Discrete series representations with non-tempered embedding

Krötz, Bernhard; Kuit, Job J.; Schlichtkrull, Henrik

Published in:
Indagationes Mathematicae

DOI:
10.1016/j.indag.2022.02.010

Publication date:
2022

Document version
Publisher’s PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Discrete series representations with non-tempered embedding

Bernhard Krötza, Job J. Kuita, Henrik Schlichtkrullb,*

a Institut für Mathematik, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
b University of Copenhagen, Department of Mathematics, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark

Received 9 November 2021; received in revised form 25 February 2022; accepted 28 February 2022

Communicated by K.-H. Neeb

Abstract

We give an example of a semisimple symmetric space \(G/H \) and an irreducible representation of \(G \) which has multiplicity 1 in \(L^2(G/H) \) and multiplicity 2 in \(C^\infty(G/H) \).

© 2022 The Authors. Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Symmetric spaces; Gelfand pairs; Multiplicity

1. Introduction

Let \(G \) be a real reductive group and \(X = G/H \) an attached symmetric space. Let further \(V \) be a Harish-Chandra module and \(V^\infty \) its smooth Fréchet completion of moderate growth. We write \(V^{-\infty} = (V^\infty)' \) for the strong dual of \(V^\infty \). We recall that \(V \) is called \(H \)-spherical provided

\[\text{Hom}_G(V^\infty, C^\infty(X)) \neq 0. \]

By Frobenius reciprocity \(\text{Hom}_G(V^\infty, C^\infty(X)) \) is isomorphic to the space \((V^{-\infty})^H \) of \(H \)-invariants in \(V^{-\infty} \). It follows from [2, Corollary 3.10] that the space \((V^{-\infty})^H \) is finite dimensional.

Inside \((V^{-\infty})^H \) there are several subspaces of interest. In particular we mention

* Corresponding author.

E-mail addresses: bkroetz@gmx.de (B. Krötz), jobkuit@math.upb.de (J.J. Kuit), schlicht@math.ku.dk (H. Schlichtkrull).

https://doi.org/10.1016/j.indag.2022.02.010

0019-3577/© 2022 The Authors. Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
• \((V^{-\infty})^H_{\text{disc}}\), the subspace of functionals whose generalized matrix coefficients lie in the Harish-Chandra Schwartz space \(\mathcal{C}(X) \subset L^2(X) \cap C^\infty(X)\),
• \((V^{-\infty})^H_{\text{temp}}\), the subspace of functionals whose generalized matrix coefficients are tempered, i.e., belong to \(L^{2+\epsilon}(X)\) for all \(\epsilon > 0\).

These subspaces satisfy
\[
(V^{-\infty})^H_{\text{disc}} \subset (V^{-\infty})^H_{\text{temp}} \subset (V^{-\infty})^H.
\]

It follows from the tempered embedding theorem [6, Théorème 2] and the construction of wave packets [3, Théorème 1] that the subspaces \((V^{-\infty})^H_{\text{temp}}\) serve as the multiplicity spaces in the Plancherel decomposition of \(L^2(X)\). The Plancherel decomposition of \(L^2(X)\) is in general a mixture of discrete and continuous parts. The most continuous part of \(L^2(X)\) is the closed invariant subspace of \(L^2(X)\) that decomposes into a direct integral over the largest continuous families of representations. For these representations the space \((V^{-\infty})^H\) has been explicitly determined for almost every representation \(V\) in the families. See [4]. In this case \((V^{-\infty})^H_{\text{disc}} = \{0\}\) if \(X\) is not compact and \((V^{-\infty})^H_{\text{temp}} = (V^{-\infty})^H\). The same phenomenon occurs more generally for real spherical spaces as is described in [11, Theorem C].

In general there is no a priori reason for any of the inclusions (1.1) to be an equality, even if \((V^{-\infty})^H_{\text{disc}} \neq \{0\}\). However, no example appears to be recorded in the literature.

The objective of this paper is to provide an example where
\[
0 \neq (V^{-\infty})^H_{\text{disc}} = (V^{-\infty})^H_{\text{temp}} \subsetneq (V^{-\infty})^H.
\]

To be more specific this happens for \(X\) the \(n\)-dimensional one-sheeted hyperboloid which is homogeneous for the connected Lorentzian group \(G = \text{SO}_0(n, 1)\).

Let us briefly introduce the standard notions.

