcal{J}_1, \mathfrak{A}_2 \otimes \mathbb{K}) \) and \(KK(\mathfrak{A}_1[2] \otimes \mathbb{K}, \mathfrak{A}_2[2] \otimes \mathbb{K}) \) are naturally isomorphic. Hence, there exists \(z \in KK(X_2; \mathcal{B}_1, \mathfrak{A}_2 \otimes \mathbb{K}) \) such that \(y = \text{Ad}(\psi_0, \psi_1) = KK(X_2; \psi) = KK(X_2; \psi_1) \times z \). By Proposition 3.13 of [27], \(KK(X_2; \mathcal{B}_1, \mathfrak{A}_2 \otimes \mathbb{K}) \) and \(KK((\mathfrak{A}_1 \otimes \mathbb{K})[1], \mathfrak{A}_2 \otimes \mathbb{K}) \) are isomorphic. Therefore, by Theorem 8.3.3 of [36], there exists a homomorphism \(\eta : (\mathfrak{A}_1 \otimes \mathbb{K})[1] \to \mathfrak{A}_2 \otimes \mathbb{K} \) such that \(KK(\eta) = \bar{z} \), where \(\bar{z} \) is the image of \(z \) under the isomorphism \(KK(X_2; \mathcal{B}_1, \mathfrak{A}_2 \otimes \mathbb{K}) \cong KK((\mathfrak{A}_1 \otimes \mathbb{K})[1], \mathfrak{A}_2 \otimes \mathbb{K}) \) (the existence of the homomorphism uses the fact that \(\mathfrak{A}_2 \otimes \mathbb{K} \) is a properly infinite \(C^*\)-algebra which follows from Proposition 3.21 and Theorem 3.22 of [15]). Note that \(\eta \) induces an \(X_2\)-equivariant homomorphism \(\eta : \mathcal{B}_1 \to \mathfrak{A}_2 \otimes \mathbb{K} \) such that \(KK(X_2; \eta) = z \).

Set \(\phi = \psi + (\eta \circ \beta_1) \), where the sum is the Cuntz sum in \(\mathcal{M}(\mathfrak{A}_2 \otimes \mathbb{K}) \). Then \(\phi \) is an \(X_2\)-equivariant homomorphism such that \(KK(X_2; \phi) = y \). Since \(\psi_{\{2\}} \) and \(\psi_{\{1\}} \) are injective homomorphisms, \(\phi_{\{2\}} \) and \(\phi_{\{1\}} \) are injective homomorphisms. \(\square \)

4.1. **Strong classification of extensions of AF-algebras by purely infinite \(C^*\)-algebras.**

Definition 4.2. Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be separable \(C^*\)-algebras over \(X \). Two \(X\)-equivariant homomorphisms \(\phi, \psi : \mathfrak{A} \to \mathfrak{B} \) are said to be **approximately unitarily equivalent** if there exists a sequence of unitaries \(\{u_n\}_{n=1}^{\infty} \) in \(\mathcal{M}(\mathfrak{B}) \) such that

\[
\lim_{n \to \infty} \|u_n \phi(a) u_n^* - \psi(a)\| = 0
\]

for all \(a \in \mathfrak{A} \).

We now recall the definition of \(KL(\mathfrak{A}, \mathfrak{B}) \) from [33].

Definition 4.3. Let \(\mathfrak{A} \) be a separable, nuclear \(C^*\)-algebra in \(\mathcal{N} \) and let \(\mathfrak{B} \) be a \(\sigma\)-unital \(C^*\)-algebra. Let

\[
\text{Ext}^1_2(K_s(\mathfrak{A}), K_{s+1}(\mathfrak{B})) = \text{Ext}^1_2(K_0(\mathfrak{A}), K_1(\mathfrak{B})) \oplus \text{Ext}^1_2(K_1(\mathfrak{A}), K_0(\mathfrak{B})).
\]

Since \(\mathfrak{A} \) is in \(\mathcal{N} \), by [37], \(\text{Ext}^1_2(K_s(\mathfrak{A}), K_{s+1}(\mathfrak{B})) \) can be identified as a sub-group of the group \(KK(\mathfrak{A}, \mathfrak{B}) \).
For abelian groups, G and H, let $\text{Pext}^1_\mathbb{Z}(G,H)$ be the subgroup of $\text{Ext}^1_\mathbb{Z}(G,H)$ of all pure extensions of G by H. Set

$$\text{Pext}^1_\mathbb{Z}(K_*(\mathfrak{A}), K_{*+1}(\mathfrak{B})) = \text{Pext}^1_\mathbb{Z}(K_0(\mathfrak{A}), K_1(\mathfrak{B})) \oplus \text{Pext}^1_\mathbb{Z}(K_1(\mathfrak{A}), K_0(\mathfrak{B})).$$

Define $KL(\mathfrak{A}, \mathfrak{B})$ as the quotient

$$KL(\mathfrak{A}, \mathfrak{B}) = KK(\mathfrak{A}, \mathfrak{B})/\text{Pext}^1_\mathbb{Z}(K_*(\mathfrak{A}), K_{*+1}(\mathfrak{B})).$$

Rørdam in [33] proved that if $\phi, \psi : \mathfrak{A} \to \mathfrak{B}$ are approximately unitarily equivalent, then $KL(\phi) = KL(\psi)$.

Notation 4.4. Let $x \in KK(\mathfrak{A}, \mathfrak{B})$. Then the element $x + \text{Pext}^1_\mathbb{Z}(K_*(\mathfrak{A}), K_{*+1}(\mathfrak{B}))$ in $KL(\mathfrak{A}, \mathfrak{B})$ will be denoted by $KL(x)$.

A nuclear, purely infinite, separable, simple C^*-algebra will be called a *Kirchberg algebra.*

Theorem 4.5. *(Uniqueness Theorem 1)* Let \mathfrak{A}_1 and \mathfrak{A}_2 be separable, nuclear, C^*-algebras over X_2 such that \mathfrak{A}_i is real rank zero, \mathfrak{A}_i is stable, $\mathfrak{A}_i[2]$ is a Kirchberg algebra in N, $\mathfrak{A}_i[1]$ is an AF-algebra, and $\mathfrak{A}_i[2]$ is an essential ideal of \mathfrak{A}_i. Suppose $\phi, \psi : \mathfrak{A}_1 \to \mathfrak{A}_2$ be X_2-equivariant homomorphisms such that $KK(X_2; \phi) = KK(X_2; \psi)$, and $\phi_{(2)}$, $\phi_{(1)}$, $\psi_{(2)}$, and $\psi_{(1)}$ are injective homomorphisms. Then ϕ and ψ are approximately unitarily equivalent.

Proof. Since $\mathfrak{A}_i[1]$ is an AF algebra, every finitely generated subgroup of $K_0(\mathfrak{A}_i[1])$ is torsion free (hence free) and every finitely generated subgroup of $K_1(\mathfrak{A}_i[1])$ is zero. Thus, $\text{Pext}^1_\mathbb{Z}(K_*(\mathfrak{A}_i[1]), K_{*+1}(\mathfrak{Q}(\mathfrak{A}_j[2]))) = \text{Ext}^1_\mathbb{Z}(K_*(\mathfrak{A}_i[1]), K_{*+1}(\mathfrak{Q}(\mathfrak{A}_j[2])))$ which implies that $KL(\mathfrak{A}_i[1], \mathfrak{Q}(\mathfrak{A}_j[2])) = \text{Hom}(K_*(\mathfrak{A}_i[1]), K_{*+1}(\mathfrak{Q}(\mathfrak{A}_j[2])))$.

Let e_i denote the extension $0 \to \mathfrak{A}_i[2] \to \mathfrak{A}_i \to \mathfrak{A}_i[1] \to 0$. Since \mathfrak{A}_i has real rank zero and $K_1(\mathfrak{A}_i[1]) = 0$, we have that $K_j(\tau_{e_i}) = 0$, where τ_{e_i} is the Busby invariant of e_i. Hence, $[\tau_{e_i}] = 0$ in $KL(\mathfrak{A}_i[1], \mathfrak{Q}(\mathfrak{A}_j[2]))$. By Corollary 6.7 of [24], e_i is quasi-diagonal. Thus, there exists an approximate identity of $\mathfrak{A}_i[2]$ consisting of projections $\{e_k\}_{k \in \mathbb{N}}$ such that

$$\lim_{n \to \infty} \|e_k x - xe_k\| = 0$$

for all $x \in \mathfrak{A}_i$.

Since $\mathfrak{A}_i[1]$ is an AF-algebra and \mathfrak{A}_1 has real rank zero, as in the proof of Lemma 9.8 of [10], there exists a sequence of finite dimensional sub-C^*-algebras $\{\mathfrak{B}_k\}_{k=1}^{\infty}$ of \mathfrak{A}_1 such that $\mathfrak{B}_k \cap \mathfrak{A}_i[2] = \{0\}$ and for each $x \in \mathfrak{A}_1$, there exist $y_1 \in \bigcup_{k=1}^{\infty} \mathfrak{B}_k$ and $y_2 \in \mathfrak{A}_i[2]$ such that $x = y_1 + y_2$.

Let $\epsilon > 0$ and \mathcal{F} be a finite subset of \mathfrak{A}_1. Note that we may assume \mathcal{F} is the union of the generators of \mathfrak{B}_m, for some $m \in \mathbb{N}$ and \mathcal{G}, for some finite subset \mathcal{G} of $\mathfrak{A}_1[2]$. Since \mathfrak{B}_m is a finite dimensional C^*-algebra,

$$\lim_{k \to \infty} \|e_k x - xe_k\| = 0$$

for all $x \in \mathfrak{A}_1$, and $\{e_k\}_{k \in \mathbb{N}}$ is an approximate identity for $\mathfrak{A}_i[2]$ consisting of projections, there exist $k \in \mathbb{N}$, a finite dimensional sub-C^*-algebra \mathfrak{D} of \mathfrak{A}_1 with $\mathfrak{D} \subseteq (1_{\mathfrak{M}(\mathfrak{A}_1)} - e_k\mathfrak{A}_1(1_{\mathfrak{M}(\mathfrak{A}_1)} - e_k))$ and $\mathfrak{D} \cap \mathfrak{A}_i[2] = \{0\}$, and there exists a finite subset \mathcal{H} of $e_k\mathfrak{A}_i[2]e_k$ such that for all $x \in \mathcal{F}$, there exist $y_1 \in \mathfrak{D}$ and $y_2 \in \mathcal{H}$

$$\|x - (y_1 + y_2)\| < \frac{\epsilon}{3}.$$
Set $D = \bigoplus_{\ell = 1}^s M_{n_{\ell}}$ and let $\{f_{\ell i j}^{\ell} \}_{i, j = 1}^{n_{\ell}}$ be a system of matrix units for $M_{n_{\ell}}$. Let I_{ℓ} be the ideal in A_i generated by f_{11}^{ℓ}. Since $A_i[2]$ is simple and $A_i[2]$ is an essential ideal of A_i, we have that $A_i[2] \subseteq I$ for all nonzero ideal I of A_i. Thus, $A_1[2] \subseteq I$ since $D \cap A_1[2] = 0$.

Let J^ψ_{ℓ} be the ideal in A_2 generated by $\phi(f_{11}^{\ell})$ and let J^ψ_{ℓ} be the ideal in A_2 generated by $\psi(f_{11}^{\ell})$. Since ϕ and ψ are X_2-equivariant homomorphisms and since $\phi(1_1)$ and $\psi(1_1)$ are injective homomorphisms, we have that $\phi(f_{11}^{\ell}) \notin A_2[2]$ and $\psi(f_{11}^{\ell}) \notin A_2[2]$. Therefore, $A_2[2] \subseteq J^\psi_{\ell}$ and $A_2[2] \subseteq J^\psi_{\ell}$. Since $K_0(\phi(1_1)) = K_0(\psi(1_1))$ and since $A_2[1]$ is an AF-algebra, we have that $\phi(1_1)(J^\psi_{11})$ is Murray-von Neumann equivalent to $\psi(1_1)(J^\psi_{11})$, where J^ψ_{11} is the image of f_{11}^{ℓ} in $A_1[1]$. Thus, they generate the same ideal in $A_2[1]$. Since $A_2[2] \subseteq J^\psi_{\ell}$ and $A_2[2] \subseteq J^\psi_{\ell}$ and since $\psi(1_1)(J^\psi_{11})$ and $\phi(1_1)(J^\psi_{11})$ generate the same ideal in $A_2[1]$, we have that $I = J^\psi_{\ell} = J^\psi_{\ell}$.

