Purity in chromatically localized algebraic K-theory

Land, Markus; Mathew, Akhil; Meier, Lennart; Tamme, George

Publication date:
2020

Document version
Early version, also known as pre-print

Citation for published version (APA):
PURITY IN CHROMATICALLY LOCALIZED ALGEBRAIC K-THEORY

MARKUS LAND, AKHIL MATHEW, LENNART MEIER, AND GEORG TAMME

Abstract. We prove a purity property in telescopically localized algebraic K-theory of ring spectra: For $n \geq 1$, the $T(n)$-localization of $K(R)$ only depends on the $T(0) \oplus \cdots \oplus T(n)$-localization of R. This complements a classical result of Waldhausen in rational K-theory. Combining our result with work of Clausen–Mathew–Naumann–Noel, one finds that $L_{T(n)}K(R)$ in fact only depends on the $T(n-1) \oplus T(n)$-localization of R, again for $n \geq 1$. As consequences, we deduce several vanishing results for telescopically localized K-theory, as well as an equivalence between $K(R)$ and $\text{TC}(\tau \geq 0 R)$ after $T(n)$-localization for $n \geq 2$.

Contents

1. Introduction and results 2
2. Preliminaries 4
 2.1. Preliminaries from chromatic homotopy theory 4
 2.2. Some localization functors 6
 2.3. Localizing invariants and K-theory 8
3. Proof of Theorem A 9
 3.1. The highly connective case 9
 3.2. A truncating property 9
 3.3. The general case 11
4. Consequences and examples 14
 4.1. Direct consequences 14
 4.2. Examples of vanishing results 15
 4.3. Examples of purity 18
 4.4. Consequences for $K(1)$-local K-theory 19
 4.5. Consequences for $T(n)$-local K-theory for $n \geq 2$ 21
5. References 22

Date: November 18, 2020.

The first and fourth authors are supported by the CRC/SFB 1085 Higher Invariants (Universität Regensburg) funded by the DFG. The first author was further supported by the DFG through a research fellowship and by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92) and the Centre for Geometry and Topology (DNRF151). Results incorporated in this paper have received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 888676. This work was done while the second author was a Clay Research Fellow.
1. Introduction and Results

It is an interesting question how algebraic K-theory interacts with the chromatic filtration on the ∞-category of spectra, which arises through the height filtration on the moduli stack \mathcal{M}_{FG} of formal groups. This paper is concerned with precisely such interactions.

The paradigmatic starting point is rationalization. Waldhausen [Wal78] proved that a rational equivalence between connective ring spectra which is a π_0-isomorphism induces an equivalence in rational algebraic K-theory. An important example is the map $\mathbb{S} \to \mathbb{Z}$ from the sphere spectrum to the integers, which hence induces an equivalence $K(S) \simeq K(\mathbb{Z})$ of rational K-theory spectra. The parametrized h-cobordism theorem [WJR13] implies that $K(S)$, which is canonically equivalent to Waldhausen’s A-theory of a point $A(*)$, controls significant information about high-dimensional manifold topology. The above equivalence of rational K-theory spectra then allows one to import Borel’s computation of $K(\mathbb{Z})[Q]$ into geometric topology, see for instance [FHT8].

From the viewpoint of chromatic homotopy theory, rationalization is the first in a whole sequence of localizations. On the category of p-local spectra, rationalization is the Bousfield localization with respect to $T(0) \overset{\text{def}}{=} \mathbb{S}[1/p]$. By the periodicity theorem of Hopkins–Smith [HS98], one can iteratively define higher analogues of multiplication by p: A self-map v_1 of \mathbb{S}/p, a self-map v_2 on $\mathbb{S}/(p,v_1)$, and in general a self map v_{n+1} on $\mathbb{S}/(p,v_1,\ldots,v_n)$. We denote by $T(n) = \mathbb{S}/(p,v_1,\ldots,v_{n-1})[v^{-1}_n]$ the colimit of a v_n-self map. This defines the class of $T(n)$-acyclic spectra, and one obtains a corresponding Bousfield localization functor $L_{T(n)}$. The $T(n)$-acyclic spectra in turn can be related to the acyclic spectra for the better-known Morava K-theories $K(n)$ at the prime p: Every $T(n)$-acyclic spectrum is $K(n)$-acyclic. The converse implication is known as the telescope conjecture. This conjecture is known for $n = 1$, for MU-modules, and for ring spectra. We remark that the localizations at the $K(n)$ describe the layers of the chromatic filtration. As these layers are related to representations of the Morava stabilizer group, a p-adic Lie group, they are also accessible by arithmetic means.

The main result, proved jointly between this paper and the related work [CMNN20a], concerns the behavior of algebraic K-theory with respect to $T(n)$-localizations, and yields the following purity statement.

Theorem A. Let $n \geq 1$, and let $A \to B$ be a map of ring spectra which is a $T(n-1) \oplus T(n)$-equivalence. Then $K(A) \to K(B)$ is a $T(n)$-equivalence.

In this paper, we prove, as Theorem 3.8, that if $A \to B$ is a $T(0) \oplus T(1) \oplus \cdots \oplus T(n)$-equivalence, then $K(A) \to K(B)$ is a $T(n)$-equivalence\footnote{Moreover, if $n \geq 2$ then one can drop $T(0)$.} this answers a question from an earlier version of this paper, and suffices for many, but not all applications explored here. Using Theorem 3.8, the work [CMNN20a] proves the complementary statement that $L_{T(i)} K(L_{T(j)} S) = 0$ for $i \geq j + 2$. Theorem A then follows by combining these two assertions, as we explain in the body of the text.

For $n = 1$ and a $K(1)$-acyclic ring spectrum A, Theorem A (or Theorem 3.8) implies that the natural map induces an equivalence

$$L_{K(1)} K(A) \xrightarrow{\sim} L_{K(1)} K(A[1/p]).$$

In the case where A is an HZ-algebra, this was previously shown by Bhatt–Clausen–Mathew [BCM20] using arithmetic techniques, in particular the theory of prismatic cohomology and
its relationship with topological cyclic homology, \cite{BMST, BS}. Our results give a different proof of this fact, purely relying on tools from \(K\)-theory and homotopy theory, and a generalization to higher chromatic heights.

To put Theorem \(A\) into further context, we recall what is known about telescopically localized algebraic \(K\)-theory. By work initiated by Thomason \cite{Tho85, TT90} in the case of schemes and generalized and amplified by Clausen, Mathew, Naumann, and Noel \cite{CMNN20a, CM19}, \(T(n)\)-local \(K\)-theory satisfies \(\acute{e}\)tale descent on \(\mathbb{E}_2\)-spectral algebraic spaces for every \(n\). In fact, the \(T(1)\)-local \(K\)-theory of discrete rings is closely related to \(p\)-adic \(\acute{e}\)tale \(K\)-theory (the \(p\)-complete \(\acute{e}\)tale sheafification of \(K\)-theory). Hence, by the proven Quillen–Lichtenbaum conjecture, it is often isomorphic to \(p\)-adic \(K\)-theory in high enough degrees; see \cite{CM19} for precise statements. In contrast, Mitchell \cite{Mit90} proved that the \(K\)-theory of schemes and discrete rings (which are \(T(1)\)-acyclic) vanishes \(T(n)\)-locally for every \(n \geq 2\) and every prime \(p\). For ring spectra or spectral schemes, conjectures of Ausoni–Rognes \cite{AR02, AR08} predict higher chromatic analogs of these statements and suggest to study the \(T(n+1)\)-local \(K\)-theory of \(K(n)\)-local ring spectra.

Many results follow quite quickly from Theorem \(A\). We list a few of them here, and refer to the body of the text for more applications and explanations:

1. Let \(A\) be an \(\mathbb{E}_\infty\)-ring and \(B\) be an \(A\)-algebra. For \(m \geq n+1\), \(L_{T(m)}K(B) = 0\) implies \(L_{T(m)}K(A) = 0\); see \cite[Theorem A]{CMNN20a}.

2. For positive integers \(m \neq n, n+1\), the spectrum \(K(K(n))\) is \(T(m)\)-acyclic.

3. The map \(K(BP(n)) \to K(E(n))\) is a \(T(m)\)-equivalence for \(m \geq n+1\), and both terms vanish \(T(m)\)-locally for \(m \geq n+2\).

4. For any \(n \geq 0\) and \(m \geq 2\), the spectrum \(K(\tau_{\leq n} S)\) is \(T(m)\)-acyclic.

5. \(K(1)\)-local \(K\)-theory of discrete rings satisfies excision, nilinvariance and cdh-descent.

6. In addition, it is \(\mathbb{A}^1\)-homotopy invariant and thus identifies with the \(K(1)\)-localization of Weibel’s homotopy \(K\)-theory\(^2\).

7. For any ring spectrum \(A\) and \(n \geq 2\), there are \(T(n)\)-local equivalences between \(K(A), K(\tau_{\geq 0}A),\) and \(TC(\tau_{\geq 0}A)\).

The assembly map in algebraic \(K\)-theory for the family of cyclic subgroups

\[
\colim_{G/H \in O_{\mathbb{C}}(G)} K(RH) \longrightarrow K(RG)
\]

is a \(T(n)\)-local equivalence for \(n \geq 2\), any ring spectrum \(R\), and any group \(G\).

Statements (1)–(3) use the full strength of Theorem \(A\) whereas (4)–(7) rely only on Theorem \(3.5\).

We remark that some cases of (1) in the above list appear in work of Ausoni–Rognes and Angelini-Knoll–Salch \cite{AR02, AR12, AKS20}, and that (7) is an immediate consequence of (6) and results of \cite{LRRV17, CMM18}.

A special case of (1) in the above list is that the \(K\)-theory of any \(L_{n+1}^p\)-local ring spectrum is \(T(m)\)-acyclic for \(m \geq n+2\). This, however, is used in order to deduce Theorem \(A\) from Theorem \(3.5\) and is due to \cite{CMNN20a}. We indicate their argument in Remark 3.9 for the reader’s convenience.

Conventions. We fix a prime number \(p\) which will be the implicit prime in all Morava \(K\)-theories \(K(i)\) and \(T(i)\) below. We adopt the convention that \(K(0) = H\mathbb{Q}\). Whenever we speak of a ring spectrum, we mean an \(\mathbb{E}_1\)-ring spectrum, i.e. an algebra in the symmetric

\(^2\)From this fact, excision, nilinvariance, and cdh-descent also follow.
monoidal ∞-category Sp of spectra. By a module over a ring spectrum we mean a right module. Given an E_k-ring spectrum R for $k \geq 2$, an R-algebra is an algebra in the monoidal ∞-category $\text{RMod}(R)$ of R-modules. For a spectrum E, we denote by L_E the Bousfield localization functor at E. For a spectrum X and a pointed space Y, we write $X \otimes Y$ for the smash product $X \otimes \Omega^\infty Y$.