1.1. Notation

Let \(n \geq 3\) and let \(G = \text{SO}_0(n, 1)\) be the identity component of the special Lorentz group \(\text{SO}(n, 1)\). We denote by \(H\) the stabilizer of
\[
x_0 := (1, 0, \ldots, 0) \in \mathbb{R}^{n+1}
\]
in \(G\). The entry in the lower right corner of any matrix in \(\text{SO}(n, 1)\) is non-zero, and \(\text{SO}_0(n, 1)\) consists of those matrices for which this entry is positive. From this fact we see that \(H\) is the connected subgroup
\[
H = \begin{pmatrix} 1 & 0 \\ 0 & \text{SO}_0(n-1, 1) \end{pmatrix} \subset G.
\]

The group \(G\) acts transitively on the hyperboloid
\[
X := \{x \in \mathbb{R}^{n+1} \mid x_1^2 + \cdots + x_n^2 - x_{n+1}^2 = 1\},
\]
and the homogeneous space
\[
X = G/H = \text{SO}_0(n, 1)/\text{SO}_0(n-1, 1)
\]
is a symmetric space. The corresponding involution \(\sigma\) of \(G\) is given by conjugation with the diagonal matrix \(\text{diag}(-1, 1, \ldots, 1)\). The subgroup \(G^\sigma\) of \(\sigma\)-fixed elements is the stabilizer of \(\mathbb{R}x_0\). This subgroup has two components, one of which is \(H\). For our purpose it is important to use \(H\) rather than \(G^\sigma\). The pairs \((G, H)\) and \((G, G^\sigma)\) differ by the fact that \((G, G^\sigma)\) is a
Gelfand pair, whereas \((G, H)\) is not. In fact it has been shown by van Dijk [7] that \(X\) is the only symmetric space of rank one, which is not obtained as the homogeneous space of a Gelfand pair.

The regular representation of \(G\) on \(C^\infty(X)\) decomposes as the direct sum
\[
C^\infty(X) = C^\infty_{\text{even}}(X) \oplus C^\infty_{\text{odd}}(X)
\]
of the invariant subspaces of functions that are even or odd with respect to the \(G\)-equivariant symmetry \(x \mapsto -x\). The restriction of the regular representation to \(C^\infty_{\text{even}}(X)\) is isomorphic to the regular representation on \(C^\infty(G/G^\sigma)\), and the non-Gelfandness of \((G, H)\) is therefore caused by the presence of the odd functions.

1.2. Main results

The Lorentzian manifold \(X\) carries the \(G\)-invariant Laplace–Beltrami operator \(\Delta\), which is obtained as the radial part of
\[
\Box := -\frac{\partial^2}{\partial x_1^2} - \cdots - \frac{\partial^2}{\partial x_n^2} + \frac{\partial^2}{\partial x_{n+1}^2}
\]
on \(\mathbb{R}^{n+1}\). That is, for \(f \in C^\infty(X)\) we define \(\Delta f \in C^\infty(X)\) as \((\Box \tilde{f})|_X\) where \(\tilde{f}\) is any extension of \(f\) to a function, homogeneous of degree 0, on some open neighborhood of \(X\) in \(\mathbb{R}^{n+1}\).

Let
\[
\rho := \frac{1}{2}(n - 1)
\]
and for each \(\lambda \in \mathbb{C}\) let \(E_\lambda(X)\) be the eigenspace
\[
E_\lambda(X) = \{ f \in C^\infty(X) \mid \Delta f = (\lambda^2 - \rho^2) f \}.
\]
The Laplace–Beltrami operator is a scalar multiple of the Casimir element associated to the Lie group \(G\), and hence every irreducible subspace \(\mathcal{V}\) of \(C^\infty(X)\) is contained in \(E_\lambda(X)\) for some \(\lambda \in \mathbb{C}\). Apart from the sign, the scalar \(\lambda\) is uniquely determined by the infinitesimal character of \(\mathcal{V}\). Conversely, since \(X = G/H\) is rank one, \(\pm \lambda\) determines the infinitesimal character.

Let
\[
E^\text{even}_\lambda(X) = E_\lambda(X) \cap C^\infty_{\text{even}}(X), \quad E^\text{odd}_\lambda(X) = E_\lambda(X) \cap C^\infty_{\text{odd}}(X).
\]
We can now state our main result.

The manifold \(X\) carries a \(G\)-invariant measure, which is unique up to scalar multiplication. We denote by \(L^2(X)\) the associated \(G\)-invariant space of square integrable functions.

The following theorem can be seen from the general theory of hyperbolic spaces over \(\mathbb{R}\), \(\mathbb{C}\) and \(\mathbb{H}\) in [8]. See [15, Thm 6.1] and [16, Thm 6.4]. For the current simple situation it will be established along with Theorem 1.2.