Note that the following diagram

$$
\begin{array}{ccc}
0 & \longrightarrow & K_0(A_2[2]) \\
& & \bigg| \\
& & K_0(I) \\
0 & \longrightarrow & K_0(A_2[2]) \\
\end{array}
\begin{array}{ccc}
& & K_0(I) \\
& & \bigg| \\
& & K_0(I) \\
0 & \longrightarrow & K_0(A_2[2]) \\
\end{array}
\begin{array}{ccc}
\longrightarrow & \longrightarrow & K_0(A_2) \\
& & K_0(I) \\
\end{array}
$$

is commutative, the rows are exact, and ι and τ are the canonical embeddings. Since $A_2[1]$ is an AF-algebra, $K_0(I)$ is injective. A diagram chase shows that $K_0(I)$ is injective. Since $KK(X_2; \phi) = KK(X_2; \psi)$, we have that $[\phi(f_{11}^{\ell})] = [\psi(f_{11}^{\ell})]$ in $K_0(A_2)$. Since $\phi(f_{11}^{\ell})$ and $\psi(f_{11}^{\ell})$ are elements of I and $K_0(I)$ is injective, we have that $[\phi(f_{11}^{\ell})] = [\psi(f_{11}^{\ell})]$ in $K_0(I)$. Since $A_i[1]$ is an AF-algebra and $A_i[2]$ is a Kirchberg algebra, they both have stable weak cancellation. By Lemma 3.15 of [15], A_i has stable weak cancellation. Thus, $\phi(f_{11}^{\ell})$ is Murray-von Neumann equivalent to $\psi(f_{11}^{\ell})$. Hence, there exists $v_{\ell} \in A_2$ such that $v_{\ell}^* v_{\ell} = \phi(f_{11}^{\ell})$ and $v_{\ell} v_{\ell}^* = \psi(f_{11}^{\ell})$.

Set

$$u_1 = \sum_{\ell = 1}^s \sum_{i = 1}^{n_{\ell}} \psi(f_{11}^{\ell}) v_{\ell} \phi(f_{11}^{\ell})$$

Then, u_1 is a partial isometry in A_1 such that $u_1^* u_1 = \phi(1_D)$, $u_1 u_1^* = \psi(1_D)$, and $u_1 \phi(x) u_1^* = \psi(x)$ for all $x \in D$.

Let $\beta : e_k A_1[2] e_k \to A_1[2]$ be the usual embedding. Note that $KK(\phi(2) \circ \beta) = KK(\psi(2) \circ \beta)$ and $\phi(2) \circ \beta$, $\psi(2) \circ \beta$ are monomorphisms. Therefore, by Theorem 6.7 of [23], there exists a partial isometry $u_2 \in A_2[2]$ such that $u_2^* u_2 = \phi(e_k)$, $u_2 u_2^* = \psi(e_k)$, and

$$||u_2 \phi(x) u_2^* - \psi(x)|| < \frac{\epsilon}{3}$$

for all $x \in H$.

Since A_2 is stable, there exists $u_3 \in M(A_2)$ such that $u_3^* u_3 = 1_{M(A_2)} - (u_1 + u_2)^* (u_1 + u_2)$ and $u_3 u_3^* = 1_{M(A_2)} - (u_1 + u_2)((u_1 + u_2)^*$. Set $u = u_1 + u_2 + u_3 \in M(A_2)$. Then u is a unitary in $M(A_2)$.
Lemma 4.6. Let \mathfrak{A} be a separable C^*-algebra over a finite topological space X. Let u be unitary in $\mathcal{M}(\mathfrak{A} \otimes \mathbb{K})$. Then $K_X (\text{Ad}(u)|_{\mathfrak{A} \otimes \mathbb{K}}) = \text{id}_{K_X(\mathfrak{A})}$.

Proof. Since $\mathfrak{A} \otimes \mathbb{K}$ is stable, we have that there exists a norm continuous path of unitaries $\{u_t\}$ in $\mathcal{M}(\mathfrak{A} \otimes \mathbb{K})$ such that $u_0 = u$ and $u_1 = 1_{\mathcal{M}(\mathfrak{A} \otimes \mathbb{K})}$. It follows that $K_X (\text{Ad}(u)|_{\mathfrak{A} \otimes \mathbb{K}}) = \text{id}_{K_X(\mathfrak{A})}$.

Theorem 4.7. Let \mathfrak{A}_1 and \mathfrak{A}_2 be in $\mathcal{B}(X_2)$ and let $x \in KK(X_2; \mathfrak{A}_1, \mathfrak{A}_2)$ be an invertible element such that $\Gamma(x)_Y$ is an order isomorphism for all $Y \in \mathbb{L}(X_2)$. Suppose $\mathfrak{A}_i[2]$ is a Kirchberg algebra, $\mathfrak{A}_i[1]$ is an AF-algebra, \mathfrak{A}_i has real rank zero, and $\mathfrak{A}_i[2]$ is an essential ideal of \mathfrak{A}_i. Then there exists an X_2-equivariant isomorphism $\phi : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KL(\phi) = KL(g^1_{X_2}(y))$ and $K_{X_2}(\phi) = K_{X_2}(y)$, where $y = KK(X_2; id_{\mathfrak{A}_1} \otimes e_{11})^{-1} \times KK(X_n; id_{\mathfrak{A}_1} \otimes e_{11})$.

Proof. Since $\mathfrak{A}_i[2]$ is a purely infinite simple C^*-algebra, $\mathfrak{A}_i[2]$ is either unital or stable. Since $\mathfrak{A}_i[2]$ is an essential ideal of \mathfrak{A}_i, $\mathfrak{A}_i[2]$ is non-unital else $\mathfrak{A}_i[2]$ is isomorphic to a direct summand of \mathfrak{A}_i which would contradict the essential assumption. Therefore, $\mathfrak{A}_i[2]$ is stable. Moreover, $Q(\mathfrak{A}_i[2])$ is simple which implies that $0 \to \mathfrak{A}_i[2] \to \mathfrak{A}_i \to \mathfrak{A}_i[1] \to 0$ is a full extension. Since $\mathfrak{A}_i[2]$ and $\mathfrak{A}_i[1]$ are nuclear C^*-algebras, \mathfrak{A}_i is a nuclear C^*-algebra.

Let $z \in KK(X_2; \mathfrak{A}_2 \otimes \mathbb{K}, \mathfrak{A}_1 \otimes \mathbb{K})$ such that $y \times z = [id_{\mathfrak{A}_1 \otimes \mathbb{K}}]$ and $y \times z = [id_{\mathfrak{A}_2 \otimes \mathbb{K}}]$. By Theorem 4.4 there exists an X_2-equivariant homomorphism $\psi_1 : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KK(X_2; \psi_1) = x$, and $(\psi_1)_{(2)}$ and $(\psi_1)_{(1)}$ are injective homomorphisms. By Theorem 4.4 there exists an X_2-equivariant homomorphism $\psi_2 : \mathfrak{A}_2 \otimes \mathbb{K} \to \mathfrak{A}_1 \otimes \mathbb{K}$ such that $KK(X_2; \psi_2) = y$, and $(\psi_2)_{(2)}$ and $(\psi_2)_{(1)}$ are injective homomorphisms. Using Theorem 4.5 and a typical approximate intertwining argument, there exists an isomorphism $\phi : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that ϕ and ψ_1 are approximately unitarily equivalent.

Let $\pi_2 : \mathfrak{A}_2 \to \mathfrak{A}_2[1]$ be the canonical quotient map. Then $\pi_2 \circ \phi|_{\mathfrak{A}_1[2]}$ is either zero or injective since $\mathfrak{A}_1[2]$ is simple. Since $\mathfrak{A}_2[1]$ is purely infinite and $\mathfrak{A}_2[1]$ is an AF-algebra, we must have that $\pi_2 \circ \phi|_{\mathfrak{A}_1[2]} = 0$. Thus, ϕ is an X_2-equivariant homomorphism. Similarly, ϕ^{-1} is an X_2-equivariant homomorphism. Hence, ϕ is an X_2-equivariant isomorphism. By construction, $KL(\phi) = KL(\psi_1) = KL(g^1_{X_2}(y))$. By Lemma 4.6 $K_{X_2}(\phi) = K_{X_2}(y)$.

Corollary 4.8. Let \mathfrak{A}_1 and \mathfrak{A}_2 be in $\mathcal{B}(X_2)$ and let $x \in KK(X_2; \mathfrak{A}_1, \mathfrak{A}_2)$ be an invertible element such that $\Gamma(x)_Y$ is an order isomorphism for all $Y \in \mathbb{L}(X_2)$. Suppose $\mathfrak{A}_i[2]$ is a Kirchberg algebra, $\mathfrak{A}_i[1]$ is an AF-algebra, \mathfrak{A}_i has real rank zero, $\mathfrak{A}_i[2]$ is an essential ideal of \mathfrak{A}_i, and $K_i(\mathfrak{A}[Y])$ and $K_i(\mathfrak{A}[Y])$ are finitely generated for all $Y \in \mathbb{L}(X_2)$. Then there exists an X_2-equivariant isomorphism $\phi : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KK(\phi) = KK(g^1_{X_2}(y))$ and $K_{X_2}(\phi) = K_{X_2}(y)$, where $y = KK(X_2; id_{\mathfrak{A}_1} \otimes e_{11})^{-1} \times KK(X_n; id_{\mathfrak{A}_1} \otimes e_{11})$.
Strong classification of extensions of purely infinite by K. We recall the following from [1] p. 341. Let $\psi : \mathcal{A} \to \mathcal{B}(H)$ be a representation of \mathcal{A}. Let H_e denote the subspace of H spanned by the ranges of all compact operators in $\psi(\mathcal{A})$. Since $\psi(\mathcal{A}) \cap K$ is an ideal of $\psi(\mathcal{A})$, we have that H_e reduces $\pi(\mathcal{A})$, and so the decomposition $H = H_e \oplus H_{e}^\perp$ induces a decomposition of ψ into sub-representations $\psi = \psi_e \oplus \psi'$. The summand ψ_e, considered as a representation of \mathcal{A} on H_e, will be called the essential part of ψ and H_e is called the essential subspace for ψ.

Let \mathcal{B} be a tight C^*-algebra over X_2. Consider the essential extension

$$e_{\mathcal{B}} : 0 \to \mathcal{B}[2] \to \mathcal{B} \to \mathcal{B}[1] \to 0.$$

If $\tau_{\mathcal{B}} : \mathcal{B}[1] \to Q(\mathcal{B}[2])$ is the Busby invariant of e, then there exists an injective homomorphism $\sigma_{\mathcal{B}} : \mathcal{B} \to M(\mathcal{B}[2])$ such that the diagram

$$\begin{array}{cccc}
0 & \to & \mathcal{B}[2] & \to \mathcal{B} & \to & \mathcal{B}[1] & \to 0 \\
\| & \| & \sigma_{\mathcal{B}} & \downarrow & \tau_{\mathcal{B}} & \downarrow & \| \\
0 & \to & \mathcal{B}[2] & \to M(\mathcal{B}[2]) & \to & Q(\mathcal{B}[2]) & \to 0
\end{array}$$

If $\mathcal{B}[2] \cong K$, let $\eta_{\mathcal{B}} : M(\mathcal{B}[2]) \to B(\ell^2)$ be the isomorphism extending the isomorphism $\mathcal{B}[2] \cong K$ and let $\overline{\eta}_{\mathcal{B}} : Q(\mathcal{B}[2]) \to B(\ell^2)/K$ be the induced isomorphism.

Lemma 4.9. Let \mathcal{A} and \mathcal{B} be separable, tight C^*-algebras over X_2 such that $\mathcal{A}[2] \cong \mathcal{B}[2] \cong K$. Let $\psi_1, \psi_2 : \mathcal{A} \to \mathcal{B}$ be two, full X_2-equivariant homomorphisms such that $K_0((\psi_1)_2) = K_0((\psi_2)_2)$ and $\eta_{\mathcal{B}} \circ \sigma_{\mathcal{B}} \circ \psi_i$ is a non-degenerate representation of \mathcal{A}. Then there exists a sequence of unitaries $\{U_n\}_{n=1}^{\infty}$ in $M(\mathcal{B}[2])$ such that

$$U_n(\sigma_{\mathcal{B}} \circ \psi_1)(a)U_n^* - (\sigma_{\mathcal{B}} \circ \psi_2)(a) \in \mathcal{B}[2]$$

for all $a \in \mathcal{A}$ and for all $n \in \mathbb{N}$, and

$$\lim_{n \to \infty} \|U_n(\sigma_{\mathcal{B}} \circ \psi_1)(a)U_n^* - (\sigma_{\mathcal{B}} \circ \psi_2)(a)\| = 0$$

for all $a \in \mathcal{A}$.