Acknowledgements. We are very grateful to Dustin Clausen for generously sharing his ideas and numerous helpful discussions, and to Ben Antieau for his input and interest. Finally, we thank Gijs Heuts, Niko Naumann, and George Raptis for valuable discussions and Ulrich Bunke and Lars Hesselholt for helpful comments on a previous version.

2. Preliminaries

2.1. Preliminaries from chromatic homotopy theory. For an integer $n \geq 1$, we denote by V_n a type n-complex, i.e. a pointed finite CW-complex with $K(i) \otimes V_n = 0$ for $i < n$ and $K(n) \otimes V_n \neq 0$. We denote by v_n a v_n-self map of V_n, i.e. a map $\Sigma^i V_n \to V_n$ for some positive integer d inducing an isomorphism on $K(n)$-homology and nilpotent maps on $K(i)$-homology for $i \neq n$. Such maps exist by [HS98].

If X is a pointed space or a spectrum, we define its v_n-periodic homotopy groups $v_n^{-1} \pi_*(X; V_n)$ by the formula

$$v_n^{-1} \pi_*(X; V_n) = \mathbb{Z}[v_n^{\pm 1}] \otimes_{\mathbb{Z}[v_n]} \pi_* \text{Map}_s(V_n, X).$$

Definition 2.1. We call a map of pointed spaces or spectra a v_n-periodic equivalence (with $n \geq 1$) if it induces an isomorphism on v_n-periodic homotopy groups. A map of spectra or simple spaces is a v_0-periodic equivalence if it becomes an equivalence after inverting p, and the v_0-periodic homotopy groups are by definition the homotopy groups with p inverted. For a spectrum E, we say that another spectrum X is E-acyclic if $E \otimes X = 0$ and say that a map is an E-equivalence if its fibre is E-acyclic.

For a fixed pair (V_n, v_n) we denote by $T(n) = \Sigma^\infty V_m[v_n^{-1}]$ the telescope of v_n. We adopt the convention that $T(0) = S[1/2]$. We recall that the Bousfield class of a spectrum E is the full subcategory of Sp consisting of the E-acyclic spectra. For the convenience of the reader not familiar with chromatic homotopy theory, we note the following well-known properties.

Lemma 2.2. Let X be a spectrum and Y be a pointed space.

(i) We have $v_n^{-1} \pi_*(X; V_n) \cong v_n^{-1} \pi_*(\Omega^\infty X; V_n)$.

(ii) The maps $\tau_{\geq k} X \to X$ and $\tau_{\geq k} Y \to Y$ are v_n-periodic equivalences for all k and all $n \geq 1$.

(iii) The spectra $K(m)$ are $T(n)$-acyclic for $n \neq m$.

(iv) Any $T(n)$-acyclic spectrum is $K(n)$-acyclic.

(v) A spectrum which is S/p-acyclic is also $T(n)$-acyclic for all $n \geq 1$.

(vi) The map $X \to X_p^\infty$ is a $T(n)$-equivalence for all $n \geq 1$.

(vii) The Bousfield class of $T(n)$ does not depend on the choice of (V_n, v_n).

(viii) A spectrum is $T(n)$-acyclic if and only if its v_n-periodic homotopy groups vanish.

Proof. Part (i) follows immediately from the definitions and the equivalence $\text{Map}_s(V_n, X) \simeq \text{Map}_s(V_n, \Omega^\infty X)$. Assertion (ii) follows from the observation that the v_n-periodic homotopy groups of a bounded above spectrum or space vanish. This in turn follows from the fact that the degree d of the self map v_n is positive. Claim (iii) follows from the fact that $K(m) \otimes T(n) \simeq$
For part (v) observe that some power of p, say \(p^k \), is zero on \(V_n \) and hence on \(T(n) \). Given an \(\mathbb{S}/p \)-acyclic spectrum \(X \), we have \(X/p^k = 0 \). Thus we see that

\[
0 = X/p^k \otimes T(n) \simeq X \otimes T(n)/p^k \simeq X \otimes (T(n) \oplus \Sigma T(n)),
\]

and the latter term has \(X \otimes T(n) \) as a retract. Thus \(X \) is \(T(n) \)-acyclic. Statement (vi) follows from (v), since the fibre of \(X \to X_{p^n}^\wedge \) is \(\mathbb{S}/p \)-acyclic.

For (vii), as in [MS95, Lemma 2.1], we fix a pair \((V_n, v_n)\) and consider the full subcategory of finite \(p \)-local spectra consisting of those \(Y \) which admit a \(v_n \)-self map \(y \) and such that \(T(n) \otimes Z = 0 \) implies that \(Y[y^{-1}] \otimes Z = 0 \) as well. This is a thick subcategory, as follows from [HS98, Corollary 3.8]. Since it contains \(V_n \), this thick subcategory is given by the thick subcategory of finite spectra of type at least \(n \), see [HS98, Theorem 7]. Hence if \(T(n) \otimes Z = 0 \) and \((V'_n, v'_n)\) is another choice, also \(T(n)' \otimes Z = 0 \). Running the same argument also with \(V_n' \) instead of \(V_n \) gives the claim.

To see (viii), consider a spectrum \(X \) and observe that we may calculate its \(v_n \)-periodic homotopy groups using the mapping spectrum map\((V_n, X)\) instead of the mapping space Map\((V_n, X)\) due to the positivity of the degree of the self-map \(v_n \). Thus, the \(v_n \)-periodic homotopy groups of \(X \) are isomorphic to the homotopy groups of the spectrum \((Dv_n \otimes X)[Dv_n^{-1}]\), where \(Dv_n \) denotes the dual of the finite spectrum \(\Sigma^\infty V_n \) (which is again of type \(n \)). This spectrum is equivalent to \(T(n) \otimes X \) where \(T(n) \) is the telescope of \(Dv_n \). The claim then follows from (vii).

We remark that the converse of statement (iv) (for \(n \geq 1 \)) is known as the telescope conjecture. It is known [Mah81, Mil81] to be true in height \(n = 1 \) but is open in general, see e.g. [Bar19] for a survey. We thank Dustin Clausen for help with the following lemma, which is a consequence of the nilpotence theorem.

Lemma 2.3. Let \(R \) be a ring spectrum, and \(n \geq 1 \) an integer. Then \(R \) is \(K(n) \)-acyclic if and only if it is \(T(n) \)-acyclic.

Proof. The “if”-part follows from Lemma 2.2(iv). To see the “only if” statement, we argue first that one can assume that \(T(n) \) is a ring spectrum. Indeed, by replacing \(V_n \) by \(W_n = V_n \otimes Dv_n \simeq \text{End}(\Sigma^\infty V_n) \), we can assume that the suspension spectrum of our type \(n \)-complex is an \(\mathbb{E}_1 \)-ring spectrum. Moreover, the \(v_n \)-self-map of \(V_n \) defines an element \(w \in \pi_0(W_n) \), multiplication with which is a \(v_n \)-self map again. By [HS98, Theorem 11] a power of \(w \) lies in the center of \(\pi_0(W_n) \). Thus the localization \(W_n[w^{-1}] \) admits the structure of an \(\mathbb{E}_1 \)-ring spectrum. As the Bousfield class of \(T(n) \) does not depend on the choice of the type \(n \) complex, we can thus indeed assume that \(T(n) \) is a ring spectrum. We then observe that a ring spectrum like \(T(n) \otimes R \) is zero if and only if its unit is nilpotent. By the nilpotence theorem [HS98, Theorem 3], this is the case if and only if \(K(m) \otimes (T(n) \otimes R) = 0 \) for all \(0 \leq m \leq \infty \). If \(m \neq n \) then \(K(m) \otimes T(n) \otimes R = 0 \) as \(K(m) \otimes T(n) = 0 \) by Lemma 2.2(iii). Since \(R \) is \(K(n) \)-acyclic, also \(K(n) \otimes T(n) \otimes R = 0 \). We thus conclude that \(T(n) \otimes R \) vanishes.

Remark 2.4. In the proof above, it was not used that \(R \) is an algebra in the \(\infty \)-category of spectra. It suffices that \(R \) is a unital magma in the homotopy category of spectra.
2.2. Some localization functors. We recall that the functor L^n_f on spectra is defined as
Bousfield localization at the spectrum $H\mathbb{Q} \oplus T(1) \oplus \cdots \oplus T(n)$. To formulate our main result,
we will use the following variant.

Definition 2.5. We denote by L^p,f_n the Bousfield localization at
$T(0) \oplus T(1) \oplus \cdots \oplus T(n)$. To formulate our main result,
we will use the following variant.

Recall that a Bousfield localization functor $L : \text{Sp} \to \text{Sp}$ is called
smashing if it preserves colimits or, equivalently, if it is of the form
$LX \simeq X \otimes LS$. If every L-acyclic spectrum is a
colimit of compact, L-acyclic spectra, then L is called finite
and is in particular smashing, see [Mil92] or [Lur10, Lecture 20, Example 12].
For example, L^n_f is smashing. The same proof
also shows that L^p,f_n is smashing. For convenience, we recall this proof below. Write
$C_{>n}$ for the ∞-category of p-local, finite spectra which are of type greater than n, i.e. which are $K(0) \oplus \cdots \oplus K(n)$-acyclic.

Lemma 2.6. The category of L^p,f_n-acyclic spectra coincides with
Ind($C_{>n}$). In particular, L^p,f_n is a smashing localization.

Proof. The Bousfield class $\langle T(0) \oplus T(1) \oplus \cdots \oplus T(n) \rangle$ has as complement the Bousfield class
$\langle \Sigma^\infty V_{n+1} \rangle$ of a type $(n+1)$-spectrum: every spectrum is acyclic for
$(T(0) \oplus T(1) \oplus \cdots \oplus T(n)) \otimes V_{n+1}$ and 0 is the only spectrum which is
$T(0) \oplus T(1) \oplus \cdots \oplus T(n) \oplus \Sigma^\infty V_{n+1}$-acyclic. Indeed, this follows easily from the inductive constructio
of a type $(k+1)$-complex as V_k/v, where V_k is a type k-complex with
v_k-self map v. It follows from [MS95, Proposition 3.3] that
every L^p,f_n-acyclic spectrum is a colimit of finite L^p,f_n-acyclic spectra. The thick subcategory
theorem implies that the category of finite L^p,f_n-acyclic spectra is precisely $C_{>n}$. □

Lemma 2.7. For integers $0 \leq m < n$ and a spectrum X there is a pullback diagram

$$
\begin{array}{ccc}
L^p,f_n X & \longrightarrow & L_{T(m+1) \oplus \cdots \oplus T(n)} X \\
\downarrow & & \downarrow \\
L^p,f_m X & \longrightarrow & L^p,f_m L_{T(m+1) \oplus \cdots \oplus T(n)} X
\end{array}
$$

natural in X.