Theorem 1.1. Let \(\lambda \in \mathbb{C}\) with \(\text{Re}\lambda > 0\). The intersections \(E^\text{even}_\lambda(X) \cap L^2(X)\) and \(E^\text{odd}_\lambda(X) \cap L^2(X)\) are either zero or irreducible. Moreover,
\[
E^\text{even}_\lambda(X) \cap L^2(X) \neq 0 \iff \lambda \in \rho + 1 + 2\mathbb{Z}
\]
\[
E^\text{odd}_\lambda(X) \cap L^2(X) \neq 0 \iff \lambda \in \rho + 2\mathbb{Z}.
\]

Theorem 1.2. For every \(0 < \lambda < \rho\) with \(\lambda \in \rho - \mathbb{N}\) the \(G\)-representations \(E^\text{even}_\lambda(X)\) and \(E^\text{odd}_\lambda(X)\) are irreducible and infinitesimally equivalent. Moreover in this case,
(1) if $\lambda - \rho$ is even then $E_{\lambda}^{\text{odd}}(X)$ is contained in $L^2(X)$ and $E_{\lambda}^{\text{even}}(X)$ is not contained in $C_{\text{temp}}^\infty(X)$,

(2) if $\lambda - \rho$ is odd then $E_{\lambda}^{\text{even}}(X)$ is contained in $L^2(X)$ and $E_{\lambda}^{\text{odd}}(X)$ is not contained in $C_{\text{temp}}^\infty(X)$.

For $n \geq 4$ we have $\rho > 1$ and it follows that there exists at least one discrete series representation for $X = G/H$ which has multiplicity 1 in $C_{\text{temp}}^\infty(X)$, but for which the underlying Harish-Chandra module has multiplicity 2 in $C^\infty(X)$. It is observed in [7] that the tempered multiplicity of the unitary principal series of X is two, but the phenomenon described here of representations for which the tempered multiplicity differs from the smooth multiplicity, is new.

The complete Plancherel decomposition for $\text{SO}_0(n,1)/\text{SO}_0(n-1,1)$ is given in [12]. However, this is not needed for the proof of the above theorems.

We assume $n \geq 3$ throughout, since $n = 2$ would require a separate treatment. Moreover, Theorem 1.2 is empty for $n = 2$, just as it is for $n = 3$.

2. Proof of the main results

The proof of the two main theorems is divided into several parts. We begin with the analysis on K-types.

2.1. K-Types

Let $K \subset G$ be the stabilizer of $e_{n+1} = (0, \ldots, 0, 1) \in \mathbb{R}^{n+1}$, then $K \simeq \text{SO}(n)$ is a maximal compact subgroup of G.

We are going to use the diffeomorphism $S^{n-1} \times \mathbb{R} \xrightarrow{\sim} X$ given by

$$(y, t) \mapsto (y_1 \cosh t, \ldots, y_n \cosh t, \sinh t) \in X$$

(2.1)

where $y = (y_1, \ldots, y_n) \in S^{n-1}$ and $t \in \mathbb{R}$. With the natural action of $\text{SO}(n)$ on S^{n-1} the parameter dependence on y is K-equivariant.

For each $j \in \mathbb{N}_0$ we denote by $\mathcal{H}_j \subset C^\infty(S^{n-1})$ the space of spherical harmonics of degree j. We recall that by definition \mathcal{H}_j consists of the restrictions to S^{n-1} of all harmonic polynomials on \mathbb{R}^n, homogeneous of degree j. Equivalently, \mathcal{H}_j can be defined as the eigenspace

$$\mathcal{H}_j := \{ h \in C^\infty(S^{n-1}) \mid \Delta_K h = -j(j + n - 2)h \} ,$$

where Δ_K is the angular part of the n-dimensional Laplacian

$$\frac{\partial^2}{\partial y_1^2} + \cdots + \frac{\partial^2}{\partial y_n^2} .$$

Each \mathcal{H}_j is an irreducible $\text{SO}(n)$-invariant finite dimensional subspace of $C^\infty(S^{n-1})$, and the sum $\bigoplus_{j=0}^\infty \mathcal{H}_j$ of these subspaces is dense in $C^\infty(S^{n-1})$.

It follows that the space $C_K^\infty(X)$ of K-finite functions $f \in C^\infty(X)$ is spanned by all functions given in the coordinates (y, t) by

$$f(y, t) = h(y) \varphi(t) ,$$

where $h \in C^\infty(S^{n-1})$ is a spherical harmonic, and $\varphi \in C^\infty(\mathbb{R})$. Thus

$$C_K^\infty(X) \simeq \bigoplus_{j=0}^\infty (\mathcal{H}_j \otimes C^\infty(\mathbb{R})) .$$
Being homogeneous of degree \(j \), the spherical harmonics \(h \in \mathcal{H}_j \) satisfy \(h(-y) = (-1)^j h(y) \) for \(y \in S^{n-1} \). Therefore

\[
C^\infty_K(X)_{\text{even}} \cong \bigoplus_{j=0}^\infty (\mathcal{H}_j \otimes C^\infty_{\text{parity}(j)}(\mathbb{R}))
\]

where \(\text{parity}(j) \) denotes the parity even or odd of \(j \). Likewise

\[
C^\infty_K(X)_{\text{odd}} \cong \bigoplus_{j=0}^\infty (\mathcal{H}_j \otimes C^\infty_{\text{parity}(j+1)}(\mathbb{R})).
\]