Proof. We argue as in the proof of Lemma 2.8 of [22]. Set $\sigma_i = \eta_{\mathcal{B}} \circ \sigma_{\mathcal{B}} \circ \psi_i$. By assumption, $\sigma_i : \mathcal{A} \to B(\ell^2)$ is a non-degenerated representation of \mathcal{A}. We claim that there exists a sequence of unitaries $\{V_n\}_{n=1}^{\infty}$ in $B(\ell^2)$ such that $V_n \sigma_1(a) V_n^* - \sigma_2(a) \in K$ for all $n \in \mathbb{N}$ and

$$\lim_{n \to \infty} \|V_n \sigma_1(a) V_n^* - \sigma_2(a)\| = 0$$

for all $a \in \mathcal{A}$. This will be a consequence of Theorem 5(iii) of [1].

Let $\rho : \mathcal{A} \to B(\ell^2)$ be the unique irreducible faithful representation defined by the isomorphism $\mathcal{A}[2] \cong K$. Since $\psi_i, \sigma_{\mathcal{B}}, \eta_{\mathcal{B}}$ are injective homomorphisms, σ_i is injective. Therefore, $\ker(\sigma_1) = \ker(\sigma_2) = \{0\}$. Let $\pi : B(\ell^2) \to B(\ell^2)/K$ be the natural projection. Note that

$$\pi \circ \sigma_1 = \pi \circ \eta_{\mathcal{B}} \circ \sigma_{\mathcal{B}} \circ \psi_1 = \overline{\eta}_{\mathcal{B}} \circ \pi_{\mathcal{B}} \circ \sigma_{\mathcal{B}} \circ \psi_1 = \overline{\eta}_{\mathcal{B}} \circ \pi_{\mathcal{B}} \circ \pi_{\mathcal{B}} \circ \psi_1 = \overline{\eta}_{\mathcal{B}} \circ \pi_{\mathcal{B}} \circ (\psi_1)_{\{1\}} \circ \pi_{\mathcal{A}}.$$
It now follows that \(\ker(\pi \circ \sigma_1) = \ker(\pi \circ \sigma_2) = A[2] \) since \(\tau_{\mathfrak{B}}, \tau_{\mathfrak{B}} \), and \((\psi_1)_{(1)} \) are injective homomorphisms.

Let \(H_1 \) be the essential subspace of \(\sigma_1 \). Since \(\sigma_1(A[2]) \subseteq \mathbb{K} \) and for each \(x \not\in A[2] \), we have that \(\sigma_1(x) \not\in \mathbb{K} \), we have that \(H_1 = \sigma_1(A[2])\ell^2 \). Similarly, we have that \(H_2 = \sigma_2(A[2])\ell^2 \), where \(H_2 \) is the essential subspace of \(\sigma_2 \). Let \(e \) be a minimal projection of \(A[2] \cong \mathbb{K} \). Suppose \(\sigma_1(e) \) has rank \(k \). Standard representation theory now implies that \(\sigma_1(-)|_{H_1} \) is unitarily equivalent to the direct sum of \(k \) copies of \(\rho \). Since \(K_0((\psi_1)_{(2)}) = K_0((\psi_2)_{(2)}) \), we have that \(\sigma_1(e) \) is Murray-von Neumann equivalent to \(\sigma_2(e) \). Hence, \(\sigma_2(e) \) has rank \(k \). Standard representation theory now implies that \(\sigma_2(-)|_{H_2} \) is unitarily equivalent to the direct sum of \(k \) copies of \(\rho \).

The above paragraph imply that \(\sigma_2(-)|_{H_2} \) and \(\sigma_1(-)|_{H_1} \) are unitarily equivalent. Since \(\ker(\sigma_1) = \ker(\sigma_2) \) and \(\ker(\pi \circ \sigma_1) = \ker(\pi \circ \sigma_2) \) by Theorem 5(iii) of [1], there exists a sequence of unitaries \(\{V_n\}_{n=1}^\infty \) in \(B(\ell^2) \) such that \(V_n\sigma_1(a)V_n^* - \sigma_2(a) \in \mathbb{K} \) for all \(n \in \mathbb{N} \) and for all \(a \in A \), and

\[
\lim_{n \to \infty} \|V_n\sigma_1(a)V_n^* - \sigma_2(a)\| = 0
\]

for all \(a \in A \).

Set \(U_n = \eta_{\mathfrak{B}}^{-1}(V_n) \). Then \(\{U_n\}_{n=1}^\infty \) is a sequence of unitaries in \(\mathcal{M}(\mathfrak{B}[2]) \) such that \(U_n(\sigma_{\mathfrak{B}_n} \circ \psi_1)(a)U_n^* - (\sigma_{\mathfrak{B}_n} \circ \psi_2)(a) \in \mathfrak{B}[2] \) for all \(n \in \mathbb{N} \) and for all \(a \in A \), and

\[
\lim_{n \to \infty} \|U_n(\sigma_{\mathfrak{B}_n} \circ \psi_1)(a)U_n^* - (\sigma_{\mathfrak{B}_n} \circ \psi_2)(a)\| = 0
\]

for all \(a \in A \).

Definition 4.10. A \(C^* \)-algebra \(A \) is called **weakly semiprojective** if we can always solving the \(*\)-homomorphism lifting problem

\[
\begin{array}{ccc}
\prod_{n=1}^\infty \mathfrak{B}_n & \xrightarrow{\rho_N} & (b_N, b_{N+1}, \ldots) \\
\mathfrak{A} & \xrightarrow{\phi} & \prod_{n=1}^\infty \mathfrak{B}_n / \bigoplus_{n=1}^\infty \mathfrak{B}_n \\
& & [(0, \ldots, 0, b_N, b_{N+1}, \ldots)]
\end{array}
\]

and \(\mathfrak{A} \) is called **semiprojective** if we can always solve the lifting problem

\[
\begin{array}{ccc}
\mathfrak{B}/I_N & \xleftarrow{\phi} & \prod_{n=1}^\infty \mathfrak{B}_n / \bigoplus_{n=1}^\infty I_n \\
& & (I_1 \subseteq I_2 \subseteq \cdots \subseteq \mathfrak{B})
\end{array}
\]

Lemma 4.11. Let \(\mathfrak{A}_0 \) be a unital, separable, nuclear, tight \(C^* \)-algebra over \(X_2 \) such that \(\mathfrak{A}_0[2] \cong \mathbb{K} \) and \(\mathfrak{A}_0 \) has the stable weak cancellation property. Set \(\mathfrak{A} = \mathfrak{A}_0 \otimes \mathbb{K} \). Suppose \(\beta : \mathfrak{A} \to \mathfrak{A} \) is a full \(X_2 \)-equivariant homomorphism such that \(K_{X_2}(\beta) = K_{X_2}(\text{id}_{\mathfrak{A}}) \) and \(\beta_{(1)} = \text{id}_{\mathfrak{A}_{(1)}} \). Then there exists a sequence of contractive, completely positive, linear maps \(\{\alpha_n : \mathfrak{A} \to \mathfrak{A}\}_{n=1}^\infty \) such that

1. \(\alpha_n|_{\mathfrak{A} \cap \mathfrak{A}_n} \) is a homomorphism for all \(n \in \mathbb{N} \) and
2. for all \(a \in \mathfrak{A} \),

\[
\lim_{n \to \infty} \|\alpha_n \circ \beta(a) - a\| = 0
\]
where $e_n = \sum_{k=1}^{n} 1_{A_k} \otimes e_{kk}$ and $\{ e_{ij} \}_{i,j}$ is a system of matrix units for \mathbb{K}. If, in addition, \mathfrak{A} is assumed to be weakly semiprojective, then α_n can be chosen to be a homomorphism for all $n \in \mathbb{N}$.

Proof. Since β is a full X_2-equivariant homomorphism and the ideal in \mathfrak{A} generated by e_n is \mathfrak{A}, we have that the ideal in \mathfrak{A} generated by $\beta(e_n)$ is \mathfrak{A}. Since $K_{X_2}(\beta) = K_{X_2}(\mathrm{id}_{\mathfrak{A}})$, we have that $[\beta(e_n)] = [e_n]$ in $K_0(\mathfrak{A})$. It now follows that $\beta(e_n)$ and e_n are Murray-von Neumann equivalent since \mathfrak{A}_0 has the stable weak cancellation property. Since \mathfrak{A} is stable, there exists a unitary v_n in the unitization of \mathfrak{A} such that $v_n \beta(e_n) v_n^* = e_n$.

Fix $n \in \mathbb{N}$. Let e_n be the extension $0 \to e_n \mathfrak{A}[2] e_n \to e_n \mathfrak{A} e_n \to \mathfrak{T}_n \mathfrak{A}[1] \mathfrak{T}_n \to 0$. By Lemma 1.5 of [16], e_n is a full extension. Therefore, $\sigma_{\epsilon}(e_n)$ is Murray-von Neumann equivalent to $1_{\mathcal{M}(\mathfrak{A}[2])}$. Hence, $e_n \mathfrak{A}[2] e_n \cong \mathfrak{A}[2] \cong \mathbb{K}$. Set $\mathfrak{A}_n = e_n \mathfrak{A} e_n$ and define $\beta_n : \mathfrak{A}_n \to \mathfrak{A}_n$ by

$$
\beta_n(x) = \Ad(v_n) \circ \beta(x).
$$

Then β_n is a unital, full X_2-equivariant homomorphism. Since $\eta_{\mathfrak{A}_n} \circ \sigma_{\epsilon_n} \circ \beta_n$ is a unital representation of \mathfrak{A}_n, the closed subspace of l^2 generated by $\{(\eta_{\mathfrak{A}_n} \circ \sigma_{\epsilon_n} \circ \beta_n)(x) : x \in \mathfrak{A}_n, \xi \in l^2\}$ is l^2. Therefore, $\eta_{\mathfrak{A}_n} \circ \sigma_{\epsilon_n} \circ \beta_n$ is a non-degenerate representation of \mathfrak{A}_n.

Since $K_{X_2}(\beta) = K_{X_2}(\mathrm{id}_{\mathfrak{A}})$ and the X_2-equivariant embedding of \mathfrak{A}_n as a sub-algebra of \mathfrak{A} induces an isomorphism in ideal related K-theory, we have that $K_{X_2}(\beta_n) = K_{X_2}(\mathrm{id}_{\mathfrak{A}_n})$.

By Lemma 4.9 there exists a sequence of unitaries $W_{k,n} \in \mathcal{M}(\mathfrak{A}_n[2])$ such that

$$(\Ad(W_{k,n}) \circ \sigma_{\epsilon_n} \circ \beta_n)(x) - \sigma_{\epsilon_n}(x) \in \mathfrak{A}_n[2]$$

for all $x \in \mathfrak{A}_n$ and for all $k \in \mathbb{N}$, and

$$\lim_{k \to \infty} \| (\Ad(W_{k,n}) \circ \sigma_{\epsilon_n} \circ \beta_n)(x) - \sigma_{\epsilon_n}(x) \| = 0$$

for all $x \in \mathfrak{A}_n$.

Note that $\mathcal{M}(\mathfrak{A}_n[2]) \cong \sigma_{\epsilon}(e_n) \mathcal{M}(\mathfrak{A}[2]) \sigma_{\epsilon}(e_n)$ with an isomorphism mapping $\mathfrak{A}_n[2]$ onto $e_n \mathfrak{A}[2] e_n$. Thus, we get a partial isometry $\tilde{W}_{k,n}$ in $\mathcal{M}(\mathfrak{A}[2])$ such that $\tilde{W}_{k,n}^* \tilde{W}_{k,n} = \tilde{W}_{k,n} \tilde{W}_{k,n} = \sigma_{\epsilon}(e_n)$ and

$$(\Ad(\tilde{W}_{k,n}) \circ \sigma_{\epsilon} \circ \Ad(v_n) \circ \beta_n)(x) - \sigma_{\epsilon}(x) \in \mathfrak{A}[2]$$

for all $x \in \mathfrak{A}_n$ and for all $k \in \mathbb{N}$, and

$$\lim_{k \to \infty} \| (\Ad(\tilde{W}_{k,n}) \circ \sigma_{\epsilon} \circ \Ad(v_n) \circ \beta_n)(x) - \sigma_{\epsilon}(x) \| = 0$$

for all $x \in \mathfrak{A}_n$.