Proof. This is a special case of the following well known lemma. □

Lemma 2.8. Let E and F be spectra. Assume that L_E preserves F-acyclic spectra.
Then there is a pullback diagram

$$
\begin{array}{ccc}
L_{E\oplus F} X & \longrightarrow & L_F X \\
\downarrow & & \downarrow \\
L_E X & \longrightarrow & L_E L_F X
\end{array}
$$

natural in X.

We note that the assumptions of the lemma are for instance satisfied if L_E is smashing, or
if L_F annihilates E-local objects.

Proof. Denote the pullback of the diagram $L_E X \to L_E L_F X \leftarrow L_F X$ by $P(X)$. There is a
canonical map $X \to P(X)$; it is easy to show that this map is an $(E \oplus F)$-local equivalence,
and that $P(X)$ is $(E \oplus F)$-local. □

As a consequence of Lemma 2.8 we note that
(i) for p-local spectra X, the canonical map $L_p^{i,j}X \to L_n^{i,j}X$ is an equivalence, and
(ii) for $T(1)$-acyclic spectra X, the canonical map $L_p^{i,j}X \to X[1/p]$ is an equivalence.

We will use the following criterion to detect $T(i)$-local equivalences, which was indicated to us by Gijs Heuts.

Proposition 2.9. Let $f : X \to Y$ be a map of spectra, and let $i \geq 1$ be an integer. If $\Sigma^\infty \Omega^\infty f$ is a $T(i)$-local equivalence, then so is f. In other words, the functor $\Sigma^\infty \Omega^\infty : \text{Sp} \to \text{Sp}$ detects $T(i)$-local equivalences.

Proof. We note that the canonical composite

$$\Omega^\infty \longrightarrow \Omega^\infty \Sigma^\infty \Omega^\infty \longrightarrow \Omega^\infty$$

is an equivalence. It is an insight of Bousfield and Kuhn that the $T(i)$-localization functor $L_{T(i)}$ factors through Ω^∞ via the Bousfield--Kuhn functor Φ_i from pointed spaces to spectra. There is thus an equivalence $\Phi_i \circ \Omega^\infty \simeq L_{T(i)}$; see [Kuh08, Theorem 1.1]. Applying Φ_i to the above composite shows that the composite

$$L_{T(i)} \longrightarrow L_{T(i)} \Sigma^\infty \Omega^\infty \longrightarrow L_{T(i)}$$

is also an equivalence. This implies that $L_{T(i)}(f)$ is a retract of $L_{T(i)}(\Sigma^\infty \Omega^\infty f)$ which proves the lemma. \hfill \square

Remark 2.10. Restricted to connective spectra, the functor $\Sigma^\infty \Omega^\infty$ also detects $T(0)$-local equivalences.

It is, however, not true that the functor $\Sigma^\infty \Omega^\infty$ preserves $T(i)$-local equivalences. For example, $\mathbb{H} \mathbb{Z}$ is $T(0)$-acyclic, whereas $\Sigma^\infty \mathbb{Z}$ is not: It contains the sphere spectrum as a summand. Nevertheless, $\Sigma^\infty \Omega^\infty$ preserves suitably connective $L_p^{i,j}$-equivalences, as the following result shows. We say that a space is m-connective if it has trivial homotopy groups in degrees less than m, i.e., is $(m-1)$-connected. We call a map m-connective if its fibre is m-connective, i.e. if it induces an isomorphism on π_k for $k < m$ and a surjection on π_m.

Proposition 2.11. Let $n \geq 1$ be an integer. Then there exists $m \geq 2$ such that the following hold:

(i) Let F be an m-connective pointed space whose v_i-periodic homotopy groups vanish for $0 \leq i \leq n$. Then F is $T(i)$-acyclic for $0 \leq i \leq n$.

(ii) Let $f : X \to Y$ be an m-connective map between spaces. If f is a v_i-periodic equivalence for $0 \leq i \leq n$, then $\Sigma^\infty f : \Sigma^\infty X \to \Sigma^\infty Y$ is an $L_p^{i,j}$-equivalence.

(iii) The functor $\Sigma^\infty \Omega^\infty$ preserves m-connective $L_n^{i,j}$-equivalences.

Proof. Part (i) follows from a result of Bousfield ([Bou01, Corollary 4.8], [BHMT18, Theorem 3.1]) together with [BHMT18, Lemma 3.3], which gives an integer m such that any m-connective space with trivial v_i-periodic homotopy groups for $0 \leq i \leq n$ has trivial $T(i)$-homology for $0 \leq i \leq n$. Note that in Bousfield’s convention $T(0) = \mathbb{H} \mathbb{Q}$, but it is well-known that a simply connected space such that $(\pi_* X)[1/p]$ vanishes is also acyclic for $\mathbb{H} \mathbb{Z}[1/p]$ and hence for $T(0) = \mathbb{S}[1/p]$.

To prove (ii), let F be the fibre of f. By assumption, F is an m-connective space whose v_i-periodic homotopy groups vanish for $i \leq n$. Thus F is $T(i)$-acyclic for $0 \leq i \leq n$ by (i). The Serre spectral sequence in $T(i)$-homology associated to the fibre sequence $F \to X \to Y$
then implies that the map $\Sigma^\infty X \to \Sigma^\infty Y$ is a $T(i)$-local equivalence for $0 \leq i \leq n$ and thus an $L_n^{p,f}$-equivalence.

Finally, to see (iii) one applies Ω^∞ to an m-connective $L_n^{p,f}$-equivalence. The resulting map of spaces satisfies the assumptions of (ii), so the proposition follows. □

The following remark will not be used in the sequel.

Remark 2.12. In fact, we can take $m = n + 1$ in Proposition 2.11. Indeed, using what we have proven already, it suffices to show that any $(n + 1)$-connective space F is $T(i)$-acyclic for $0 \leq i \leq n$ if its homotopy groups are p-primary torsion and vanish in sufficiently high degrees. By an induction over the Postnikov tower, it hence suffices to show that $T(i) \otimes K(\pi, r) = 0$ if $r > i$ and π is a finite group, as $T(i)$-homology commutes with filtered colimits and every torsion group is the filtered colimit of its finite subgroups. It is shown in [CSY18, Theorem E] that for a p-local ring spectrum R the following two conditions are equivalent:

1. $R \otimes K(\pi, r) = 0$ for all $r > i$ and $2. R \otimes K(r) = 0$ for all $r > i$. Statement (2) applies to $R = T(i)$ by Lemma 2.2(iii), so part (i) and hence also (ii) and (iii) of the proposition follow with $m = n + 1$.

2.3. Localizing invariants and K-theory. In this short subsection we recall some notions and facts about algebraic K-theory which we will use throughout this paper.

A localizing invariant is a functor $\text{Cat}^\text{perf}_\infty \to \text{Sp}$ which sends exact sequences to fibre sequences. Here $\text{Cat}^\text{perf}_\infty$ refers to the ∞-category of small, idempotent complete, and stable ∞-categories and exact sequences are those sequences which are both fibre and cofibre sequences in $\text{Cat}^\text{perf}_\infty$, see [BGT13, §5] for details. Examples of localizing invariants are non-connective K-theory BGT13, topological Hochschild homology, topological cyclic homology, etc.

For a localizing invariant E and a ring spectrum A, we will write $E(A)$ for $E(\text{Perf}(A))$, where $\text{Perf}(A)$ denotes the ∞-category of perfect A-modules, which coincides with the compact objects of $R\text{Mod}(A)$.

For a connective ring spectrum A, the space $\Omega^\infty_{\tau \geq 1} K(A)$ can be described as a plus-construction BGT13, Lemma 9.39: We denote by $\text{GL}(A)$ the E_1-space $\text{GL}(A) = \text{colim} \text{GL}_n(A)$, where $\text{GL}_n(A)$ denotes the invertible components in the E_1-space $\Omega^\infty \text{End}(A^n)$. In particular, $\pi_0(\text{GL}(A)) \cong \text{GL}(\pi_0(A))$, where the right-hand side denotes the group of invertible matrices over the discrete ring $\pi_0(A)$. There is a canonical map $BGL(A) \to \Omega^\infty_{\tau \geq 1} K(A)$ which exhibits the target as the plus construction $BGL(A)^+$. In particular, this map is a homology equivalence, and hence the map of spectra $\Sigma^\infty BGL(A) \to \Sigma^\infty \Omega^\infty_{\tau \geq 1} K(A)$ is an equivalence.

For an arbitrary $C \in \text{Cat}^\text{perf}_\infty$, we will also need the explicit description of the K-theory space $\Omega^\infty K(C)$, which arises via the Waldhausen S_\bullet-construction, cf. BGT13 Sec. 7.1. The S_\bullet-construction produces a simplicial object $S(C) \in \text{Fun}(\Delta^\text{op}, \text{Cat}^\text{perf}_\infty)$ such that there is a natural equivalence of spaces

\begin{equation}
\Omega^\infty K(C) \simeq \Omega|S(C)| \simeq |
\end{equation}

where $(-)^\simeq$ denotes the underlying space of an ∞-category; moreover, we have for each $n \geq 0$ a natural equivalence $S_n(C) \simeq \text{Fun}(\Delta^n, \text{C})$. Note that both sides have the canonical structure of E_∞-spaces since $\text{Cat}^\text{perf}_\infty$ is semiaffine, i.e. it has finite biproducts as in [GGN15, Definition 2.1]; In fact, the equivalence 1 is one of E_∞-spaces, therefore, we can deloop both sides to obtain

\begin{equation}
\Omega^\infty_{\tau \geq 0} K(C)[1] \simeq |S(C)| \simeq |
\end{equation}

\(\text{In } \text{BGT13} \) localizing invariants are further required to preserve filtered colimits.
3. Proof of Theorem [A]

In this section, we will prove Theorem [A] in several steps, each of which will give a special case of the result. Our first step, which we treat in the following subsection, will involve only highly connective maps of connective ring spectra.