2.2. Eigenspaces

With respect to the coordinates (2.1) on \(X \) we have (see \cite[p. 455]{14})

\[
\Delta = \frac{\partial^2}{\partial t^2} + 2\rho \tanh t \frac{\partial}{\partial t} - \frac{1}{\cosh^2 t} \Delta_K.
\]

The \(K \)-finite eigenfunctions for \(\Delta \) belong to \(C^\infty(X) \), and they can be determined as follows. Let

\[
\mathcal{E}_{\lambda,K}(X) := \mathcal{E}_{\lambda}(X) \cap C^\infty_K(X),
\]

be the Harish-Chandra module of \(\mathcal{E}_{\lambda}(X) \), and for each \(j \in \mathbb{N}_0 \) let

\[
\mathcal{E}_{\lambda,j}(X) := \mathcal{E}_{\lambda}(X) \cap (\mathcal{H}_j \otimes C^\infty(\mathbb{R})).
\]

By separating the variables \(y \) and \(t \) we see that \(\mathcal{E}_{\lambda,j} \) is spanned by the functions \(f(y,t) = h(y)\varphi(t) \) for which \(h \in \mathcal{H}_j \) and

\[
\left(\frac{d^2}{dt^2} + 2\rho \tanh t \frac{d}{dt} + \frac{j(j+n-2)}{\cosh^2 t} \right) \varphi = (\lambda^2 - \rho^2)\varphi. \tag{2.2}
\]

This differential equation is invariant under sign change of \(t \). The solution with \(\varphi(0) = 1 \) and \(\varphi'(0) = 0 \) is even, and the solution with \(\varphi(0) = 0 \) and \(\varphi'(0) = 1 \) is odd. Thus the solution space decomposes as the direct sum of the one-dimensional subspaces of even and odd solutions, and we have

\[
\mathcal{E}^\text{even}_{\lambda,K}(X) = \bigoplus_{j=0}^\infty \mathcal{E}^\text{even}_{\lambda,j}(X), \quad \mathcal{E}^\text{odd}_{\lambda,K}(X) = \bigoplus_{j=0}^\infty \mathcal{E}^\text{odd}_{\lambda,j}(X)
\]

where \(\mathcal{E}^\text{even}_{\lambda,j}(X) \simeq \mathcal{E}^\text{odd}_{\lambda,j}(X) \simeq \mathcal{H}_j \) are equivalent irreducible \(K \)-types for each \(j \).

2.3. Hypergeometric functions

In fact (2.2) can be transformed into a standard equation of special function theory. We first prepare for the anticipated asymptotic behavior of \(\varphi \) by substituting \(\Phi(t) = (\cosh t)^{\lambda+\rho} \varphi(t) \). This leads to the following equation for \(\Phi(t) \)

\[
\Phi''(t) - 2\lambda \tanh t \Phi'(t) - ab (1 - \tanh^2 t) \Phi(t) = 0, \tag{2.3}
\]

where \(a = \lambda + \rho + j \) and \(b = \lambda - \rho + 1 - j \).

Next we change variables. With

\[
x = \frac{1}{2} (1 - \tanh t) = (1 + e^{2t})^{-1} \in (0,1)
\]

we replace the limits \(t = \infty \) and \(t = -\infty \) by \(x = 0 \) and \(x = 1 \), respectively. We write \(\Phi(t) = F(x) \), so that

\[
\varphi(t) = (\cosh t)^{-\lambda-\rho} F((1 + e^{2t})^{-1}).
\]
Since \(\tanh t = 1 - 2x \) and \(1 - \tanh^2 t = 4x(1 - x) \) this gives
\[
(x')^2 F''(x) + x'' F'(x) - 2\lambda(1 - 2x) F'(x)x' - ab 4x(1 - x) F(x) = 0,
\]
and since
\[
x' = -2x(1 - x), \quad x'' = 4x(1 - x)(1 - 2x),
\]
we arrive at the following equation for the function \(F(x) \)
\[
(1 - x) F''(x) + (\lambda + 1)(1 - 2x) F'(x) - ab F(x) = 0. \tag{2.4}
\]

Recall the hypergeometric function \(F(a, b; c; x) = \sum_{m=0}^{\infty} \frac{(a)_m(b)_m}{(c)_m} x^m \)
for \(x \in \mathbb{C} \) with \(|x| < 1 \), for all \(a, b, c \in \mathbb{C} \) except \(c \in -\mathbb{N}_0 \). It solves Euler’s hypergeometric differential equation
\[
x(1 - x) w'' + (c - (a + b + 1)x) w' - ab w = 0. \tag{2.5}
\]

The function \(F(a, b; c; x) \) is analytic at \(x = 0 \) with the value 1, and unless \(c \) is an integer it is the unique solution with this property.