Set $V_{k,n} = (\tilde{W}_{k,n} + 1_{\mathcal{M}(\mathfrak{A}[2])} - \sigma_{\epsilon}(e_n))\sigma_{\epsilon}(e_n)$. Then $V_{k,n}$ is a unitary in $\mathcal{M}(\mathfrak{A}[2])$ such that

$$\Ad(V_{k,n}) \circ \sigma_{\epsilon} \circ \beta(x) - \sigma_{\epsilon}(x) \in \mathfrak{A}[2]$$

for all $x \in e_n \mathfrak{A} e_n$ and for all $k \in \mathbb{N}$, and

$$\lim_{k \to \infty} \| (\Ad(V_{k,n}) \circ \sigma_{\epsilon} \circ \beta(x) - \sigma_{\epsilon}(x) \| = 0$$

for all $x \in e_n \mathfrak{A} e_n$. A consequence of the first part is that $(\Ad(V_{k,n}) \circ \sigma_{\epsilon} \circ \beta(x) \in \sigma_{\epsilon}(e_n \mathfrak{A} e_n) + \mathfrak{A}[2]$ for all $x \in e_n \mathfrak{A} e_n$. Since $\beta_{(1)} = \mathrm{id}_{\mathfrak{A}[2]}$, we have that $x - \beta(x) \in \mathfrak{A}[2]$ for all $x \in e_n \mathfrak{A} e_n$. Therefore,

$$\Ad(V_{k,n})(\sigma_{\epsilon}(x)) = \Ad(V_{k,n}) \circ \sigma_{\epsilon}(x - \beta(x)) + \Ad(V_{k,n}) \circ \beta(x) \in \sigma_{\epsilon}(e_n \mathfrak{A} e_n) + \mathfrak{A}[2]$$

Thus, $\alpha_{k,n} = \sigma_{\epsilon}^{-1} \circ (\Ad(V_{k,n}) \circ \sigma_{\epsilon} \circ \Ad(v_n))|_{e_n \mathfrak{A} e_n}$ is a homomorphism from $e_n \mathfrak{A} e_n$ to \mathfrak{A}.
Since
\[\lim_{k \to \infty} \| (\text{Ad}(V_{k,n}) \circ \sigma \circ \beta)(x) - \sigma(x) \| = 0 \]
for all \(x \in e_n \mathfrak{A}e_n \) and \(e_n \mathfrak{A}e_n \subseteq e_{n+1} \mathfrak{A}e_{n+1} \), there exists a strictly increasing sequence \(\{k(n)\}_{n=1}^{\infty} \) of positive integers such that
\[\lim_{n \to \infty} \| \alpha_{k(n),n} \circ \beta(x) - x \| = 0 \]
for all \(x \in \bigcup_{n=1}^{\infty} e_n \mathfrak{A}e_n \). Let \(\alpha_n \) be a completely, contractive, positive linear extension of \(\alpha_{k(n),n} \). Since \(\bigcup_{n=1}^{\infty} e_n \mathfrak{A}e_n \) is dense in \(\mathfrak{A} \), we have that
\[\lim_{n \to \infty} \| \alpha_n \circ \beta(x) - x \| = 0 \]
for all \(x \in \mathfrak{A} \). We have just proved the first part of the lemma.

We now show that \(\mathfrak{A} \) is weakly semiprojective. Suppose \(\mathfrak{A} \) is weakly semiprojective. Let \(\epsilon > 0 \) and \(\mathcal{F} \) be a finite subset of \(\mathfrak{A} \). By Theorem 2.4 of [23] (see also Definition 2.1 and Theorem 2.3 of [25], and Theorem 19.1.3 of [26]), there exist a \(\delta > 0 \) and a finite subset \(\mathcal{G} \) of \(\mathfrak{A} \) such that for any \(C^\ast \)-algebra \(\mathfrak{B} \) and any contractive, completely positive, linear map \(L : \mathfrak{A} \to \mathfrak{B} \) such that
\[\| L(ab) - L(a)L(b) \| < \delta \]
for all \(a, b \in \mathcal{G} \), there exists a homomorphism \(h : \mathfrak{A} \to \mathfrak{B} \) such that
\[\| h(x) - L(x) \| < \frac{\epsilon}{2} \]
for all \(x \in \beta(\mathcal{F}) \).

Without loss of generality, we may assume that \(\epsilon < 1 \) and \(\delta < 1 \). Set
\[M = 1 + \max \left(\{ \| a \| : a \in \mathcal{G} \} \cup \{ \| x \| : x \in \mathcal{F} \} \right) \]
Since \(e_n \mathfrak{A}e_n \subseteq e_{n+1} \mathfrak{A}e_{n+1} \) and \(\bigcup_{n=1}^{\infty} e_n \mathfrak{A}e_n \) is dense in \(\mathfrak{A} \), there exist \(n \in \mathbb{N} \) and a finite subset \(\mathcal{H} \subseteq e_n \mathfrak{A}e_n \) such that for each \(a \in \mathcal{G} \), there exists \(y \in \mathcal{H} \) such that \(\| a - y \| < \frac{\delta}{4M} \) and
\[\| \alpha_n \circ \beta(x) - x \| < \frac{\epsilon}{2} \]
for all \(x \in \mathcal{F} \). Let \(a, b \in \mathcal{G} \). Choose \(x, y \in \mathcal{H} \subseteq e_n \mathfrak{A}e_n \) such that \(\| a - x \| < \frac{\delta}{4M} \) and \(\| b - y \| < \frac{\delta}{4M} \). Note that \(\| x \| \leq 1 + \| a \| \leq M \) and \(\| y \| \leq 1 + \| b \| \leq M \). Then
\[
\| \alpha_n(ab) - \alpha_n(a)\alpha_n(b) \| = \| \alpha_n(ab - xb + xb - xy) + \alpha_n(xy) - \alpha_n(a)\alpha_n(b) \| \\
\leq \| (\alpha_n(ab - xb + xb - xy) + \alpha_n(xy) - \alpha_n(a)\alpha_n(b)) \| \\
+ \| \alpha_n(x)\alpha_n(y) - \alpha_n(x)\alpha_n(b) \| \\
+ \| \alpha_n(x)\alpha_n(b) - \alpha_n(a)\alpha_n(b) \| \\
\leq 2M \| a - x \| + 2M \| b - y \| \\
< 4M \frac{\delta}{4M} = \delta.
\]
By the choice of \(\delta \) and \(\mathcal{G} \), there exists a homomorphism \(\psi : \mathfrak{A} \to \mathfrak{A} \) such that
\[\| \psi(t) - \alpha_n(t) \| < \frac{\epsilon}{2} \]
for all $t \in \beta(\mathcal{F})$. Let $x \in \mathcal{F}$. Then

$$\|\psi \circ \beta(x) - x\| \leq \|\psi(\beta(x)) - \alpha_n(\beta(x))\| + \|\alpha_n(\beta(x)) - x\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

We have just shown that for every $\epsilon > 0$ and for every finite subset \mathcal{F} of \mathfrak{A}, there exists a homomorphism $\psi : \mathfrak{A} \to \mathfrak{A}$ such that

$$\|\psi \circ \beta(x) - x\| < \epsilon$$

for all $x \in \mathcal{F}$. Consequently, there exists a sequence of endomorphisms $\{\psi_n : \mathfrak{A} \to \mathfrak{A}\}_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} \|\psi_n \circ \beta(x) - x\| = 0$$

for all $x \in \mathfrak{A}$ since \mathfrak{A} is separable. \hfill \qed

To prove a uniqueness theorem involving tight $C^*\text{-algebras}$ \mathfrak{A} over X_2, we require that $\mathfrak{A}[1]$ belongs to a class of $C^*\text{-algebras}$ whose injective homomorphisms between two objects in this class are classified by KK.

Definition 4.12. We will be interested in classes C of separable, nuclear, simple C^*-algebras satisfying the following property that if $\mathfrak{A}, \mathfrak{B} \in C$ and $\phi, \psi : \mathfrak{A} \otimes \mathbb{K} \to \mathfrak{B} \otimes \mathbb{K}$ are two injective homomorphisms such that $KK(\phi) = KK(\psi)$, then ϕ and ψ are approximately unitarily equivalent.

Remark 4.13.

1. By Theorem 4.1.3 of [29] if C is the class of Kirchberg algebras, then C satisfies the property in Definition 4.12.
2. Let C be the class of unital, separable, nuclear, simple tracially AF C^*-algebras in \mathcal{N}. Then C satisfies the property in Definition 4.12.

Theorem 4.14. (Uniqueness Theorem 2) Let C be a class of C^*-algebras satisfying the property in Definition 4.12 and let \mathfrak{A} be a unital, separable, nuclear, tight C^*-algebra over X_2 such that $\mathfrak{A}[2] \cong \mathbb{K}$ and $\mathfrak{A}[1] \in C$. Suppose $\mathfrak{A} \otimes \mathbb{K}$ is semiprojective and \mathfrak{A} has the stable weak cancellation property. Let $\phi : \mathfrak{A} \otimes \mathbb{K} \to \mathfrak{A} \otimes \mathbb{K}$ be a full X_2-equivariant homomorphism such that $KK(X_2; \phi) = KK(X_2; \id_{\mathfrak{A} \otimes \mathbb{K}})$. Then there exists a sequence of full X_2-equivariant endomorphisms $\{\alpha_n : \mathfrak{A} \otimes \mathbb{K} \to \mathfrak{A} \otimes \mathbb{K}\}_{n=1}^{\infty}$ such that $KK(X_2; \alpha_n) = KK(X_2; \id_{\mathfrak{A} \otimes \mathbb{K}})$ and

$$\lim_{n \to \infty} \|\alpha_n \circ \phi(x) - x\| = 0$$

for all $x \in \mathfrak{A} \otimes \mathbb{K}$.

Proof. Set $\mathfrak{B} = \mathfrak{A} \otimes \mathbb{K}$. Note that \mathfrak{B} is a tight C^*-algebra over X_2 with $\mathfrak{B}[2] \cong \mathbb{K}$. Throughout the proof, $\pi : \mathfrak{A} \to \mathfrak{B}[1]$ will denote the canonical projection. Note that $KK(\phi_{\{1\}}) = KK(\id_{\mathfrak{B}[1]})$ since $KK(X_2; \phi) = KK(X_2; \id_{\mathfrak{B}})$. Since $\mathfrak{A}[1] \in C$, there exists a sequence of unitaries $\{z_k\}_{k=1}^{\infty}$ in $\mathcal{M}(\mathfrak{B}[1])$ such that

$$\lim_{k \to \infty} \|z_k \phi_{\{1\}}(\pi(b))z_k^* - \pi(b)\| = 0$$

for all $b \in \mathfrak{B}$. Using the fact that ϕ is an X_2-equivariant homomorphism, we have that $\pi \circ \phi = \phi_{\{1\}} \circ \pi$, and hence

$$\lim_{k \to \infty} \|z_k(\pi \circ \phi(b))z_k^* - \pi(b)\| = 0$$
for all \(b \in \mathcal{B} \).

Let \(\pi : \mathcal{M}(\mathcal{B}) \to \mathcal{M}(\mathcal{B}[1]) \) be the surjective homomorphism induced by \(\pi \). Since \(\mathcal{B} \) is stable, by Corollary 2.3 of [35], we have that \(\mathcal{B}[1] \) is stable. Thus, the unitary group of \(\mathcal{M}(\mathcal{B}[1]) \) is path-connected, which implies that every unitary in \(\mathcal{M}(\mathcal{B}[1]) \) lifts to a unitary in \(\mathcal{M}(\mathcal{B}) \). Hence, there exists a sequence of unitaries \(\{ w_k \}_{k=1}^\infty \) in \(\mathcal{M}(\mathcal{B}) \) such that \(\pi(w_k) = z_k \).

Since \(\mathcal{B} \) is semiprojective, by Proposition 2.2 of [7] (see [26]), there exists a sequence of homomorphisms \(\{ \beta_\ell : \mathcal{B} \to \mathcal{B} \}_{\ell=1}^\infty \) and a strictly increasing sequence \(\{ k(\ell) \}_{\ell=1}^\infty \) of positive integers such that \(\pi \circ \beta_\ell = \pi \) and

\[
\lim_{\ell \to \infty} \| \text{Ad}(w_{k(\ell)}) \circ \phi(b) - \beta_\ell(b) \| = 0
\]

for all \(b \in \mathcal{B} \).