3.1. The highly connective case.

Proposition 3.1. Let \(n \geq 1 \). There exists \(N \geq 1 \) such that the following holds: let \(A \to B \) be an \(N \)-connective \(L_n^{p,f} \)-equivalence between connective ring spectra. Then the induced map \(K(A) \to K(B) \) is again an \(L_n^{p,f} \)-equivalence.

Proof. We take \(N = m - 1 \), where \(m \) is as in Proposition [2.11]. By Waldhausen’s result (see [Wal78] Propositions 1.1, 2.2 or [LT19] Lemma 2.4) the map \(K(A) \to K(B) \) is a \(T(0) \)-equivalence. It hence remains to prove that the map \(K(A) \to K(B) \) is a \(T(i) \)-local equivalence for \(1 \leq i \leq n \). By Lemma [2.2(ii)], it suffices to show that \(\tau_{\geq 1} K(A) \to \tau_{\geq 1} K(B) \) is a \(T(i) \)-local equivalence for \(1 \leq i \leq n \).

We consider the following commutative diagram, where we use the plus-construction description of algebraic \(K \)-theory for connective ring spectra as recalled in Section 2.3.

\[
\begin{array}{ccc}
\Sigma^\infty \operatorname{BGL}(A) & \longrightarrow & \Sigma^\infty \operatorname{BGL}(B) \\
\simeq & & \simeq \\
\Sigma^\infty \Omega^\infty \tau_{\geq 1} K(A) & \longrightarrow & \Sigma^\infty \Omega^\infty \tau_{\geq 1} K(B)
\end{array}
\]

By Proposition [2.9], it suffices to show that the lower horizontal map is a \(T(i) \)-local equivalence for \(1 \leq i \leq n \). Since the vertical maps in the above diagram are equivalences, this is the case if the top horizontal map is a \(T(i) \)-local equivalence. This and thus the proposition will follow from Proposition [2.11(ii)] once we have shown the following: The map \(\operatorname{BGL}(A) \to \operatorname{BGL}(B) \) is \(m \)-connective and induces an isomorphism on \(v_i \)-periodic homotopy groups for \(i \leq n \).

To show this claim, we observe that the classifying space construction \(B \) increases the connectivity of a map by 1 and preserves \(v_i \)-periodic equivalences. Thus it suffices to see that \(\operatorname{GL}(A) \to \operatorname{GL}(B) \) is an \((m - 1) \)-connective \(v_i \)-periodic equivalence for \(1 \leq i \leq n \). Observe that by definition the map \(A \to B \) induces an isomorphism between \(\pi_0(\operatorname{GL}(A)) = \pi_0(\operatorname{GL}(B)) \) and \(\pi_0(\operatorname{GL}(B)) = \pi_0(\operatorname{M}(A)) \). Furthermore, \(\tau_{\geq 1} \operatorname{GL}(A) \simeq \tau_{\geq 1} \operatorname{M}(A) \), where \(\operatorname{M}(A) \) is the space of matrices colim, \(\Omega^\infty \operatorname{End}(A^r) \simeq \operatorname{colim}, \Omega^\infty A^{r \times r} \), and similarly for \(B \). As \(A \to B \) is an \((m - 1) \)-connective and as \(m \geq 2 \), we thus see that \(\operatorname{GL}(A) \to \operatorname{GL}(B) \) is an \((m - 1) \)-connective equivalence, further, as \(A \to B \) is an \(L_n^{p,f} \)-equivalence, it induces isomorphisms on \(v_i \)-periodic homotopy groups for \(i \leq n \). By Lemma [2.2(ii)] also \(\operatorname{M}(A) \to \operatorname{M}(B) \) is a \(v_i \)-periodic equivalence, and, finally, by Lemma [2.2(ii)] also \(\operatorname{GL}(A) \to \operatorname{GL}(B) \) is a \(v_i \)-periodic equivalence for \(i \leq n \), as desired. \(\square \)

3.2. A truncating property. Our next goal is to prove a version of Proposition 3.1 with weaker connectivity hypotheses; in fact, we will only need a special case (Proposition 3.4) below, formulated using the language of truncating invariants. To do this, we will need some further preliminaries.

Lemma 3.2. Let

\[
\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & & \downarrow \\
A' & \longrightarrow & B'
\end{array}
\]
be a pullback square of ring spectra in which A is connective. If $A \to A'$ is n-connective and $A \to B$ is m-connective, then the induced map $A' \otimes_A^B B \to B'$ is $(m + n + 2)$-connective.

Here $A' \otimes_A^B B$ denotes the ring spectrum associated to the displayed pullback square by [LT19 Main Theorem].

Proof. Denote by I the common fibre of the vertical maps, by J that of the horizontal maps. From [LT19 Remark 1.16] we have an equivalence

$$\text{fib}(A' \otimes_A^B B \to B') \sim \Sigma \text{fib}(I \otimes_A B \xrightarrow{\mu} I)$$

where the map μ is induced by the right B-module structure on I. Now μ has a section $\sigma: I \to I \otimes_A B$ induced by the map $A \to B$. The fibre of σ identifies with $I \otimes_A J$, which is $(n + m)$-connective as A is connective. In other words, σ is an isomorphism in degrees $\leq m + n - 1$ and surjective in degree $m + n$. Since $\mu \circ \sigma \simeq \text{id}_I$ and so μ is surjective in every degree, it then follows that μ is an isomorphism in degrees $\leq m + n$ and surjective in degree $m + n + 1$, i.e. μ is $(m + n + 1)$-connective. By the above equivalence, $A' \otimes_A^B B \to B'$ is then $(m + n + 2)$-connective, as desired. \square

Let M be a spectrum. We say that a localizing invariant E is **truncating on M-acyclic ring spectra** if for every M-acyclic connective ring spectrum R, we have $E(R) \xrightarrow{\sim} E(\tau_{\leq k}R)$. Note that if a ring spectrum R is M-acyclic, then also $\tau_{\leq k}R$ is M-acyclic for all k as follows by consideration of the ring map $LMR \to LM\tau_{\leq k}R$. The following lemma also appears in similar form in [Mat20 Lemma 3.11].

Lemma 3.3. Let E be a localizing invariant. Suppose that there exists $k \geq 0$ such that the map $E(R) \xrightarrow{\sim} E(\tau_{\leq k}R)$ is an equivalence for any M-acyclic connective ring spectrum R. Then E is truncating on M-acyclic ring spectra.

Proof. It suffices to show that if E and $k > 0$ are as in the statement of the lemma, then we have in fact $E(\tau_{\leq k}R) \xrightarrow{\sim} E(\tau_{\leq k-1}R)$ for all M-acyclic connective ring spectra R; the result then follows by induction on k.

To this end, recall that $\tau_{\leq k}R \to \tau_{\leq k-1}R$ is a square-zero extension, so there is a pullback square of ring spectra (cf. [Lar17 7.4.1.29]),

\[
\begin{array}{ccc}
\tau_{\leq k}R & \longrightarrow & H\pi_0R \\
\downarrow & & \downarrow \\
\tau_{\leq k-1}R & \longrightarrow & H\pi_0R \oplus (H\pi_kR)[k + 1].
\end{array}
\]

All ring spectra in this square are connective and M-acyclic. It follows from [LT19 Main Theorem] that we have a pullback square of spectra

\[
\begin{array}{ccc}
E(\tau_{\leq k}R) & \longrightarrow & E(H\pi_0R) \\
\downarrow & & \downarrow \\
E(\tau_{\leq k-1}R) & \longrightarrow & E\left(\tau_{\leq k-1}R \otimes_{H\pi_0R}^{H\pi_kR}[k + 1] H\pi_0R\right).
\end{array}
\]

It thus suffices to show that the right vertical map is an equivalence. But this follows because, by Lemma 3.2 the map of connective, M-acyclic ring spectra

\[H\pi_0R \to \tau_{\leq k-1}R \otimes_{H\pi_0R}^{H\pi_kR}[k + 1] H\pi_0R\]
induces an equivalence on $\tau_{\leq k}$ and hence on $E(-)$. \hfill ☐

Proposition 3.4. For $n \geq 1$, $L_{T(n)}K(-)$ is truncating on $L^{p,f}_n$-acyclic ring spectra.

Proof. This follows from Proposition 3.1 and Lemma 3.3. \hfill ☐

Corollary 3.5 (Cf. also [BCM20]). For any $n \geq 1$, we have $L_{T(i)}K(\mathbb{Z}/p^n) = 0$ for $i \geq 1$.

Proof. This follows from Proposition 3.4 since truncating invariants are nilinvariant, [LT19, Corollary 3.5], and Quillen’s computation that $K(F_p)^p = H\mathbb{Z}_p$. \hfill ☐

3.3. The general case.

Now we extend the results to nonconnective ring spectra, and then complete the proof of Theorem [A]. Our strategy of proof is to reduce the nonconnective case to the connective case using the S_\bullet-construction. In this we will work with a not-necessarily stable, but additive ∞-category A, about which we make two remarks:

- We can view A as a symmetric monoidal ∞-category under \oplus and denote by $K^{\operatorname{add}}(A)$ its group-completion K-theory, cf. [GGN15] for a modern account. If R is a connective ring spectrum and A is the ∞-category $\operatorname{Proj}^\omega(R)$ of finitely generated projective R-modules, there is an equivalence $K^{\operatorname{add}}(A) \simeq \tau_{\geq 0}K(R)$.

- Given two objects X and Y in an additive ∞-category A, their mapping space has the canonical structure of a grouplike E_{∞}-space, giving rise to a connective spectrum $\operatorname{Hom}_A(X,Y)$. If A is stable, this is the connective cover of the homomorphism spectrum $\operatorname{Hom}_A(X,Y)$. We remark that $\operatorname{Hom}_A(X,X)$ is $L^{p,f}_n$-acyclic if and only if $\operatorname{Hom}_A(X,X)$ is $L^{p,f}_n$-acyclic.

In the following, we will assume that all ∞-categories of which we consider the K-theory are idempotent-complete.

Proposition 3.6. Let C be an additive ∞-category. Suppose for each object $X \in C$, the ring spectrum $\operatorname{hom}_C(X,X)$ is annihilated by $L^{p,f}_n$. Then

(i) $L_{T(i)}K^{\operatorname{add}}(C) = 0$ for $1 \leq i \leq n$, and

(ii) $L_{T(i)}K(C) = 0$ for $1 \leq i \leq n$ if C is stable.