With \(a = \lambda + \rho + j \) and \(b = \lambda - \rho + 1 - j \) as above we have \(a + b + 1 = 2(\lambda + 1) \). By comparing (2.4) and (2.5) we conclude that for each \(\lambda \notin -\mathbb{N} \) the function
\[
\varphi_{\lambda, j}(t) := (\cosh t)^{-\lambda - \rho} F(\lambda + \rho + j, \lambda - \rho + 1 - j; 1 + \lambda; (1 + e^{2t})^{-1})
\]
solves (2.2).

2.4. \(L^2 \)-Behavior

In the coordinates \((y, t)\) an invariant measure on \(X \) is given by
\[
\cos^n \nu dt \, dy
\]
where \(dt \) and \(dy \) are invariant measures on \(\mathbb{R} \) and \(S^{n-1} \), respectively. Hence a function \(f(y, t) = h(y)\psi(t) \) is square integrable if and only if
\[
\int_{\mathbb{R}} |\psi(t)|^2 \cosh^n \nu \, dt < \infty.
\]

Let \(\tilde{\varphi}_{\lambda, j}(t) = \varphi_{\lambda, j}(-t) \). By symmetry this function also solves (2.2), and it belongs to \(L^2(\mathbb{R}, \cosh^n \nu \, dt) \) if and only if \(\varphi_{\lambda, j} \) does.

Lemma 2.1. Let \(\text{Re} \lambda > 0 \) and \(j \in \mathbb{N}_0 \).

1. If \(j \in \lambda - \rho + \mathbb{N} \) then \(\varphi_{\lambda, j} \in L^2(\mathbb{R}, \cosh^n \nu \, dt) \).
2. If \(j \notin \lambda - \rho + \mathbb{N} \) then \(\varphi_{\lambda, j} \) and \(\tilde{\varphi}_{\lambda, j} \) are linearly independent, and for a sufficiently small \(\epsilon > 0 \) no non-trivial linear combination belongs to \(L^{2+\epsilon}(\mathbb{R}, \cosh^n \nu \, dt) \).

Proof. It follows from the definition of \(\varphi_{\lambda, j}(t) \) that
\[
(cosh t)^{\lambda+\rho} \varphi_{\lambda, j}(t) \to 1, \quad t \to \infty.
\]
Since $2\rho = n - 1$ this means $\varphi_{\lambda, j}$ has the desired L^2-behavior in the positive direction for all $\Re \lambda > 0$. The only issue is with the negative direction, or equivalently, with $\tilde{\varphi}_{\lambda, j}(t)$ for $t \to \infty$.

We first consider (1). The assumption that $j \in \lambda - \rho + \mathbb{N}$ implies that $b = \lambda - \rho + 1 - j \in -\mathbb{N}_0$. The Gauss series for $F(a, b; c; x)$ terminates and defines a polynomial when a or b is a non-positive integer. In particular $F(a, b; c; x)$ is then a bounded function on $[0, 1]$. It then follows from the definition of $\varphi_{\lambda, j}$ that

$$(\cosh t)^{\lambda + \rho} \varphi_{\lambda, j}(t)$$

is bounded on \mathbb{R}, and hence $|\varphi_{\lambda, j}(t)|^2 (\cosh t)^{2\rho}$ is integrable. This proves (1).

Now consider (2). According to Gauss (see [1, Thm. 2.1.3]) we have

$$\lim_{x \to 1^-} (1 - x)^{a + b - c} F(a, b; c; x) = A := \frac{\Gamma(c) \Gamma(a + b - c)}{\Gamma(a) \Gamma(b)}$$

if $\Re(a + b - c) > 0$. We apply this to $t \to \infty$ in

$$(\cosh t)^{\lambda + \rho} \tilde{\varphi}_{\lambda, j}(t) = F(\lambda + \rho + j, \lambda - \rho + 1 - j; 1 + \lambda; (1 + e^{-2t})^{-1}).$$

Here $a + b - c = \lambda$ and

$$A = \frac{\Gamma(1 + \lambda) \Gamma(\lambda)}{\Gamma(\lambda + \rho + j) \Gamma(\lambda - \rho + 1 - j)}.$$

Since $x = (1 + e^{-2t})^{-1}$ implies $1 - x = (1 + e^{2t})^{-1}$ it follows that

$$e^{-2kt} (\cosh t)^{\lambda + \rho} \tilde{\varphi}_{\lambda, j}(t) \to A, \quad t \to \infty.$$

In particular we note that $A \neq 0$ if $j \notin \lambda - \rho + \mathbb{N}$. Under this condition we see that no non-trivial linear combination of $\varphi_{\lambda, j}$ and $\tilde{\varphi}_{\lambda, j}$ exhibits $L^{2+\varepsilon}$-behavior in both directions $\pm \infty$.