By Remark 2.5, there exists \(N_1 \in \mathbb{N} \) such that \(\beta_\ell \) is a full \(X_2 \)-equivariant homomorphism for all \(\ell \geq N_1 \). By Proposition 2.3 of [7], we may choose \(N_2 \geq N_1 \) such that for all \(\ell \geq N_2 \), we have that \(\beta_\ell \) and \(\text{Ad}(w_{k(\ell)}) \circ \phi \) is homotopic. It follows from Theorem 5.5 of [8] that \(KK(X_2; \beta_\ell) = KK(X_2; \text{Ad}(w_{k(\ell)}) \circ \phi) = KK(X_2; \phi) = KK(X_2; \text{id}_\mathcal{B}) \).

Let \(\ell \geq N_2 \). Note that \(\{ \beta_\ell \}_{\ell=1}^\infty \) is strictly increasing, and by Proposition 2.3 of [7], we may choose \(\alpha \).\(\in \mathcal{B} \) such that \(\alpha \) is semiprojective, by Proposition 2.2 of [7] (see [26]), there exists a sequence of homomorphisms \(\{ \alpha_{m,\ell} : \mathcal{B} \to \mathcal{B} \}_{m=1}^\infty \) such that

\[
\lim_{m \to \infty} \| \alpha_{m,\ell} \circ \beta_\ell(x) - x \| = 0
\]

for all \(x \in \mathcal{B} \). Since \(\beta_\ell \) and \(\text{id}_\mathcal{B} \) are full \(X_2 \)-equivariant homomorphisms, by Remark 2.5, there exists \(N_3 \) such that, for all \(m \geq N_3 \), we have that \(\alpha_{m,\ell} \) is a full \(X_2 \)-equivariant homomorphism. Moreover, by Proposition 2.3 of [7], we can choose \(N_3 \geq N_2 \) such that \(\alpha_{m,\ell} \circ \beta_\ell \circ \beta_\ell \circ \beta_\ell \) are homotopic. It follows from Theorem 5.5 of [8] that \(KK(X_2; \alpha_{m,\ell} \circ \beta_\ell) = KK(X_2; \text{id}_\mathcal{B}) \) for all \(m \geq N_3 \). Consequently, \(KK(X_2; \alpha_{m,\ell}) = KK(X_2; \text{id}_\mathcal{B}) \) for all \(m \geq N_3 \), since \(KK(X_2; \beta_\ell) = KK(X_2; \text{id}_\mathcal{B}) \).

Let \(\mathcal{F} \) be a finite subset of \(\mathcal{B} \) and \(\epsilon > 0 \). Then there exists \(\ell \geq N_2 \) such that

\[
\| \text{Ad}(w_{k(\ell)}) \circ \phi(b) - \beta_\ell(b) \| < \frac{\epsilon}{2}
\]

for all \(b \in \mathcal{F} \). Moreover, there exists \(m \geq N_3 \) such that

\[
\| \alpha_{m,\ell} \circ \beta_\ell(b) - b \| < \frac{\epsilon}{2}
\]

for all \(b \in \mathcal{F} \). Set \(\alpha_1 = \text{Ad}(w_{k(\ell)})|_{\mathcal{B}} \) and \(\alpha = \alpha_{m,\ell} \circ \alpha_1 \). Since \(w_{k(\ell)} \) is a unitary in \(\mathcal{M}(\mathcal{B}) \), we have that \(\alpha_1 \) is an automorphism of \(\mathcal{B} \) and \(KK(X_2; \alpha_1) = KK(X_2; \text{id}_\mathcal{B}) \). Therefore, \(\alpha \) is a full \(X_2 \)-equivariant homomorphism. Since \(\ell \geq N_2 \) and \(m \geq N_3 \), we have that \(KK(X_2; \alpha_{m,\ell}) = KK(X_2; \text{id}_\mathcal{B}) \). Therefore, \(KK(X_2; \alpha) = KK(X_2; \text{id}_\mathcal{B}) \). Let \(b \in \mathcal{F} \). Then

\[
\| \alpha \circ \phi(b) - b \| = \| \alpha_{m,\ell} \circ \text{Ad}(w_{k(\ell)}) \circ \phi(b) - b \|
\leq \| \alpha_{m,\ell} \circ \text{Ad}(w_{k(\ell)}) \circ \phi(b) - \alpha_{m,\ell} \circ \beta_\ell(b) \| + \| \alpha_{m,\ell} \circ \beta_\ell(b) - b \|
\leq \epsilon + \frac{\epsilon}{2} = \epsilon.
\]

We have just shown that for every \(\epsilon > 0 \) and for every finite subset \(\mathcal{F} \) of \(\mathcal{B} \), there exists a full \(X_2 \)-equivariant homomorphism \(\alpha : \mathcal{B} \to \mathcal{B} \) such that \(KK(X_2; \alpha) = KK(X_2; \text{id}_\mathcal{B}) \) and

\[
\| \alpha \circ \phi(b) - b \| < \epsilon
\]
for all $b \in \mathcal{B}$. Since \mathcal{B} is a separable C^*-algebra, there exists a sequence of full X_2-equivariant homomorphisms $\{\alpha_n : \mathcal{B} \to \mathcal{B}\}_{n=1}^{\infty}$ such that $KK(X_2; \alpha_n) = KK(X_2; \text{id}_{\mathcal{B}})$ and

$$\lim_{n \to \infty} \|\alpha_n \circ \phi(b) - b\| = 0$$

for all $b \in \mathcal{B}$.

Theorem 4.15. Let C be a class of C^*-algebras satisfying the property in Definition 4.12 and let \mathfrak{A}_1 and \mathfrak{A}_2 be unital, separable, nuclear, tight C^*-algebras over X_2 such that $\mathfrak{A}_i[2] \cong K$ and $\mathfrak{A}_i[1] \in C$. Suppose $\mathfrak{A}_i \otimes K$ is semiprojective and \mathfrak{A}_i has the stable weak cancellation property. If there exist full X_2-equivariant homomorphisms, $\phi : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K$ and $\psi : \mathfrak{A}_2 \otimes K \to \mathfrak{A}_1 \otimes K$, such that $KK(X_2; \phi \circ \psi) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K})$ and $KK(X_2; \psi \circ \phi) = KK(X_2; \text{id}_{\mathfrak{A}_1 \otimes K})$, then for any finite subset \mathcal{F} and $\epsilon > 0$, there exists an isomorphism $\gamma : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K$ such that $KK(X_2; \gamma) = KK(\phi)$ and

$$\|\gamma(x) - \phi(x)\| < \epsilon$$

for all $x \in \mathcal{F}$.

Proof. Let $\{\mathcal{F}_n\}_{n=1}^{\infty}$ be a sequence of finite subsets of $\mathfrak{A}_1 \otimes K$ such that $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ and $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is dense in $\mathfrak{A}_1 \otimes K$ and let $\{\mathcal{G}_n\}_{n=1}^{\infty}$ be a sequence of finite subsets of $\mathfrak{A}_2 \otimes K$ such that $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$ and $\bigcup_{n=1}^{\infty} \mathcal{G}_n$ is dense in $\mathfrak{A}_2 \otimes K$.

Let $\epsilon > 0$ and \mathcal{F} be a finite subset of \mathfrak{A}_1. Set $\mathcal{F}_1 = \mathcal{F} \cup \mathcal{F}_1$ and choose $m_1 \in \mathbb{N}$ such that $\sum_{k=m_1}^{\infty} \frac{1}{2^k} < \epsilon$. By Theorem 4.14 there exists a full X_2-equivariant homomorphism $\alpha_1 : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_1 \otimes K$ such that $KK(X_2; \alpha_1) = KK(X_2; \text{id}_{\mathfrak{A}_1 \otimes K})$ and

$$\|\alpha_1 \circ \psi \circ \phi(a) - a\| < \frac{1}{2^{m_1+1}}$$

for all $a \in \mathcal{F}_1$. Set $\phi_1 = \phi$ and $\psi_1 = \alpha_1 \circ \psi$. Then $KK(X_2; \psi_1) = KK(X_2; \psi)$ and $\|\psi_1 \circ \phi_1(a) - a\| < \frac{1}{2^{m_1+1}}$ for all $a \in \mathcal{F}_1$.

Set $\mathcal{G}_1 = \mathcal{G}_1 \cup \phi(\mathcal{F}_1)$. Note that $KK(X_2; \phi \circ \psi_1) = KK(X_2; \phi \circ \psi) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K})$. Hence, by Theorem 4.14 there exists a full X_2-equivariant homomorphism $\beta_1 : \mathfrak{A}_2 \otimes K \to \mathfrak{A}_2 \otimes K$ such that $KK(X_2; \beta_1) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K})$ and

$$\|\beta_1 \circ \phi \circ \psi_1(x) - x\| < \frac{1}{2^{m_1+1}}$$

for all $x \in \mathcal{G}_1$. Set $\phi_2 = \beta_1 \circ \phi$. Then $KK(X_2; \phi_2) = KK(X_2; \phi)$ and

$$\|\phi_2 \circ \psi_1(x) - x\| < \frac{1}{2^{m_1+1}}$$

for all $x \in \mathcal{G}_1$. Note that for all $x \in \mathcal{F}_1$, then

$$\|\phi(x) - \phi_2(x)\| \leq \|\phi_1(x) - \phi_2 \circ \psi_1(\phi_1(x))\| + \|\phi_2 \circ \psi_1(\phi_1(x)) - \phi_2(x)\|$$

$$< \frac{1}{2^{m_1+1}} + \|\psi_1 \circ \phi_1(x) - x\| < \frac{1}{2^{m_1}}.$$

Set $\mathcal{F}_2 = \mathcal{F}_2 \cup \phi_2(\mathcal{G}_1)$. Note that $KK(X_2; \psi \circ \phi_2) = KK(X_2; \psi \circ \phi) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K})$. Hence, by Theorem 4.14 there exists a full X_2-equivariant homomorphism $\alpha_2 : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K$.

\(\mathfrak{A}_1 \otimes K \) such that \(KK(X_2; \alpha_2) = KK(X_2; \text{id}_{\mathfrak{A}_1 \otimes K}) \) and

\[\| \alpha_2 \circ \psi \circ \phi_2(a) - a \| < \frac{1}{2^{m_1+2}} \]

for all \(a \in \mathcal{F}_2 \). Set \(\psi_2 = \alpha_2 \circ \psi \). Then \(KK(X_2; \psi_2) = KK(X_2; \psi) \) and

\[\| \psi_2 \circ \phi_2(a) - a \| < \frac{1}{2^{m_1+2}} \]

for all \(x \in \mathcal{F}_2 \).

Set \(\mathcal{G}_2 = \overline{\mathcal{G}_2} \cup \phi_2(\mathcal{F}_2) \). Note that \(KK(X_2; \phi \circ \psi_2) = KK(X_2; \phi \circ \psi) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K}) \).