Proof. For the first part, we observe that C can be written as a filtered colimit of its full subcategories generated by finite direct sums and retracts by finitely many objects. Passing to the direct sum of the generators, and using that K-theory commutes with filtered colimits, we may assume that C is generated under finite direct sums and retracts by a single object X. Hence, by the additive version of the Schwede–Shipley theorem, $C \simeq \operatorname{Proj}^\omega(\operatorname{hom}_C(X,X))$ is the ∞-category of finitely generated projective modules over $\operatorname{hom}_C(X,X)$, which is $L^{p,f}_n$-acyclic by assumption. Therefore, $K^{\operatorname{add}}(C) \simeq \tau_{\geq 0}K(\operatorname{hom}_C(X,X))$ is $T(i)$-acyclic for $1 \leq i \leq n$ by Proposition 3.4 (together with the fact that the $T(1)$-local K-theory of a p-power torsion discrete ring vanishes by Corollary 3.5).

For the second part, we assume that C is stable. The Waldhausen S_\bullet-construction gives a simplicial stable ∞-category $S_\bullet C$ and a natural equivalence of spaces (as in (2)):

$$\Omega^\infty((\tau_{\geq 0}K(C))[1]) = |S_\bullet C|.$$

Note that both sides have the structure of E_{∞}-monoids, using the direct sum on C (which also gives the canonical E_{∞}-monoid structure on the left arising from Ω^∞), and the map is an
equivalence of \mathbb{E}_∞-spaces. Therefore, we may group-complete the terms inside the geometric realization on the right-hand-side to obtain an equivalence of connective spectra
\[(\tau_{\geq 0} K(C))[1] \simeq |K^{\text{add}}(S_*(C))|,\]
where on the right we consider the additive (group-complete) K-theory as above. The above $L_n^{p,f}$-local vanishing condition on the stable ∞-category C is stable under passage to $\text{Fun}(\Delta^j, C)$ for any $j \geq 0$. Therefore, by the first paragraph of the proof, we find that the right-hand-side of (3) is $T(i)$-acyclic for $1 \leq i \leq n$, hence the result. □

Lemma 3.7. For any ring spectrum A, there is an exact sequence
\[C_{>n} \otimes \text{Perf}(A) \to \text{Perf}(A) \to \text{Perf}(L_n^{p,f} A),\]
and the endomorphism spectrum of every object in $C_{>n} \otimes \text{Perf}(A)$ is $L_n^{p,f}$-acyclic.

Proof. Lemma 2.6 and the Thomason–Neeman localization theorem [Nee92, Theorem 2.1] imply that the sequence of small stable ∞-categories $C_{>n} \to \text{Perf}(S) \to \text{Perf}(L_n^{p,f} S)$ is exact. Tensoring the above exact sequence with $\text{Perf}(A)$, using the fact that $L_n^{p,f}$ is smashing, we obtain the exact sequence
\[C_{>n} \otimes \text{Perf}(A) \to \text{Perf}(A) \to \text{Perf}(L_n^{p,f} A).\]

The ∞-category $C_{>n} \otimes \text{Perf}(A)$ is generated by A-modules of the form $A \otimes F$ with F being a finite p-local $L_n^{p,f}$-acyclic spectrum. Their endomorphism spectra $DF \otimes F \otimes A$ are $L_n^{p,f}$-acyclic as well and so are thus the endomorphism spectra of all objects of $C_{>n} \otimes \text{Perf}(A)$. □

Theorem 3.8. Let A be a ring spectrum. Then the map $A \to L_n^{p,f} A$ induces an equivalence on $L_T(i) K(-)$ for $1 \leq i \leq n$. If $n \geq 2$, the map $A \to L_{T(1) \oplus \cdots \oplus T(n)} A$ induces an equivalence on $L_T(n) K(-)$.

Proof. As K-theory is localizing, the homotopy fibre of $K(A) \to K(L_n^{p,f} A)$ coincides with $K(C_{>n} \otimes \text{Perf}(A))$ by the preceding lemma. This is $T(i)$-acyclic for $1 \leq i \leq n$ by Proposition 3.6. For the last assertion, we consider the pullback diagram
\[
\begin{array}{ccc}
L_n^{p,f} A & \longrightarrow & L_{T(1) \oplus \cdots \oplus T(n)} A \\
\downarrow & & \downarrow \\
A[\frac{1}{p}] & \longrightarrow & (L_{T(1) \oplus \cdots \oplus T(n)} A)[\frac{1}{p}]
\end{array}
\]
from Lemma 2.7 (note that $L_0^{p,f} A = A[\frac{1}{p}]$). By [Tam18] or [LT19] and the fact that $L_0^{p,f}$ is smashing, we deduce that the diagram
\[
\begin{array}{ccc}
K(L_n^{p,f} A) & \longrightarrow & K(L_{T(1) \oplus \cdots \oplus T(n)} A) \\
\downarrow & & \downarrow \\
K(A[\frac{1}{p}]) & \longrightarrow & K((L_{T(1) \oplus \cdots \oplus T(n)} A)[\frac{1}{p}])
\end{array}
\]
is a pullback.\footnote{This also follows more classically from Lemma 3.7} By the first part, it suffices to prove that the top horizontal map is an equivalence after $T(i)$-localization for $i \geq 2$. Now each term in the bottom row is a module over
$K(S[1]_p)$, which is p-adically equivalent to $K(Z[1]_p)$ and hence vanishes after $T(i)$-localization for $i \geq 2$ by Mitchell’s result. □

We now prove Theorem [A]. The result is a direct consequence of Theorem [K] (which proves “one half” of the result) and the results of [CMNN20a] (which proves the “other half”). We note that the results of loc. cit. also rely on Theorem [K] (but not on Theorem [A] so there is no circularity).

Proof of Theorem [A]. It suffices to show that the map $A \to L_{T(n-1)\oplus T(n)}A$ induces an equivalence on $L_{T(n)}K(-)$. As in the proof of Theorem [K] using that $L_{n-2}^{p,f}$ is a smashing localization (or Lemma 3.7), the diagram

$$
\begin{array}{c}
K(L_n^{p,f}A) \longrightarrow K(L_{T(n-1)\oplus T(n)}A) \\
\downarrow & \downarrow \\
K(L_n^{p,f}_{n-2}A) \longrightarrow K(L_{n-2}^{p,f}(L_{T(n-1)\oplus T(n)}A))
\end{array}
$$

is a pullback. By Theorem [K] it suffices to prove that the top horizontal map is an equivalence after $T(n)$-localization. Now each term in the bottom row is a module over $K(L_n^{p,f}S)$, which vanishes $T(n)$-locally by [CMNN20a] Theorem C], so we deduce the claim. □

Remark 3.9. In [CMNN20a], the vanishing of $L_{T(n+2)}K(L_n^{p,f}S)$ is deduced as a special case of a more general result. For the convenience of the reader, we summarize their argument for the exact vanishing that we use here. We wish to show the claim by induction over n. The case $n = 0$ follows by Mitchell’s theorem, as in the proof of the second part of Theorem I.3.8. By the strengthening of Hahn’s result [Hahn16] obtained in [CMNN20a] Lemma 4.5], it suffices to show that $K(L_n^{p,f}S)^{tC_p}$ is $T(n + 1)$-acyclic. Now, given any commutative algebra in genuine C_p-spectra whose underlying spectrum with C_p-action is $K(L_n^{p,f}S)$ with trivial C_p-action, there is a ring map from its geometric fixed points to $K(L_n^{p,f}S)^{tC_p}$. An example is the K-theory of the Borel complete categorical Mackey functor, where the genuine fixed points are $K(\text{Fun}(BC_p, \text{Perf}(L_n^{p,f}S)))$. The transfer for this genuine C_p-spectrum is the composite

$$
K(L_n^{p,f}S)_{hC_p} \longrightarrow K(L_n^{p,f}S[C_p]) \longrightarrow K(\text{Fun}(BC_p, \text{Perf}(L_n^{p,f}S))),
$$

and by definition the geometric fixed points are the cofibre of this composite. It hence suffices to show that each of the above two maps is a $T(n+1)$-local equivalence. For the second, one uses that the Verdier quotient $\text{Fun}(BC_p, \text{Perf}(L_n^{p,f}S))/\text{Perf}(L_n^{p,f}S[C_p])$ is linear over $(L_n^{p,f}S)^{tC_p}$. Indeed, calling this quotient Q and writing $R = L_n^{p,f}S$, Theorem I.3.3ii and an analogue of Lemma I.3.8iii from [NS18] imply that $\text{End}_Q(R) \simeq R^{tC_p}$. By Theorem I.3.6 in op. cit., Q has a canonical symmetric monoidal structure and we obtain a symmetric monoidal functor $\text{Perf}(R^{tC_p}) \to Q$. The spectrum $(L_n^{p,f}S)^{tC_p}$ is itself an algebra over $L_n^{p,f}S$ by Kuhn’s blueshift result [Kuhn04]. Thus, by induction, the second map in (1) is a $T(n+1)$-local equivalence.
For the first map one uses Corollary 4.29 (whose proof relies only on Theorem 3.8) to obtain a diagram which is cartesian after $T(i)$-localization, $i \geq 2$,

$$
\begin{array}{c}
K(L^p_n[S])_{hC_p} \\
\downarrow \\
TC(\tau_{\geq 0}(L^p_n[S]))_{hC_p} \\
\end{array}
\rightarrow
\begin{array}{c}
K(L^p_n[S\{p\}]) \\
\downarrow \\
TC(\tau_{\geq 0}(L^p_n[S\{p\}))_{hC_p} \\
\end{array}.
$$

Now, by [HN19, Theorem 1.4.1], the cofibre of the lower horizontal map belongs to the localizing subcategory of spectra generated by $\tau_{\geq 0}(L^p_n[S])$, and hence vanishes $T(n+1)$-locally as well.

Question 3.10. For a ring spectrum A and for $n \geq 2$, does the map $A \to L_{K(n-1)\oplus K(n)}A$ induce an equivalence on $K(n)$-local K-theory?

The above question reduces to proving an analog of Theorem 3.8 for L_n-localization: that is, for $n \geq 2$, it would suffice to show that $A \to L_nA$ induces an equivalence on $L_{K(n)}K(-)$.

4. Consequences and examples

In this section we discuss some consequences and examples of our main result.

4.1. Direct consequences

To begin with, we record some immediate corollaries of Theorem A.