This proves (2) and concludes the proof of the lemma. □

2.5. Parity of $\varphi_{\lambda, j}$

We have seen that $\varphi_{\lambda, j}$ and $\tilde{\varphi}_{\lambda, j}$ are independent solutions to (2.2) when $j \notin \lambda - \rho + \mathbb{N}$. For $j \in \lambda - \rho + \mathbb{N}$ they are proportional, as the following lemma shows. For $\alpha, \beta > -1$ and $l \in \mathbb{N}_0$ let

$$P_{l}^{(\alpha, \beta)}(z) := \frac{(\alpha + 1)_l}{l!} F(l + \alpha + \beta + 1, -l; \alpha + 1; \frac{1}{2}(1 - z))$$

be the corresponding Jacobi polynomial (see [5, page 115]).

Lemma 2.2. Assume $j = \lambda - \rho + 1 + l \in \mathbb{N}_0$ where $l \in \mathbb{N}_0$. Then

(1) $\frac{(\alpha + 1)_l}{l!} \varphi_{\lambda, j}(t) = (\cosh t)^{-\lambda - \rho} P_{l}^{(\lambda, -\lambda)}(\tanh t)$,

(2) $\varphi_{\lambda, j}(-t) = (-1)^l \varphi_{\lambda, j}(t)$,

for all $t \in \mathbb{R}$.

Note that with the repeated indices $P_{l}^{(\lambda, -\lambda)}$ is in fact a Gegenbauer polynomial.

Proof. By definition

$$\varphi_{\lambda, j}(t) = (\cosh t)^{-\lambda - \rho} F(2\lambda + 1 + l, -l; \lambda + 1; x)$$

where $x = (1 + e^{2t})^{-1} = \frac{1}{2}(1 - \tanh t)$. The List (1) follows immediately. Then (2) follows since a Gegenbauer polynomial is even or odd according to the parity of its degree. □
2.6. \(K \)-Types in \(L^2 \)

For \(\lambda \in \mathbb{C} \) with \(\text{Re}\, \lambda \geq 0 \) we define

\[
D_\lambda := \mathbb{N}_0 \cap (\lambda - \rho + \mathbb{N})
\]

if \(\lambda - \rho \in \mathbb{Z} \) and \(\lambda > 0 \), and by \(D_\lambda = \emptyset \) otherwise. Furthermore we let

\[
U_\lambda := \bigoplus_{j \in D_\lambda} (\mathcal{H}_j \otimes \varphi_{\lambda,j}).
\]

It follows from Lemma 2.2 and the fact that the parity of \(\mathcal{H}_j \) is \((-1)^j\) that \(U_\lambda \subset \mathcal{E}_{\lambda,K}^{\text{even}}(X) \) if \(\lambda - \rho \) is odd, and \(U_\lambda \subset \mathcal{E}_{\lambda,K}^{\text{odd}}(X) \) if \(\lambda - \rho \) is even.

Lemma 2.3. For all \(\lambda \in \mathbb{C} \) with \(\text{Re}\, \lambda > 0 \) we have

\[
U_\lambda = \mathcal{E}_{\lambda,K}(X) \cap L^2(X) = \mathcal{E}_{\lambda,K}(X) \cap C^\infty_{\text{temp}}(X).
\]

Proof. Let \(\text{Re}\, \lambda > 0 \). When \(\lambda - \rho \notin \mathbb{Z} \) it follows immediately from Lemma 2.1(2) that

\[
\mathcal{E}_{\lambda,j}(X) \cap C^\infty_{\text{temp}}(X) = \{0\}
\]

for each \(j \in \mathbb{N}_0 \). Since \(U_\lambda = \{0\} \) in this case (2.6) follows. Assume from now on that \(\lambda - \rho \in \mathbb{Z} \). It then follows from Lemma 2.1(1) that \(U_\lambda \subset L^2(X) \).

To complete the proof we will find for each \(j \in \mathbb{N}_0 \) a second solution to (2.2), which is linearly independent from \(\varphi_{\lambda,j} \), and which is not tempered. There are two cases, depending on the parity of \(n \).