Hence, by Theorem 1.14 there exists a full \(X_2 \)-equivariant homomorphism \(\beta_2 : \mathfrak{A}_2 \otimes K \to \mathfrak{A}_2 \otimes K \) such that \(KK(X_2; \beta_2) = KK(X_2; \text{id}_{\mathfrak{A}_2 \otimes K}) \) and

\[\| \beta_2 \circ \phi \circ \psi_2(x) - x \| < \frac{1}{2^{m_1+2}} \]

for all \(x \in \mathcal{G}_2 \). Set \(\phi_3 = \beta_2 \circ \phi \). Then \(KK(X_2; \phi_3) = KK(X_2; \phi) \) and

\[\| \phi_3 \circ \psi_2(x) - x \| < \frac{1}{2^{m_1+2}} \]

for all \(x \in \mathcal{G}_2 \). Note that for all \(x \in \mathcal{F}_2 \), we have that

\[\| \phi_2(x) - \phi_3(x) \| \leq \| \phi_2(x) - \phi_3 \circ \psi_2(\phi_2(x)) \| + \| \phi_3 \circ \psi_2(\phi_2(x)) - \phi_3(x) \| \]

\[< \frac{1}{2^{m_1+2}} + \| \phi_2(\phi_2(x)) - x \| \leq \frac{1}{2^{m_1+1}}. \]

Continuing this process, we have constructed a sequence \(\{ \mathcal{F}_n \}_{n=1}^{\infty} \) of finite subsets of \(\mathfrak{A}_1 \otimes K \), a sequence \(\{ \mathcal{G}_n \}_{n=1}^{\infty} \) of finite subsets of \(\mathfrak{A}_2 \otimes K \), a sequence of full \(X_2 \)-equivariant homomorphisms \(\{ \phi_n : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K \}_{n=1}^{\infty} \), and a sequence of full \(X_2 \)-equivariant homomorphisms \(\{ \psi_n : \mathfrak{A}_2 \otimes K \to \mathfrak{A}_1 \otimes K \}_{n=1}^{\infty} \) such that

1. \(KK(X_2; \phi_n) = KK(X_2; \phi) \) for all \(n \in \mathbb{N} \) and \(\phi_1 = \phi \);
2. \(KK(X_2; \psi_n) = KK(X_2; \psi) \) for all \(n \in \mathbb{N} \);
3. \(\mathcal{F}_n \subseteq \mathcal{F}_{n+1} \) and \(\overline{\mathcal{F}_n} \subseteq \mathcal{F}_n \);
4. \(\mathcal{G}_n \subseteq \mathcal{G}_{n+1} \) and \(\overline{\mathcal{G}_n} \subseteq \mathcal{G}_n \);
5. for each \(x \in \mathcal{F}_n \) and for each \(x \in \mathcal{G}_n \),

\[\| \psi_n \circ \phi_n(x) - x \| < \frac{1}{2^{m_1+n}} \quad \text{and} \quad \| \phi_{n+1} \circ \psi_n(x) - x \| < \frac{1}{2^{m_1+n}} \]

6. for each \(x \in \mathcal{F}_n \),

\[\| \phi_n(x) - \phi_{n+1}(x) \| < \frac{1}{2^{m_1+n-1}} \]

Since \(\bigcup_{n=1}^{\infty} \overline{\mathcal{F}_n} \) is dense in \(\mathfrak{A}_1 \otimes K \) and \(\overline{\mathcal{F}_n} \subseteq \mathcal{F}_n \), we have that \(\bigcup_{n=1}^{\infty} \mathcal{F}_n \) is dense in \(\mathfrak{A}_1 \otimes K \).

Similarly, \(\bigcup_{n=1}^{\infty} \mathcal{G}_n \) is dense in \(\mathfrak{A}_2 \otimes K \). Therefore, there exists an isomorphism \(\gamma : \mathfrak{A}_1 \otimes K \to \mathfrak{A}_2 \otimes K \) such that

\[\| \gamma(a) - \phi_n(a) \| < \sum_{k=m_1+n-1}^{\infty} \frac{1}{2^k} \]
for all \(a \in \mathcal{F}_n \). Since \(\mathcal{F} \subseteq \mathcal{F}_1 \), we have that

\[
\| \phi(x) - \gamma(x) \| = \| \phi_1(x) - \gamma(x) \| < \sum_{k=m_1}^{\infty} \frac{1}{2^k} < \epsilon.
\]

Since

\[
\lim_{n \to \infty} \sum_{k=m_1+n-1}^{\infty} \frac{1}{2^k} = 0,
\]

we have that

\[
\lim_{n \to \infty} \| \gamma(a) - \phi_n(a) \| = 0
\]

for all \(a \in \mathcal{A}_1 \otimes \mathbb{K} \). Since \(\mathcal{A}_1 \otimes \mathbb{K} \) is semiprojective, by Proposition 2.3 of \([7]\), there exists \(N \in \mathbb{N} \) such that \(\gamma \) and \(\phi_N \) are homotopic. Hence, by Theorem 5.5 of \([8]\), \(KK(X_2; \gamma) = KK(X_2; \phi_N) = x \).

4.3. Unital Classification. We know combine the above results with the Meta-theorem of Section 3.1 (see Theorem 3.3) to get a strong classification for a class of unital \(C^* \)-algebras which includes all unital graph \(C^* \)-algebras with exactly one non-trivial ideal.

Corollary 4.16. Let \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) be unital, tight \(C^* \)-algebras over \(X_n \) such that \(\mathcal{A}_i \) has real rank zero, \(\mathcal{A}_i[n] \) is a Kirchberg algebra in \(\mathcal{N} \), and \(\mathcal{A}_i[1,n-1] \) is an AF-algebra. Let \(x \in KK(X_2; \mathcal{A}_1, \mathcal{A}_2) \) be an invertible such that \(K_{X_n}(x)_Y \) is an order isomorphism for each \(Y \in \mathcal{L}(X_n) \) and \(K_{X_n}(x)_{X_n}([1_{\mathcal{A}_1}]) = [1_{\mathcal{A}_2}] \) in \(K_0(\mathcal{A}_2) \). Then there exists an isomorphism \(\phi : \mathcal{A} \to \mathcal{B} \) such that \(K_{X_n}(\phi) = K_{X_n}(x) \).

Proof. Since \(\mathcal{A}_i[1] \) and \(\mathcal{A}_i[2] \) are separable and nuclear, we have that \(\mathcal{A}_i \) is separable and nuclear. Since \(\mathcal{A}_i[1,n-1] \) is an AF-algebra and \(\mathcal{A}_i[n] \) is a Kirchberg algebra, they both have the stable weak cancellation property. By Lemma 3.15 of \([15]\), \(\mathcal{A}_i \) has stable weak cancellation property. By Lemma 4.6, for each tight \(C^* \)-algebra \(\mathcal{A} \) over \(X_n \), we have that \(K_{X_n}(\text{Ad}(u)|_{\mathcal{A}}) \) for each unitary \(u \in \mathcal{M}(\mathcal{A}) \). A computation shows that \(K_{X_n}(-) \) satisfies (1), (2), and (3) of Theorem 3.3 since \(K_n(-) \) does. The corollary now follows from Theorem 3.3 and Theorem 4.7.

Corollary 4.17. Let \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) be unital, tight \(C^* \)-algebras over \(X_2 \) such that \(\mathcal{A}_i[2] \cong \mathbb{K} \) and \(\mathcal{A}_i[1] \) is a Kirchberg algebra in \(\mathcal{N} \). Let \(x \in KK(X_2; \mathcal{A}_1, \mathcal{A}_2) \) be an invertible such that \(K_{X_2}(x)_Y \) is an order isomorphism for each \(Y \in \mathcal{L}(X_2) \) and \(K_{X_2}(x)_{X_2}([1_{\mathcal{A}_1}]) = [1_{\mathcal{A}_2}] \) in \(K_0(\mathcal{A}_2) \). If \(\mathcal{A}_i \otimes \mathbb{K} \) is semiprojective, then there exists an isomorphism \(\gamma : \mathcal{A}_1 \otimes \mathbb{K} \to \mathcal{A}_2 \otimes \mathbb{K} \) such that \(KK(X_2; \gamma) = x \).

Proof. Since \(\mathcal{A}_i[1] \) and \(\mathcal{A}_i[2] \) are separable and nuclear, we have that \(\mathcal{A}_i \) is separable and nuclear. Since \(\mathcal{A}_i[2] \) and \(\mathcal{A}_i[1] \) have real rank zero and \(K_1(\mathcal{A}_i[2]) = 0 \), we have that \(\mathcal{A} \) has real rank zero. Since \(\mathcal{A}_i[2] \) is an AF-algebra and \(\mathcal{A}_i[1] \) is a Kirchberg algebra, they both have the stable weak cancellation property. Therefore, by Lemma 3.15 of \([15]\), \(\mathcal{A} \) has the stable weak cancellation property.

By Lemma 1.5 of \([16]\), the extension \(0 \to \mathcal{A}_i[2] \to \mathcal{A}_i \to \mathcal{A}_i[1] \to 0 \) is full, and hence by Proposition 1.6 of \([16]\), \(0 \to \mathcal{A}_i[2] \otimes \mathbb{K} \to \mathcal{A}_i \otimes \mathbb{K} \to \mathcal{A}_i[1] \otimes \mathbb{K} \to 0 \) is full. The corollary now follows from Theorem 4.1(iii), Theorem 4.15 and Theorem 3.3.
It is an open question to determine if every unital, separable, nuclear, tight C^*-algebra \mathfrak{A} over X_2 whose unique proper nontrivial ideal is isomorphic to \mathbb{K} and quotient is a Kirchberg algebra in \mathcal{N} with finitely generated K-theory is semiprojective. The following results show that under some K-theoretical conditions, \mathfrak{A} is semiprojective.

Lemma 4.18. Let E be a graph with finitely many vertices such that $C^*(E)$ is a tight C^*-algebra over X_2 with $C^*(E)[1]$ being purely infinite. Then $C^*(E)$ and $C^*(E) \otimes \mathbb{K}$ are semiprojective.

Proof. The fact that $C^*(E)$ is semiprojective follows from the results of [12]. By Proposition 6.4 of [18], $C^*(E)[2]$ is stable. Since $C^*(E)$ is a unital C^*-algebra, by Lemma 1.5 of [16], the extension $e : 0 \to C^*(E)[2] \to C^*(E) \to C^*(E)[1] \to 0$ is a full extension. By Proposition 3.21 and Corollary 3.22 of [15], $C^*(E)$ is properly infinite. Therefore, by Theorem 4.1 of [3], $C^*(E) \otimes \mathbb{K}$ is semiprojective.

Proposition 4.19. Let \mathfrak{A} be unital, separable, nuclear, tight C^*-algebras over X_2. If $\mathfrak{A}[2] \cong \mathbb{K}$ and $\mathfrak{A}[1]$ is a Kirchberg algebra in \mathcal{N} such that $\text{rank}(K_1(\mathfrak{A}[1])) \leq \text{rank}(K_0(\mathfrak{A}[1]))$, $K_1(\mathfrak{A}[1])$ is free, and the K-groups of $\mathfrak{A}[i]$ are finitely generated, then \mathfrak{A} and $\mathfrak{A} \otimes \mathbb{K}$ are semiprojective. Consequently, \mathfrak{A} semiprojective.

Proof. By Lemma 1.5 of [16], $e : 0 \to \mathfrak{A}[2] \to \mathfrak{A} \to \mathfrak{A}[1] \to 0$ is a full extension. By Corollary 3.22 of [15], $K_0(\mathfrak{A}) = K_0(\mathfrak{A})$. By Theorem 6.4 of [11], there exists a graph E with finitely many vertices such that $K_{X_2}^+(\mathfrak{A}) \cong K_{X_2}^+(C^*(E))$ such that $C^*(E)$ is a tight C^*-algebra over X_2. Since E has finitely many vertices, $C^*(E)$ is unital. Since $K_{X_2}^+(\mathfrak{A}) \cong K_{X_2}^+(C^*(E))$, we have that $C^*(E)[1]$ is a Kirchberg algebra. By Theorem 3.9 of [16], we have that $\mathfrak{A} \otimes \mathbb{K} \cong C^*(E) \otimes \mathbb{K}$. By Lemma 4.18, $C^*(E)$ and $C^*(E) \otimes \mathbb{K}$ are semiprojective. Hence, by Proposition 2.7 of [3], \mathfrak{A} and $\mathfrak{A} \otimes \mathbb{K}$ are semiprojective.

Corollary 4.20. Let \mathfrak{A}_1 and \mathfrak{A}_2 be unital, tight C^*-algebras over X_2 such that $\mathfrak{A}_1[2] \cong \mathbb{K}$ and $\mathfrak{A}_1[1]$ is a Kirchberg algebra in \mathcal{N} such that $\text{rank}(K_1(\mathfrak{A}_1[1])) \leq \text{rank}(K_0(\mathfrak{A}_1[1]))$, $K_1(\mathfrak{A}_1[1])$ is free, and the K-groups of \mathfrak{A}_1 are finitely generated. Let $x \in KK(X_2; \mathfrak{A}_1, \mathfrak{A}_2)$ be an invertible such that $K_{X_2}(x)_Y$ is an order isomorphism for each $Y \in \mathbb{L}(X_2)$ and $K_{X_2}(x)[1_{\mathfrak{A}_2}] = [1_{\mathfrak{A}_2}]$ in $K_0(\mathfrak{A}_2)$. Then there exists an isomorphism $\gamma : \mathfrak{A}_1 \otimes \mathbb{K} \to \mathfrak{A}_2 \otimes \mathbb{K}$ such that $KK(X_2; \gamma) = x$.

Proof. This follows from Proposition 4.19 and Corollary 4.17.