Corollary 4.1. Let R be a ring spectrum which is $T(n) \oplus T(n-1)$-acyclic for some $n \geq 1$. Then $L_{T(n)}K(R) = 0$.

Corollary 4.2. Let $n \geq 2$. Then for any ring spectrum R, we have that the canonical map $L_{T(n)}K(\tau_{\geq 0}R) \to L_{T(n)}K(R)$ is an equivalence.

In the case of E_{∞}-rings we furthermore find the following redshift phenomenon:

Corollary 4.3. Let A be an E_{∞}-ring spectrum, B an A-algebra, and let $n \geq 0$. Then $L_{T(n)}A = 0$ implies $L_{T(n+j)}K(B) = 0$ for every integer $i \geq 1$.

Proof. If A is $T(n)$-acyclic, then A, and hence also B, is $T(n+j)$-acyclic for all $j \geq 0$ by [Hah16] and Lemma 2.3. Thus, the result follows from Theorem A.

Next, we include the following slight variants of Theorem A in the connective case, and an analog for topological cyclic homology.

Corollary 4.4. Let $A \to B$ be a $T(1) \oplus \cdots \oplus T(n)$-equivalence between connective ring spectra which induces a surjection on π_0 whose kernel is nilpotent. Then $K(A) \to K(B)$ is again a $T(1) \oplus \cdots \oplus T(n)$-equivalence.

Proof. By Theorem A only the case $n = 1$ requires a further argument, but the argument for it works equally well in the general case: Consider the pullback diagram

$$
\begin{array}{ccc}
P & \longrightarrow & B \\
\downarrow & & \downarrow \\
A[\frac{1}{p}] & \longrightarrow & B[\frac{1}{p}] \\
\end{array}
$$
Since $P \to A[\frac{1}{p}]$ is a $T(0)$-localization, applying K-theory to the diagram yields again a pullback, e.g. by [LT19 Main Theorem]. Furthermore, the map $K(A[\frac{1}{p}]) \to K(B[\frac{1}{p}])$ is a p-adic equivalence, as p-adic K-theory is truncating on $S[\frac{1}{p}]$-algebras [LT19 Lemma 2.4] and hence also nilinvariant [LT19 Corollary 3.5]. Hence, $K(P) \to K(B)$ is a $T(i)$-equivalence for all $i \geq 1$. Furthermore, $A \to P$ is a $T(0) \oplus T(1) \oplus \cdots \oplus T(n)$-equivalence. Theorem 3.8 together with the already established results thus implies that $K(A) \to K(B)$ is also a $T(1) \oplus \cdots \oplus T(n)$-equivalence. □

Corollary 4.5. Let $A \to B$ be a $T(1) \oplus \cdots \oplus T(n)$-equivalence between connective ring spectra which induces a surjection on π_0 whose kernel is nilpotent. Then $TC(A) \to TC(B)$ is again a $T(1) \oplus \cdots \oplus T(n)$-equivalence.

Proof. By the Dundas–Goodwillie–McCarthy theorem [DGM13 Theorem VII.0.0.2], there is a cartesian square

$$
\begin{array}{ccc}
K(A) & \longrightarrow & TC(A) \\
\downarrow & & \downarrow \\
K(B) & \longrightarrow & TC(B).
\end{array}
$$

So we deduce the corollary from Corollary 4.4. □

Remark 4.6. If $A \to B$ is a $T(0)$-equivalence between connective ring spectra inducing a surjection on π_0 whose kernel is nilpotent, then it is also true that the map $K(A) \to K(B)$ is a $T(0)$-equivalence. Thus, the same also holds true for $TC(A) \to TC(B)$.

Remark 4.7. One can also deduce some consequences for i-fold iterated algebraic K-theory $K^{(i)}$. For example, the canonical maps $K^{(i)}(\mathbb{Z}/p^k) \to K^{(i-1)}(\mathbb{Z})$, where the latter is induced by the truncation map $K(\mathbb{Z}/p) \to \mathbb{Z}$, are $H\mathbb{Q} \oplus T(1) \oplus T(2) \oplus \cdots$-equivalences for all $i \geq 1$.

Indeed, the case $i = 1$ follows directly from Corollary 4.3 and the fact that $K_j(\mathbb{Z}/p^k) \otimes \mathbb{Q} = 0$ for $j > 0$. We use also that the non-positive K-groups of a ring are invariant under quotients by a nilpotent ideal, as non-positive K-theory is truncating by [BGT13 Theorem 9.53]. In general, we assume inductively that $K^{(i)}(\mathbb{Z}/p^k)$ and $K^{(i-1)}(\mathbb{Z})$ are connective, $\pi_0K^{(i)}(\mathbb{Z}/p^k) = \pi_0K^{(i-1)}(\mathbb{Z}) = \mathbb{Z}$, and $K^{(i)}(\mathbb{Z}/p^k) \to K^{(i-1)}(\mathbb{Z})$ is an equivalence after $H\mathbb{Q} \oplus T(1) \oplus T(2) \oplus \cdots$-localization. We have just seen the case $i = 1$. Given the statement for some $i \geq 1$, we can deduce the statement for $i + 1$, using again [BGT13 Theorem 9.53] and Corollary 4.4 (as well as [LT19 Lemma 2.4] for the rationalization). The result thus follows by induction.

4.2. **Examples of vanishing results.** We give various examples showing that Theorem A (or Corollary 4.1) implies vanishing statements for suitable telescopic localizations of the K-theory of ring spectra; this recovers a number of existing results in the literature.

First, we begin with the case of $K(n)$, cf. also [AKS20] in the case $n = 2, p = 2, 3$.

Corollary 4.8. The spectrum $K(K(n))$ vanishes $T(m)$-locally for every $m \neq 0, n, n + 1$. □

Remark 4.9. Using the dévissage result [AGH19 Proposition 4.4] (preceded by [BL14] for connective K-theory) we can also understand the $T(0)$-localization of $K(K(m))$. There is a fibre sequence

$$
(5) \\
K(\mathbb{F}_p) \to K(k(m)) \to K(K(m))
$$

where $k(m)$ is the connective cover of $K(m)$ and the first map is induced by the functor $\text{Perf}(\mathbb{F}_p) \to \text{Perf}(k(m))$ given by restriction of scalars along the canonical map $k(m) \to \mathbb{F}_p$.

As $K(-)[\frac{1}{p}]$ is truncating on $S[\frac{1}{p}]$-acyclic ring spectra, the canonical map $K(k(m)) \to K(F_p)$ is a $T(0)$-equivalence. The composite

$$K(F_p) \to K(k(m)) \to K(F_p)$$

is induced by the functor $\text{Perf}(F_p) \to \text{Perf}(k(m)) \to \text{Perf}(F_p)$ sending X to $X \otimes_{k(m)} F_p$, which is equivalent to id $\oplus \Sigma^{2p^m-1}$ as there is a fibre sequence

$$\Sigma^{2p^m-2}k(m) \xrightarrow{\nu} k(m) \to HF_p.$$

Upon applying any localizing invariant, this gives the zero map. From (5) we thus obtain a fibre sequence

$$K(F_p)\frac{\mathbb{Z}}{p^n} \xrightarrow{0} K(F_p)\frac{1}{p} \to K(k(m))\frac{1}{p}$$

and hence an equivalence

$$K(k(m))\frac{1}{p} \simeq K(F_p)\frac{1}{p} \oplus \Sigma K(F_p)\frac{1}{p}.$$

Corollary 4.10. For any $n \geq 0$, we find that $L_{T(i)} K(\tau_{\leq n} S) = 0$ for $i \geq 2$.

Ben Antieau has already shown previously that a certain quantitative version of Proposition 3.1 implies $L_{T(n)} K(\tau_{\leq n} S) = 0$ at least for all n such that $4p - 4 \geq n$, where p is the implicit prime in $T(n)$, and conjectured that Corollary 4.10 is true.

Corollary 4.11. The map $K(BP\langle n \rangle) \to K(E(n))$ is a $T(i)$-equivalence for $i \geq n + 1$. Furthermore, both vanish $T(i)$-locally for $i \geq n + 2$.

Remark 4.12. The chromatic bound for $K(BP\langle n \rangle)$ has been proved previously by Angelini-Knoll–Salch in the case where $BP\langle n \rangle$ admits an E_∞-structure, [AKS20].

The above result implies that the sequence

$$K(BP\langle n - 1 \rangle) \to K(BP\langle n \rangle) \to K(E(n))$$

becomes a fibre sequence after $T(i)$-localization for $i \geq n + 1$. Whether or not this sequence is a fibre sequence (after replacing the rings with their p-completions) was asked by Rognes, the $n = 1$ case being a theorem of Blumberg–Mandell [BM08], and the $n = 0$ case being a classical theorem of Quillen’s. It was then shown by Antieau–Barthel–Gepner that for $n \geq 2$, the above is not a fibre sequence after rationalization, see [ABG18].

The following is an example that arose from a discussion with George Raptis. Recall that for a connected space X its Waldhausen A-theory is given by $A(X) = K(S[\Omega X]) = K(\Sigma^\infty_+ \Omega X)$. In particular, $A(*) = K(S)$. In the following corollary we assume that $n \geq 1$; the case $n = 0$ is due to Waldhausen.

Corollary 4.13. Let W be a connected space. If $\Sigma^\infty W$ is $T(n) \oplus T(n - 1)$-acyclic, then the canonical maps $A(*) \leftarrow A(\Sigma W)$ are mutually inverse $T(n)$-equivalences.

For instance, W could be a connected type m-complex for $m > n$.

Proof. The James splitting (see [Ada72 Chapter 10, Theorem 5]) gives an equivalence

$$\Sigma^\infty \Omega \Sigma W \simeq \Sigma^\infty \bigvee_{k \geq 1} W^\wedge k,$$

which implies that $\Sigma^\infty \Omega \Sigma W$ is $T(n) \oplus T(n - 1)$-acyclic. The claim thus follows from Theorem A.