If \(n \) is even, then \(\rho \), and hence also \(\lambda \), is not an integer. In that case we already have a second solution at hand, namely \(\varphi_{-\lambda,j} \). Since

\[
(\cosh t)^{-\lambda+\rho} \varphi_{-\lambda,j}(t) \to 1, \quad t \to \infty,
\]

this function \(\varphi_{-\lambda,j} \) does not belong to any \(L^p(\mathbb{R}, \cosh^q t \, dt) \) if \(\text{Re}\, \lambda \geq \rho \). When \(0 < \text{Re}\, \lambda < \rho \) it belongs to \(L^{2+\epsilon} \) only for \(\epsilon > \frac{2 \text{Re}\, \lambda}{\rho - \text{Re}\, \lambda} \).

We now assume \(n \) is odd. Then \(\rho \) and \(\lambda \) are positive integers. We need to find a solution linearly independent from \(F(a, b; c; x) \) to the hypergeometric Eq. (2.5) with

\[
a = \lambda + \rho + j, \quad b = \lambda - \rho + 1 - j, \quad c = 1 + \lambda.
\]

By the method of Frobenius one finds (see [13, p. 5]) such a solution \(G(a, b, c; x) \). It has the form

\[
G(x) = x^{-\lambda} \sum_{v=0}^{\infty} a_v x^v + \log x \sum_{v=0}^{\infty} b_v x^v
\]

for some explicit power series with \(a_0 = 1 \) and \(b_0 \neq 0 \). The corresponding solution to (2.2) is

\[
(\cosh t)^{-\lambda-\rho} G(a, b, c; (1 + e^{2t})^{-1}).
\]

It behaves like \((\cosh t)^{-\lambda-\rho}(1 + e^{2t})\) as \(t \to \infty \) and as before it is not tempered with respect to the invariant measure. \(\square \)
2.7. Irreducibility

Let \(\lambda \in \rho + \mathbb{Z} \) and assume \(\lambda > 0 \). It follows from Lemma 2.3 that \(U_\lambda \) is \((g, K)\)-invariant. We will prove that it is an irreducible \((g, K)\)-module by using the infinitesimal element

\[
T = E_{n+1,1} + E_{1,n+1} \in g = \mathfrak{so}(n, 1),
\]

as a raising and lowering operator between the functions \(\varphi_{\lambda, j} \) which generate \(U_\lambda \) together with \(K \). For this we need to find the derivative of \(\varphi_{\lambda, j} \).

Lemma 2.4. Let \(j = \lambda - \rho + 1 + l \in \mathbb{N}_0 \) where \(l \in \mathbb{N}_0 \). There exist constants \(A_l, B_l \in \mathbb{R} \) such that

\[
\varphi'_{\lambda, j} = A_l \varphi_{\lambda, j+1} + B_l \varphi_{\lambda, j-1}.
\]

Both \(A_l \) and \(B_l \) are non-zero, except when \(l = 0 \) or \(j = 0 \), in which cases only \(A_l \) is non-zero.

Proof. Recall from Lemma 2.2

\[
\varphi_{\lambda, j}(t) = \frac{n}{(\lambda+1)l_j} (\cosh t)^{-\lambda-\rho} P_l^{(\lambda, \lambda)}(\tanh t)
\]

for \(j = \lambda - \rho + 1 + l \). It follows that

\[
\varphi'_{\lambda, j}(t) = \frac{n}{(\lambda+1)l_j} (\cosh t)^{-\lambda-\rho} \left(- (\lambda + \rho) x P_l^{(\lambda, \lambda)}(x) + (1 - x^2)(P_l^{(\lambda, \lambda)})'(x) \right)
\]

where \(x = \tanh t \).

We obtain from [9, (4.7)] that

\[
(1 - x^2)(P_l^{(\lambda, \lambda)})'(x) = (l + 2\lambda + 1)x P_l^{(\lambda, \lambda)}(x) - \frac{(l + 1)(l + 2\lambda + 1)}{l + \lambda + 1} P_{l+1}^{(\lambda, \lambda)}(x).
\]

By [5, (5.5.5)] the polynomials \(P_l^{(\lambda, \lambda)} \) satisfy a three term recurrence relation

\[
n(l + \lambda + 1)(2l + 2\lambda + 1) x P_l^{(\lambda, \lambda)}(x) = (l + \lambda)(l + \lambda + 1) P_{l-1}^{(\lambda, \lambda)}(x) + (l + 1)(l + 2\lambda + 1) P_{l+1}^{(\lambda, \lambda)}(x).
\]

With this relation we can eliminate \(x P_l^{(\lambda, \lambda)}(x) \) and obtain \(\varphi'_{\lambda, j} \) as a linear combination of \(\varphi_{\lambda, j+1} \) and \(\varphi_{\lambda, j-1} \). The coefficients turn out to be

\[
A_l = -\frac{(\lambda + \rho + l)(2\lambda + l + 1)}{2\lambda + 2l + 1}, \quad B_l = \frac{l(\lambda - \rho + l + 1)}{2\lambda + 2l + 1}.
\]