5. Applications

Let E be a graph satisfying Condition (K) (in particular, if $C^*(E)$ has finitely many ideals, then E satisfies Condition (K)). Let $\mathfrak{I}_1, \mathfrak{I}_2$ be ideals of $C^*(E)$ such that $\mathfrak{I}_1 \subseteq \mathfrak{I}_2$ and $\mathfrak{I}_2/\mathfrak{I}_1$ is simple. Then by Theorem 5.1 of [38] and Corollary 3.5 of [2], $\mathfrak{I}_2/\mathfrak{I}_1$ is a simple graph C^*-algebra. Hence, $\mathfrak{I}_2/\mathfrak{I}_1$ is either a Kirchberg algebra or an AF algebra.

5.1. Classification of graph C^*-algebras with exactly one ideal.

Lemma 5.1. Let E be a graph with finitely many vertices such that $C^*(E)$ is a simple AF-algebra. Then $C^*(E) \otimes \mathbb{K} \cong \mathbb{K}$. Consequently, if F is a graph with finitely many vertices such that $C^*(F)$ is a tight C^*-algebra over X_2 and $C^*(F)[2]$ is an AF-algebra, then $C^*(F)[2] \cong \mathbb{K}$.
Proof. We claim that E is a finite graph. By Corollary 2.13 and Corollary 2.15 of [9], E has no cycles, and for every vertex v_0 that emits infinitely many edges and for each vertex v, there exists a path from v to v_0. Since E has no cycles, we have that every vertex of E emits only finitely many edges. Hence, E is a finite graph. By Proposition 1.18 of [30], $C^*(E) \cong M_n$.

We now prove the second statement. First note that $C^*(F)[2]$ is a simple AF-algebra. Since $C^*(F)[2]$ is stably isomorphic to a subgraph of E, $C^*(F)[2] \otimes \mathbb{K} \cong C^*(E)$ for some graph E with finitely many vertices. Since $C^*(E)$ is a simple AF-algebra, we have that $C^*(E) \otimes \mathbb{K} \cong \mathbb{K}$. Hence, $C^*(F)[2] \otimes \mathbb{K} \cong \mathbb{K}$ which implies that $C^*(F)[2] \cong M_n$ or $C^*(F)[2] \cong \mathbb{K}$. Since $C^*(F)[2]$ is a non-unital C^*-algebra ($C^*(E)$ is a tight C^*-algebra over X_2), we have that $C^*(F)[2] \cong \mathbb{K}$. \hfill \Box

Definition 5.2. For a C^*-algebra \mathfrak{A}, set

$$\Sigma\mathfrak{A} = \{ x \in K_0(\mathfrak{A}) : x = [p] \text{ for some projection } p \text{ in } \mathfrak{A} \}.$$

Let \mathfrak{B} be a C^*-algebra. An order isomorphism $\alpha : K_0(\mathfrak{A}) \to K_0(\mathfrak{B})$ is \textit{scale preserving} if one of the following holds:

1. \mathfrak{A} is unital if and only if \mathfrak{B} unital and $\alpha([1_{\mathfrak{A}}]) = [1_{\mathfrak{B}}]$.
2. \mathfrak{A} is non-unital if and only if \mathfrak{B} is non-unital and $\alpha(\Sigma\mathfrak{A}) = \Sigma\mathfrak{B}$.

Theorem 5.3. Let E_1 and E_2 be graphs with finitely many vertices and $C^*(E_i)$ is a tight C^*-algebra over X_2. If $\alpha : K_{X_2}^+(C^*(E_1)) \to K_{X_2}^+(C^*(E_2))$ is an isomorphism such that α_Y is scale preserving for all $Y \in \mathcal{I}(X_2)$, then there exists an isomorphism $\phi : C^*(E_1) \to C^*(E_2)$ such that $K_{X_2}(\phi) = \alpha$.

Proof. Since E_i has finitely many vertices, $C^*(E_1)$ and $C^*(E_2)$ are unital C^*-algebras.

Case 1: Suppose $C^*(E_1)$ is an AF-algebra. Then $C^*(E_2)$ is an AF-algebra. Hence, the result follows from Elliott’s classification of AF-algebras [19].

Case 2: Suppose $C^*(E_1)$ is not an AF-algebra. Then $C^*(E_2)$ is not an AF-algebra.

Subcase 2.1: Suppose $C^*(E_1)[1]$ is an AF-algebra. Then $C^*(E_2)[1]$ is an AF-algebra. By Corollary 2.10 and Corollary 2.11 there exists an isomorphism $\phi : C^*(E_1) \to C^*(E_2)$ such that $K_{X_2}(\phi) = \alpha$.

Subcase 2.2: Suppose $C^*(E_1)[1]$ is a Kirchberg algebra. Then $C^*(E_2)[1]$ is a Kirchberg algebra. Since $C^*(E_i)$ is not an AF-algebra, either $C^*(E_i)[2]$ is Kirchberg algebra or an AF-algebra.

Suppose $C^*(E_i)[2]$ is a Kirchberg algebra. By Theorem 2.4 of [32], there exists an isomorphism $\phi : C^*(E_1) \to C^*(E_2)$ such that $K_{X_2}(\phi) = \alpha$. Suppose $C^*(E_i)[2]$ is an AF-algebra. Then, by Lemma 5.1 $C^*(E_i)[2] \cong \mathbb{K}$. By Corollary 4.20 and Corollary 2.11 there exists an isomorphism $\phi : C^*(E_1) \to C^*(E_2)$ such that $K_{X_2}(\phi) = \alpha$. \hfill \Box

The following theorem completes the classification of graph C^*-algebras with exactly one non-trivial ideal.

Corollary 5.4. Let E_1 and E_2 be graphs such that $C^*(E_1)$ is a tight C^*-algebra over X_2. Then $C^*(E_1) \cong C^*(E_2)$ if and only if there exists an isomorphism $\alpha : K_{X_2}^+(C^*(E_1)) \to K_{X_2}^+(C^*(E_2))$ such that α_Y is a scale preserving isomorphism for all $Y \in \mathcal{I}(X_2)$.

Proof. The only case that is not covered by Theorem 4.9 of [15] is the case that \(C^*(E_i) \) is unital. The unital case follows from Theorem 5.3 because of Theorem 3.3.

5.2. Classification of graph \(C^* \)-algebras with more than one ideal. For a tight \(C^* \)-algebra \(\mathfrak{A} \) over \(X_n \), the finite and infinite simple sub-quotients of \(\mathfrak{A} \) are separated if there exists \(U \in O(X_n) \) such that either

1. \(\mathfrak{A}(U) \) is an AF-algebra and \(\mathfrak{A}(X_n \setminus U) \otimes O_\infty \cong \mathfrak{A}(X_n \setminus U) \) or
2. \(\mathfrak{A}(X_n \setminus U) \) is an AF-algebra and \(\mathfrak{A}(U) \otimes O_\infty \cong \mathfrak{A}(U) \).

In [14], the authors proved that if \(\mathfrak{A}_1 \) and \(\mathfrak{A}_2 \) are graph \(C^* \)-algebras that are tight \(C^* \)-algebras over \(X_n \) such that the finite and infinite simple sub-quotients are separated, then \(\mathfrak{A}_1 \otimes K \cong \mathfrak{A}_2 \otimes K \) if and only if \(K^+_X(\mathfrak{A}_1) \cong K^+_X(\mathfrak{A}_2) \). We will show in this section that under mild \(K \)-theoretical conditions, we may remove the separated condition for the case \(n = 3 \).

Lemma 5.5. Let \(E \) be a graph such that \(C^*(E) \) is a tight \(C^* \)-algebra over \(X_n \).

(i) If \(C^*(E)[n] \) and \(C^*(E)[1] \) are purely infinite and \(C^*(E)[2, n-1] \) is an AF-algebra, then

\[
e_1 : 0 \to C^*(E)[2,n] \otimes K \to C^*(E) \otimes K \to C^*(E)[1] \otimes K \to 0
\]

is a full extension.

(ii) If \(C^*(E)[k,n] \) and \(C^*(E)[1,k-2] \) are AF-algebras and \(C^*(E)[k-1] \) is purely infinite, then

\[
e_2 : 0 \to C^*(E)[k,n] \otimes K \to C^*(E) \otimes K \to C^*(E)[1,k-1] \otimes K \to 0
\]

is a full extension.

Proof. Suppose \(C^*(E)[n] \) and \(C^*(E)[1] \) are purely infinite and \(C^*(E)[2,n-1] \) is an AF-algebra. Note that \(C^*(E)[1,n-1]/C^*(E)[2,n-1] \cong C^*(E)[1] \) and \(C^*(E)[2,n-1] \) is the largest ideal of \(C^*(E)[1,n-1] \) which is an AF-algebra. Since \(C^*(E)[1,n-1] \) is isomorphic to a graph \(C^* \)-algebra, by Proposition 3.10 of [15],

\[
0 \to C^*(E)[2,n-1] \otimes K \to C^*(E)[1,n-1] \otimes K \to C^*(E)[1] \otimes K \to 0
\]

is a full extension. Since \(C^*(E)[n] \otimes K \) is a purely infinite simple \(C^* \)-algebra, we have that

\[
0 \to C^*(E)[n] \otimes K \to C^*(E)[2,n] \otimes K \to C^*(E)[2,n-1] \otimes K \to 0
\]

is a full extension. Hence, by Proposition 3.2 of [17], \(e_1 \) is a full extension.

Suppose \(C^*(E)[k,n] \) and \(C^*(E)[1,k-2] \) are AF-algebras and \(C^*(E)[k-1] \) is purely infinite. Note that \(C^*(E)[k,n] \) is the largest ideal of \(C^*(E)[k-1,n] \) such that \(C^*(E)[k,n] \) is an AF-algebra and \(C^*(E)[k-1,n]/C^*(E)[k,n] \cong C^*(E)[k-1] \) is purely infinite. Since \(C^*(E)[k-1,n] \otimes K \) is isomorphic to a graph \(C^* \)-algebra, by Proposition 3.10 of [18],

\[
0 \to C^*(E)[k,n] \otimes K \to C^*(E)[k-1,n] \otimes K \to C^*(E)[k-1] \otimes K \to 0
\]

is a full extension. By Proposition 5.4 of [14], \(e_2 \) is a full extension.

Theorem 5.6. Let \(E_1 \) and \(E_2 \) be graphs such that \(C^*(E_i) \) is a tight \(C^* \)-algebra over \(X_n \).

Suppose

(i) \(C^*(E_i)[n] \) and \(C^*(E_i)[1] \) are purely infinite; and

(ii) \(C^*(E_i)[2,n-1] \) is an AF-algebra; and
Theorem 5.7. \(KK^1(C^*(E_1)[1], C^*(E_2)[2, n]) = KL^1(C^*(E_1)[1], C^*(E_2)[2, n]) \).

Then \(C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K} \) if and only if \(K_{X_n}^+(C^*(E_1) \otimes \mathbb{K}) \cong K_{X_n}^+(C^*(E_2) \otimes \mathbb{K}) \).

Proof. Let \(e_i \) be the extension

\[
0 \to C^*(E_i)[2, n] \otimes \mathbb{K} \to C^*(E_i) \otimes \mathbb{K} \to C^*(E_i)[1] \otimes \mathbb{K} \to 0.
\]

By Lemma 5.5(i), \(e_i \) is a full extension. Suppose \(\alpha : K_{X_n}^+(C^*(E_1) \otimes \mathbb{K}) \to K_{X_n}^+(C^*(E_2) \otimes \mathbb{K}) \).

Let \(\alpha \) to an invertible element \(x \in KK(X_n; C^*(E_1) \otimes \mathbb{K}, C^*(E_2) \otimes \mathbb{K}) \). Note that \(r_{X_n}^{[2, n]}(x) \) is invertible in \(KK((2, n); C^*(E_1)[2, n] \otimes \mathbb{K}, C^*(E_2)[2, n] \otimes \mathbb{K}) \) and \(r_{X_n}^{[1]}(x) \) is invertible in \(KK(C^*(E_1)[1] \otimes \mathbb{K}, C^*(E_2)[1] \otimes \mathbb{K}) \). By Theorem 4.7 there exists an isomorphism \(\phi_0 : C^*(E_1)[2, n] \otimes \mathbb{K} \to C^*(E_2)[2, n] \otimes \mathbb{K} \) such that \(KL(\phi_0) = z \), where \(z \) is the invertible element of \(KL(C^*(E_1)[2, n] \otimes \mathbb{K}, C^*(E_2)[2, n] \otimes \mathbb{K}) \) induced by \(r_{X_n}^{[2, n]}(x) \). By the Kirchberg-Phillips classification \([21]\) and \([29]\), there exists an isomorphism \(\phi_2 : C^*(E_1)[1] \otimes \mathbb{K} \to C^*(E_2)[1] \otimes \mathbb{K} \) such that \(KK(\phi_2) = r_{X_n}^{[1]}(x) \).