□
Likewise, we can reprove and extend a recent theorem of Angelini-Knoll and Quigley [AKQ19] about the chromatic localization of the K-theory of certain Thom spectra $y(m)$ considered in [MRS01, Section 3]. To explain the setup, we recall that for a fixed prime p, there is an essentially unique map of E_2-spaces

$$\Omega^2\Sigma^2S^1 \rightarrow \text{BGL}_1(\mathbb{S}_p^\wedge)$$

sending a generator of π_1 to the element $1 - p \in \pi_1(\text{BGL}_1(\mathbb{S}_p^\wedge)) \cong \mathbb{Z}_p^\wedge$. It is a theorem of Mahowald (for $p = 2$) and Hopkins (for odd primes) that its Thom spectrum is HF_p [Mah79]; see also [ACB19]. We note that $\Omega^2\Sigma^2S^1 \cong \Omega(\Omega S^3)$ and that ΩS^3 has a canonical cell structure with one cell in every even dimension; see [Mil63, Corollary 17.4]. Let us denote by $F_m(\Omega S^3)$ the $2m$-skeleton of this cell structure. One then obtains maps of E_1-spaces

$$\Omega F_{p^{m-1}}(\Omega S^3) \rightarrow \Omega^2S^3 \rightarrow \text{BGL}_1(\mathbb{S}_p^\wedge)$$

whose Thom spectra are denoted by $y(m)$, leaving the prime p implicit as always. One has $y(0) = \mathbb{S}_p^\wedge$ and $y(\infty) = HF_p$. The above filtration of ΩS^3 can also be described as the James filtration on $\Omega\Sigma S^2$, compare [MRS01, Section 3.1].

Lemma 4.14. The spectrum $y(m)$ is $L_{m-1}^{p,f}$-acyclic.

Proof. We need to show that $y(m)$ is $T(n)$-acyclic for $n < m$. For $n = 0$ this follows because $\pi_0(y(m)) = \mathbb{F}_p$ (see the paragraph preceding [MRS01, Equation 3.7] for odd p and [AKQ19, Lemma 2.7] for $p = 2$). We now discuss the case where $n > 0$. Again, we distinguish the cases of even and odd primes. For $p = 2$ this follows from [AKQ19, Proposition 2.22] and Lemma 2.3. For odd primes, it is explained in [MRS01] that for a finite type n spectrum V_n, the Adams spectral sequence for the spectrum $V_n \otimes y(m)$ has a vanishing line of slope $\frac{1}{2^{p-1}}$, because this is true for $y(m)$. On the other hand, the element v_n acting on V_n gives an element of slope $\frac{1}{m}$ for the Adams spectral sequence. Hence, if $n < m$, it follows that the element v_n is nilpotent on $V_n \otimes y(m)$, so that $T(n) \otimes y(m)$ vanishes as claimed. \hfill \square

Corollary 4.15. The map $K(y(m)) \rightarrow K(\mathbb{F}_p)$ is an $L_{n-1}^{p,f}$-equivalence. In particular, $K(y(m))$ vanishes $T(n)$-locally for $0 < n < m$.

Proof. The vanishing follows immediately from Theorem A and Lemma 4.14. The map is also a $T(0)$-equivalence, as $T(0)$-local K-theory is truncating on $T(0)$-acyclic ring spectra by a result of Waldhausen (see also [LT19, Lemma 2.4]). \hfill \square

Remark 4.16. This corollary implies the corresponding statement with the $T(i)$ replaced by the Morava K-theories $K(i)$. For $p = 2$, the latter was previously obtained by Angelini-Knoll and Quigley [AKQ19, Theorem 1.3] using trace methods.

We obtain a similar result for the integral versions $z(m)$ of $y(m)$ which appear in [AKQ19] when $p = 2$. Again, there are versions for odd primes, but we refrain from spelling them out here.

Corollary 4.17. The map $K(z(m)) \rightarrow K(\mathbb{Z}(2))$ is a $T(n)$-equivalence for $0 < n < m$.

Proof. By [AKQ19, Proposition 2.22], $z(m)$ is $K(n)$-acyclic for $1 \leq n < m$, and hence also $T(n)$-acyclic for $1 \leq n < m$, again by Lemma 2.3. The corollary then follows from Corollary 4.4. \hfill \square
4.3. Examples of purity. We list some further examples of purity statements, special cases of which have been studied in the literature before.

Corollary 4.18. Let A be a ko-algebra. Then the natural map $K(A) \to K(A[\frac{1}{\beta}])$ is a $T(n)$-local equivalence for all $n \geq 2$.

Proof. This follows immediately from Theorem A as the map $ko \to ko[\beta^{-1}] = KO$ is a $T(n)$-equivalence for all $n \geq 1$, hence so is $A \to A[\frac{1}{\beta}]$ for every ko-algebra. □

Remark 4.19. By work of Blumberg–Mandell [BM08], there is a fibre sequence of connective K-theory spectra

$$K^{cn}(\mathbb{Z}) \to K^{cn}(ku) \to K^{cn}(KU)$$

and likewise for ko and KO in place of ku and KU. Together with Mitchell’s result this implies Corollary 4.18 in the case where A is ko or ku. Note also that for ko-algebras A, we have that $K(A)$ is $T(n)$-acyclic for $n \geq 3$; this follows from Corollary 4.1 but was shown for $A = ku$ and $p \geq 5$ already in [AR02] and in general in [CMNN20a]. Thus Corollary 4.18 is a useful statement only at height 2.

We get a similar result for algebras over the connective spectrum of topological modular forms tmf, see [DFHH14] Beh19 for introductions. Recall that tmf is, as a limit of T_{mf}, see [BM15], we have $A \to T_{\text{mf}} \otimes O_{\text{top}}$ is by definition the K-theory formal group law has height at most n as well.

Corollary 4.20. Let A be a tmf-algebra.

(i) The spectrum $K(A)$ vanishes $T(n)$-locally for all $n \geq 4$.

(ii) The map $K(A) \to K(A \otimes_{tmf} TMF)$ is a $T(n)$-equivalence for all $n \geq 2$.

(iii) The map $K(A) \to K(A \otimes_{tmf} TMF)$ is a $T(3)$-equivalence.

(iv) At the prime 2, there is a $T(3)$-local equivalence $K(tmf) \simeq K(TMFD) \simeq K(E_2)^{hGL_2(\mathbb{F}_3)}$, where E_2 denotes the Lubin–Tate spectrum for a supersingular elliptic curve over \mathbb{F}_3.

Replacing $GL_2(\mathbb{F}_3)$ by the group of automorphisms over \mathbb{F}_3 of a supersingular elliptic curve over \mathbb{F}_3, the analogous statement holds at the prime 3 as well.

Proof. By [Rav84] Theorem 2.1, the spectrum $BP[t_{n^{-1}}]$ has the same Bousfield class as $K(0) \oplus \cdots \oplus K(n)$ and is thus L_n-local. Thus, every p-local complex oriented ring spectrum whose formal group law has height at most n is L_n-local. Evaluated on any affine, O^{top} is even and hence complex orientable; moreover its formal group is isomorphic to that of the corresponding generalized elliptic curve and thus has height at most 2 at any prime. We see that $Tmf_{(p)}$ is, as a limit of L_2-local spectra, itself L_2-local and thus $T(n)$-acyclic for $n \geq 3$. As $tmf \to TMF$ is a $T(n)$-equivalence for all $n \geq 1$ by Lemma 2.2, we can deduce moreover that tmf is $T(n)$-acyclic for all $n \geq 3$. Thus the first two statements follow from our main theorem.

For the third statement, it suffices to show that $Tmf \to TMF$ is a $T(n)$-equivalence for $n = 2$ (and hence all $n \geq 2$). As taking global sections of quasi-coherent O^{top}-modules preserves colimits by [MM15], we have $T(2) \otimes Tmf \simeq \Gamma(T(2) \otimes O^{\text{top}})$; hence it suffices to show that $T(2) \otimes O^{\text{top}}(\text{Spec } A) \to T(2) \otimes O^{\text{top}}(\text{Spec } A)[\Delta^{-1}]$ is an equivalence for every étale affine $\text{Spec } A \to \mathcal{M}_{\text{ell}}$, where Δ denotes the discriminant. As all generalized elliptic curves of height 2 are actually smooth elliptic curves, inverting v_2 (as we do in $T(2)$) indeed inverts Δ as well.
Note that $K(n)$-localization and $T(n)$-localization coincide on L_n-local spectra. Indeed, if X is L_n-local, then the fibre of the map $X \to L_{K(n)}X$ is L_n-local and $K(n)$-acyclic, whence L_{n-1}-local and thus $T(n)$-acyclic. As $L_{K(n)}X$ is also $T(n)$-local, it follows that $L_{T(n)}X \simeq L_{K(n)}X$. Thus, $tmf \to TMF \to L_{K(2)}TMF$ are $T(2)$-local equivalences and hence induce $T(3)$-equivalences in K-theory by our main theorem. The faithful $GL_2(\mathbb{F}_3)$-Galois extension $TMF(2) \to TMF(3)(2)$ from [MM13 Theorem 7.6] localizes to the Galois extension $L_{K(2)}TMF \to L_{K(2)}TMF(3) \simeq E_2$ (cf. [Beh19 Proposition 6.6.10], [HMS17 Proposition 3.6]). Thus, the map $K(L_{K(2)}TMF) \to K(E_2)^{hGL_2(\mathbb{F}_3)}$ is an equivalence after an arbitrary telescopic localization by [CMNN20 Theorems 5.6, Corollary B.4]. The statement for $p = 3$ is proven analogously using that here $L_{K(2)}TMF \simeq E_2^{hG_{24}}$, where E_2 is the Lubin–Tate spectrum for a supersingular elliptic curve C over \mathbb{F}_9 and G_{24} is its group of automorphisms over \mathbb{F}_3. □

Remark 4.21. In [BL14] Barwick and Lawson provide an analog of the Blumberg–Mandell localization sequence (see Remark 4.19) for certain regular ring spectra. In particular, there is a localization sequence of connective K-theory spectra

$$K^{cn}(\mathbb{Z}) \to K^{cn}(tmf) \to K^{cn}(Tmf),$$

which implies the second part of the previous corollary for $A = tmf$ and certain other regular tmf-algebras. We also remark that in [AGH19] these localization sequences are extended to non-connective K-theory spectra. However, for the present application this is irrelevant as the difference vanishes after telescopic localization.

4.4. Consequences for $K(1)$-local K-theory. We now record the consequences of Theorem 3.8 at height 1 (in fact, we will only use Theorem 3.8 and so the results are independent of [CMNN20]). Recall also that $K(1)$ and $T(1)$-localization coincide.

Corollary 4.22. $K(1)$-local K-theory is truncating on $K(1)$-acyclic ring spectra. In fact, for a $K(1)$-acyclic ring spectrum A, we have $L_{K(1)}K(A) = L_{K(1)}K(A[\frac{1}{p}]).$

Proof. Let A be a $K(1)$-acyclic, connective ring spectrum. By Theorem 3.8 we have an equivalence $L_{K(1)}K(A) \simeq L_{K(1)}K(A[\frac{1}{p}])$. The claim follows from this as p-adic K-theory is truncating on S/p-acyclic ring spectra by a result of Waldhausen (see also [LT19 Lemma 2.4]). □

In the case of HZ-algebras, the last assertion of Corollary 4.29 also appears in [BCM20], proved by different methods. From [LT19 Theorems 3.3, A.2] we then get the following. Note that discrete rings are $K(1)$-acyclic.