All these coefficients are non-zero, except \(B_l \) when \(l = 0 \) or \(\lambda - \rho + l + 1 = 0 \). \(\square \)

Let \(M = K \cap H \) be the stabilizer in \(K \) of \(x_0 \), that is

\[
M = \begin{pmatrix} 1 & 0 \\ 0 & \mathrm{SO}(n - 1) \end{pmatrix} \subset \mathrm{SO}(n, 1) = G.
\]

Then \(S^{n-1} \simeq K/M \). Let \(h_j \in \mathcal{H}_j \) be the zonal spherical harmonic. This is the unique function in \(\mathcal{H}_j \) which is \(M \)-invariant and has the value 1 at the origin \((1, 0, \ldots, 0)\) of \(S^{n-1} \). Furthermore, let \(f_{\lambda, j} \in \mathcal{E}_\lambda(X) \) be defined by

\[
f_{\lambda, j}(y, t) = h_j(y) \varphi_{\lambda, j}(t).
\]
With the element T from (2.7) the coordinates (y, t) are determined from

$$K/M \times \mathbb{R} \ni (kM, t) \mapsto k \exp(tT)x_0 \in X,$$

and since T is centralized by M the left derivative $L_T f_{\lambda,j}$ by T is again M-invariant. It follows that for each $j \in \mathbb{N}_0$, the function $L_T f_{\lambda,j} \in \mathcal{E}_{\lambda,K}(X)$ is a linear combination of the same family of functions $f_{\lambda,j}$ in $\mathcal{E}_{\lambda,K}(X)$. Since $h_j(x_0) = 1$ for all j, the coefficients can be determined from the restriction to

$$\{(\cosh t, 0, \ldots, 0, \sinh t) \mid t \in \mathbb{R}\} \subset X,$$

on which L_T acts just by $\frac{d}{dt}$, and hence they are given by Lemma 2.4. It follows immediately that U_{λ} has no non-trivial (g, K)-invariant subspaces.

2.8. Equivalence

Let $\lambda \in \rho + \mathbb{Z}$ and assume $0 < \lambda < \rho$.

Lemma 2.5. The (g, K)-modules $\mathcal{E}_{\lambda,K}^{\text{even}}(X)$ and $\mathcal{E}_{\lambda,K}^{\text{odd}}(X)$ are irreducible and equivalent.

Proof. The assumption on λ implies that $D_{\lambda} = \mathbb{N}_0$, and hence U_{λ} is equal to one of the two modules $\mathcal{E}_{\lambda,K}^{\text{even}}(X)$ and $\mathcal{E}_{\lambda,K}^{\text{odd}}(X)$, depending on the parity of $\lambda - \rho$. For simplicity of exposition, let us assume a specific parity, say even, of $\lambda - \rho$. Then $\mathcal{E}_{\lambda,K}^{\text{odd}}(X) = U_{\lambda}$ is irreducible as seen in Section 2.7.

By Kostant’s theorem [10, Thm. 8] an irreducible (g, K)-module, which contains the trivial K-type, is uniquely determined up to equivalence by its infinitesimal character. Hence $\mathcal{E}_{\lambda,K}^{\text{odd}}(X)$ is equivalent to the irreducible subquotient of $\mathcal{E}_{\lambda,K}^{\text{even}}(X)$ containing $\mathcal{E}_{\lambda,0}^{\text{even}}(X)$. Since $\mathcal{E}_{\lambda,K}^{\text{odd}}(X)$ and $\mathcal{E}_{\lambda,K}^{\text{even}}(X)$ contain the same K-types, all with multiplicity one, we conclude that this subquotient is equal to $\mathcal{E}_{\lambda,K}^{\text{even}}(X)$. The lemma is proved. \(\square\)

3. Conclusion

Assume $\text{Re} \lambda > 0$. Then $\mathcal{E}_{\lambda,K}(X) \cap L^2(X) = U_{\lambda}$ by Lemma 2.3. By definition U_{λ} is non-zero if and only if $\lambda - \rho \in \mathbb{Z}$. In Section 2.6 we saw that it consists of even functions on X when $\lambda - \rho$ is odd, and vice versa. Finally, irreducibility was seen in Section 2.7. Thus the proof of Theorem 1.1 is complete.

Assume $\lambda \in \rho + \mathbb{Z}$ and $0 < \lambda < \rho$. Then $\mathcal{E}_{\lambda,K}^{\text{even}}(X)$ and $\mathcal{E}_{\lambda,K}^{\text{odd}}(X)$ are irreducible and equivalent by Lemma 2.5. One of them equals U_{λ} and belongs to $L^2(X)$, whereas we have seen in Lemma 2.3 that the other one is non-tempered. This proves Theorem 1.2.

References