Consider \(C^*(E_i) \) as a \(C^* \)-algebra over \(X_2 \) by setting \(C^*(E_i)[2] = C^*(E_i)[2, n] \) and \(C^*(E_i)[1, 2] = C^*(E_i) \). Let \(y \) be the invertible element in \(KK(X_2, C^*(E_1), C^*(E_2)) \) induced by \(x \). Note that \(r_{X_2}^{[1]}(y) = r_{X_n}^{[1]}(x) = KK(\phi_2) \) and \(KL(r_{X_2}^{[2]}(y)) = z = KL(\phi_0) \) in \(KL(C^*(E_1)[2, n], C^*(E_2)[2, n]) \).

By Theorem 3.7 of \([13]\),

\[
r_{X_2}^{[1]}(y) \times [\tau_2] = [\tau_1] \times r_{X_2}^{[2]}(y)
\]

in \(KK^1(C^*(E_1)[1] \otimes \mathbb{K}, C^*(E_2)[2, n] \otimes \mathbb{K}) \), where \(e_i \) is the extension

\[
0 \to C^*(E_i)[2, n] \otimes \mathbb{K} \to C^*(E_i) \otimes \mathbb{K} \to C^*(E_i)[1] \otimes \mathbb{K} \to 0.
\]

Thus,

\[
KL(\phi_2) \times [\tau_2] = [\tau_1] \times KL(\phi_0)
\]

in \(KL^1(C^*(E_1)[1] \otimes \mathbb{K}, C^*(E_2)[2, n] \otimes \mathbb{K}) \). Since \(KL^1(C^*(E_1)[1] \otimes \mathbb{K}, C^*(E_2)[2, n] \otimes \mathbb{K}) = KK^1(C^*(E_1)[1] \otimes \mathbb{K}, C^*(E_2)[2, n] \otimes \mathbb{K}) \),

\[
KK(\phi_2) \times [\tau_2] = [\tau_1] \times KK(\phi_0)
\]

in \(KK^1(C^*(E_1)[1] \otimes \mathbb{K}, C^*(E_2)[2, n] \otimes \mathbb{K}) \). By Lemma 4.5 of \([13]\), \(C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K} \). □

Theorem 5.7. Let \(E_1 \) and \(E_2 \) be graphs such that \(C^*(E_i) \) is a tight \(C^* \)-algebra over \(X_n \).

Suppose

(i) \(C^*(E_i)[k, n] \) and \(C^*(E_i)[1, k - 2] \) are AF-algebras;

(ii) \(C^*(E_i)[k - 1] \) is purely infinite; and

(iii) \(KK^1(C^*(E_1)[1, k - 1], C^*(E_2)[k, n]) = KL^1(C^*(E_1)[1, k - 1], C^*(E_2)[k, n]) \).

Then \(C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K} \) if and only if \(K_{X_n}^+(C^*(E_1) \otimes \mathbb{K}) \cong K_{X_n}^+(C^*(E_2) \otimes \mathbb{K}) \).

Proof. Let \(e_i \) be the extension \(0 \to C^*(E_i)[k, n] \otimes \mathbb{K} \to C^*(E_i) \otimes \mathbb{K} \to C^*(E_i)[1, k - 1] \otimes \mathbb{K} \to 0 \).

By Lemma 5.5(ii), \(e_i \) is a full extension. Suppose \(\alpha : K_{X_n}^+(C^*(E_1) \otimes \mathbb{K}) \to K_{X_n}^+(C^*(E_2) \otimes \mathbb{K}) \).

Let \(\alpha \) to an invertible element \(x \in KK(X_n; C^*(E_1) \otimes \mathbb{K}, C^*(E_2) \otimes \mathbb{K}) \). Note that \(r_{X_n}^{[k, n]}(x) \) is invertible in \(KK([k, n]; C^*(E_1)[k, n] \otimes \mathbb{K}, C^*(E_2)[k, n] \otimes \mathbb{K}) \) and \(r_{X_n}^{[1, k - 1]}(x) \) is invertible in \(KK(C^*(E_1)[1, k - 1], C^*(E_2)[1, k - 1]) \). By Theorem 4.7 there exists an isomorphism
\[\phi_2 : C^*(E_1)[1, k-1] \otimes \mathbb{K} \to C^*(E_2)[1, k-1] \otimes \mathbb{K} \text{ such that } KL(\phi_2) = z_2, \text{ where } z_2 \text{ is the invertible element in } KL(C^*(E_1)[1, k-1], C^*(E_2)[1, k-1]) \text{ induced by } r^{[1,k-1]}_{X_3}(x). \]

By Elliott’s classification \cite{Elliott}, there exists an isomorphism \(\phi_0 : C^*(E_1)[k, n] \otimes \mathbb{K} \to C^*(E_2)[k, n] \otimes \mathbb{K} \) such that \(KK(\phi_0) = z_0 \), where \(z_0 \) is the invertible element in \(KK(C^*(E_1)[k, n] \otimes \mathbb{K}, C^*(E_2)[k, n] \otimes \mathbb{K}) \) induced by \(r^{[k,n]}_{X_3}(x) \).

Consider \(C^*(E_i) \) as a C*-algebra over \(X_2 \) by setting \(C^*(E_i)[2] = C^*(E_i)[k, n] \) and \(C^*(E_i)[1, 2] = C^*(E_i) \). Let \(y \) be the invertible element in \(KK(X_2, C^*(E_1), C^*(E_2)) \) induced by \(x \). Note that \(KL(r^{[1]}_{X_3}(y)) = z_2 = KL(\phi_2) \) and \(r^{[2]}_{X_3}(y) = z_0 = KK(\phi_0) \). By Theorem 3.7 of \cite{Elliott},

\[
\tau_{e_3} \times [\tau_{e_3}] \times [\tau_{e_3}] = [\tau_{e_3}] \times [\tau_{e_3}] \times [\tau_{e_3}]
\]

in \(KK^1(C^*(E_1)[1, k-1] \otimes \mathbb{K}, C^*(E_2)[k, n] \otimes \mathbb{K}) \), where \(e_3 \) is the extension

\[
0 \to C^*(E_i)[k, n] \otimes \mathbb{K} \to C^*(E_i) \otimes \mathbb{K} \to C^*(E_i)[1, k-1] \otimes \mathbb{K} \to 0.
\]

Thus,

\[
KL(\phi_2) \times [\tau_{e_3}] = [\tau_{e_3}] \times KL(\phi_0)
\]

in \(KL^1(C^*(E_1)[1, k-1] \otimes \mathbb{K}, C^*(E_2)[k, n] \otimes \mathbb{K}) \). Since \(KL^1(C^*(E_1)[1, k-1] \otimes \mathbb{K}, C^*(E_2)[k, n] \otimes \mathbb{K}) = KK^1(C^*(E_1)[1, k-1] \otimes \mathbb{K}, C^*(E_2)[k, n] \otimes \mathbb{K}) \),

\[
KK(\phi_2) \times [\tau_{e_3}] = [\tau_{e_3}] \times KK(\phi_0)
\]

in \(KK^1(C^*(E_1)[1, k-1] \otimes \mathbb{K}, C^*(E_2)[k, n] \otimes \mathbb{K}) \). By Lemma 4.5 of \cite{Elliott}, \(C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K} \).

Theorem 5.8. Let \(E_1 \) and \(E_2 \) be graphs such that \(C^*(E_i) \) is a tight C*-algebra over \(X_3 \). Suppose \(K_0(C^*(E_1)[1]) \) is the direct sum of cyclic groups if \(C^*(E_1)[1] \) is purely infinite and \(K_0(C^*(E_1)[1, 2]) \) is the direct sum of cyclic groups if \(C^*(E_1)[1, 2] \) is an AF-algebra. Then \(C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K} \) if and only if \(K_{X_3}^+(C^*(E_1)) \cong K_{X_3}^+(C^*(E_2)) \).

Proof. The “only if” direction is clear. Suppose \(K_{X_3}^+(C^*(E_1)) \cong K_{X_3}^+(C^*(E_2)) \). Suppose \(C^*(E_1)[1] \) is purely infinite. Then \(K_0(C^*(E_1)[1]) \) is the direct sum of cyclic groups. Thus, \(\text{Pext}_2^1(K_0(C^*(E_1)[1]), K_0(C^*(E_2)[2])) = 0 \). Since \(K_1(C^*(E_1)[1]) \) is a free group, \(\text{Pext}_2^1(K_1(C^*(E_1)[1]), K_1(C^*(E_2)[2])) = 0 \). Hence,

\[
KK^1(C^*(E_1)[1], C^*(E_2)[2, 3]) = KL^1(C^*(E_1)[1], C^*(E_2)[2, 3]).
\]

Suppose \(C^*(E_1)[1] \) is an AF-algebra. Then \(K_0(C^*(E_1)[1, 2]) \) is the direct sum of cyclic groups. Thus, \(\text{Pext}_2^1(K_0(C^*(E_1)[1, 2]), K_0(C^*(E_2)[3])) = 0 \). Since \(K_1(C^*(E_1)[1, 2]) \) is a free group, \(\text{Pext}_2^1(K_1(C^*(E_1)[1, 2]), K_1(C^*(E_2)[3])) = 0 \). Therefore,

\[
KK^1(C^*(E_1)[1, 2], C^*(E_2)[3]) = KL^1(C^*(E_1)[1, 2], C^*(E_2)[3]).
\]

Case 1: Suppose the finite and infinite simple sub-quotients of \(C^*(E_1) \) are separated. Then the finite and infinite simple sub-quotients of \(C^*(E_2) \) are separated. Hence, by Theorem 6.9 of \cite{Elliott}, \(C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K} \).

Case 2: Suppose the finite and infinite simple sub-quotients of \(C^*(E_1) \) are not separated. Then the finite and infinite simple sub-quotients of \(C^*(E_2) \) are not separated.
Subcase 2.1: Suppose $C^*(E_1)[3]$ and $C^*(E_1)[1]$ are purely infinite and $C^*(E_1)[2]$ is an AF-algebra. Then $C^*(E_2)[3]$ and $C^*(E_2)[1]$ are purely infinite and $C^*(E_2)[2]$ is an AF-algebra. Then by the above paragraph we have that $KK^1(C^*(E_1)[1], C^*(E_2)[2,3]) = KL^1(C^*(E_1)[1], C^*(E_2)[2,3])$. Hence, by Theorem 5.6, $C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K}$.

Subcase 2.2: Suppose $C^*(E_1)[3]$ and $C^*(E_1)[1]$ are AF-algebras and $C^*(E_1)[2]$ is purely infinite. Then $C^*(E_2)[3]$ and $C^*(E_2)[1]$ are AF-algebras and $C^*(E_2)[2]$ is purely infinite. Then by the above paragraph we have that

$$KK^1(C^*(E_1)[1,2], C^*(E_2)[3]) = KL^1(C^*(E_1)[1,2], C^*(E_2)[3]).$$

Hence, by Theorem 5.7, $C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K}$.

Corollary 5.9. Let E_1 and E_2 be graphs such that $C^*(E_i)$ is a tight C^*-algebra over X_3. Suppose that $K_0(C^*(E_i))$ is finitely generated. Then $C^*(E_1) \otimes \mathbb{K} \cong C^*(E_2) \otimes \mathbb{K}$ if and only if $K^+_X(C^*(E_i)) \cong K^+_X(C^*(E_2))$.

Proof. Since $C^*(E_1)$ is real rank zero, the canonical projection $\pi : C^*(E_1) \to C^*(E_1)[1]$ induces a surjective homomorphism $\pi : K_0(C^*(E_1)) \to K_0(C^*(E_1)[1])$. Hence, $K_0(C^*(E_1)[1])$ is finitely generated since $K_0(C^*(E_i))$ is finitely generated. The corollary now follows from Theorem 5.8.

References

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
E-mail address: eilers@math.ku.dk

Faculty of Science and Technology, University of Faroe Islands, Nóatún 3, FO-100 Tórshavn, Faroe Islands
E-mail address: gunnarr@setur.fo

Department of Mathematics, University of Hawaii, Hilo, 200 W. Kawili St., Hilo, Hawaii, 96720-4091 USA
E-mail address: ruize@hawaii.edu