Corollary 4.23. $K(1)$-local K-theory of discrete rings is nilinvariant and satisfies Milnor excision and cdh-descent.

We also get the following consequence.

Corollary 4.24. Let A be a connective and $K(1)$-acyclic ring spectrum. Then the canonical map $L_{K(1)}K(A) \to L_{K(1)}K(A[x])$ is an equivalence. In other words, $K(1)$-local K-theory is homotopy invariant on connective, $K(1)$-acyclic ring spectra.

Here, for any ring spectrum A, the symbol $A[x]$ denotes the ring spectrum $A \otimes \Sigma^\infty_+ \mathbb{Z}_{\geq 0}$.
Proof. We observe that $A[x] = A \otimes \mathbb{S}[x]$ is also $K(1)$-acyclic and connective. Hence, by Corollary \[4.22\] we may assume that A is discrete so that $A[x]$ is the usual discrete polynomial ring $A \otimes_{\mathbb{Z}} \mathbb{Z}[x]$. By Theorem \[A\] we may furthermore assume that p is invertible in A. In this case, Weibel [Wei81] has shown that p is also invertible on $NK(A) = \text{fib}(K(A[x]) \to K(A))$. So the p-completion of $NK(A)$ vanishes, and hence $L_{K(1)}NK(A) = 0$ as well. □

Remark 4.25. For ring spectra, there are two canonical “affine lines:” The flat affine line $A[x]$ as above, and the smooth affine line $A \otimes \mathbb{S}\{x\}$, where $\mathbb{S}\{x\}$ is the free \mathbb{E}_∞-ring on a degree 0 generator. Since the canonical map $\mathbb{S}\{x\} \to \mathbb{S}[x]$ is a π_0 isomorphism, we also obtain homotopy invariance with respect to the smooth affine line on connective, $K(1)$-acyclic ring spectra A: Both maps $K(A) \to K(A[x])$ and $K(A[\{x\}] \to K(A[x])$ are $K(1)$-local equivalences.

Remark 4.26. Recall that Weibel’s homotopy K-theory $KH(A)$ of a discrete ring A is defined as the geometric realization of the simplicial spectrum $K(A[\Delta^\bullet])$ with

$$A[\Delta^n] = A[x_0, \ldots, x_n]/(x_0 + \cdots + x_n - 1) \cong A[x_1, \ldots, x_n].$$

It follow from the above corollary that

$$L_{K(1)}K(A) \cong L_{K(1)}KH(A).$$

By results of Weibel and Cisinski homotopy K-theory satisfies Milnor excision [Wei81] and cdh-descent [Cis13]. In this way we obtain another proof of Corollary \[4.23\].

Remark 4.27. The analog of Corollary \[4.22\] for topological cyclic homology does not hold: As $\text{THH}(\mathbb{Z}(\mathbb{Z}/p))$ is a $\mathbb{Z}(\mathbb{Z}/p)$-algebra, it vanishes p-adically. So $\text{TC}(\mathbb{Z}(\mathbb{Z}/p))$ vanishes p-adically, and a fortiori after $T(1)$-localization. However, $L_{T(1)}\text{TC}(\mathbb{Z})$ does not vanish: For odd primes p, Bökstedt and Madsen [BM94] computed the connective cover of $\text{TC}(\mathbb{Z})^\wedge_p \simeq \text{TC}(\mathbb{Z}/p)^\wedge_p$ to be equivalent to $j \oplus \sum j \oplus \sum^3 ku^\wedge_p$ where j is the connective cover of the $K(1)$-local sphere. In particular, the $T(1)$- or equivalently $K(1)$-localization of $\text{TC}(\mathbb{Z})$ is given by

$$L_{K(1)}\text{TC}(\mathbb{Z}) \cong L_{K(1)}\mathbb{S} \oplus \Sigma L_{K(1)}\mathbb{S} \oplus \Sigma^3 \text{KU}^\wedge_p \neq 0.$$

For $p = 2$, [Rog99b] Theorem 0.5] and [Rog99a] Formula (0.2)] give a filtration of $L_{K(1)}\text{TC}(\mathbb{Z})$, whose associated graded essentially looks like the summands in (6). Using that KU^\wedge_p is rationally non-trivial in infinitely many degrees, while the other two terms are rationally non-trivial only in finitely many degrees, one obtains that $L_{K(1)}\text{TC}(\mathbb{Z})$ is non-trivial at $p = 2$ as well.

Remark 4.28. We point out that, although $K(1)$-local TC commutes with filtered colimits of rings [CM18, Theorem G], it does not commute with filtered colimits of categories. In fact, one checks that (cf. also [BCM20] Proposition 2.15]) the filtered colimit $\text{colim}_k \text{Mod}_{\mathbb{Z}(\mathbb{Z}/p^k)}(\text{Perf}(\mathbb{Z}))$ is the ∞-category of p-power torsion perfect \mathbb{Z}-modules and we thus obtain an exact sequence

$$\text{colim}_k \text{Mod}_{\mathbb{Z}(\mathbb{Z}/p^k)}(\text{Perf}(\mathbb{Z})) \to \text{Perf}(\mathbb{Z}) \to \text{Perf}(\mathbb{Z}(\mathbb{Z}/p^k)).$$

Assuming that $L_{K(1)}\text{TC}$ commutes with filtered colimits we find that $L_{K(1)}\text{TC}$ of the fibre vanishes, as $L_{K(1)}\text{TC}(\text{Mod}_{\mathbb{Z}(\mathbb{Z}/p^k)}(\text{Perf}(\mathbb{Z})))$ is a module over $L_{K(1)}\text{TC}(\mathbb{Z}(\mathbb{Z}/p^k))$ which vanishes since $L_{K(1)}\text{K}(\mathbb{Z}/p^k) = 0$ as above; this is a contradiction.
4.5. Consequences for $T(n)$-local K-theory for $n \geq 2$. In this subsection, we record some further structural consequences of Theorem \[\text{A}\] at heights ≥ 2. Some further structural features in this context are also explored in [CMNN20b].

Corollary 4.29. Let $n \geq 2$. Then for any ring spectrum A, we have a natural equivalence $L_{T(n)}K(A) = L_{T(n)}K(\tau_{\geq 0}A) = L_{T(n)}TC(\tau_{\geq 0}A)$.

Proof. Indeed, this follows because $\tau_{\geq 0}A \rightarrow A$ induces an equivalence on $L_{T(n)}K(-)$ by Theorem 3.8. Now we use the Dundas–Goodwillie–McCarthy theorem [DGM13] combined with Mitchell’s theorem [Mit90] to obtain $L_{T(n)}K(\tau_{\geq 0}A) \sim L_{T(n)}(TC(\tau_{\geq 0}A))$, hence the result. \[\square\]

For a $T(n)$-acyclic ring spectrum (with $n \geq 2$), we therefore obtain an equivalence

$$L_{T(n)}K(L_{T(n-1)}A) \simeq L_{T(n)}TC(\tau_{\geq 0}A).$$

This should be compared to the result obtained in [BCM20] that if A is a commutative, p-adically complete ring, then

$$L_{T(1)}K(A[1/p]) \simeq L_{T(1)}TC(A).$$

Note by contrast that no commutativity or completeness at (p,v_1,\ldots,v_{n-1}) is required in Corollary 4.29.

Next, we record a result describing the behavior of group-complete K-theory versus Waldhausen K-theory; this is essentially a restatement of the above in categorical terms, and informally states that for $T(i)$-local phenomena with $i \geq 2$, it suffices simply to group-complete (rather than split all cofibre sequences) in the definition of K-theory. Given an additive infinite category A, we let $K^{\text{add}}(A)$ denote the group-completion K-theory of A, which we regard as a connective spectrum.

Corollary 4.30. Let C be a stable infinite category, and let $A \subset C$ be an additive subcategory. Suppose A generates C as a thick subcategory. Then the natural map $K^{\text{add}}(A) \rightarrow K(C)$ induces an equivalence on $T(i)$-localization, for $i \geq 2$.

Proof. By passage to filtered colimits, we can assume that A is generated under coproducts by a single object X (and hence C is generated as a thick subcategory by X). In particular, we have an equivalence $\tau_{\geq 1}K^{\text{add}}(A) \simeq \tau_{\geq 1}K(\tau_{\geq 0}\text{End}_C(X))$, while $K(C) = K(\text{End}_C(X))$. The result then follows from Corollary 4.29. \[\square\]

Corollary 4.31. Let $n \geq 2$. The construction $A \mapsto L_{T(n)}K(A)$, from ring spectra to $T(n)$-local spectra, preserves sifted colimits. The same holds if we restrict to the subcategory of $T(n-1)$-local ring spectra.

Proof. We use here that the construction $R \mapsto TC(R)/p$, from connective ring spectra to spectra, preserves sifted colimits, cf. [CMM18 Corollary 2.15]. We prove the first claim that $A \mapsto L_{T(n)}K(A)$ preserves sifted colimits as A ranges over all ring spectra. Let $A_i, i \in I$ be a sifted diagram of ring spectra. Then $\tau_{\geq 0}A_i, i \in I$ yields a sifted diagram of connective ring spectra, and using Lemma 2.2 we find that

$$L_{T(n)}\left(\operatorname{colim}_{i \in I} TC(\tau_{\geq 0}A_i)\right) \sim L_{T(n)}\operatorname{TC}(\operatorname{colim}_{i \in I} \tau_{\geq 0}A_i).$$

Using that $\tau_{\geq 0}A_i \rightarrow \tau_{\geq 0}(\operatorname{colim}_i A_i)$ is a $T(1) \oplus \cdots \oplus T(n)$-equivalence and hence induces an equivalence on $L_{T(n)}K(-)$ thanks to Theorem 3.8, we conclude the result from Corollary 4.29.
Finally, suppose \(A_i \) is a sifted diagram of \(T(n-1) \)-local ring spectra. Then the map \(\colim_i A_i \to L_{T(n-1)}(\colim_i A_i) \) is a \(T(n-1) \oplus T(n) \)-equivalence (as \(T(n-1) \)-local spectra are \(T(n) \)-acyclic), hence the last claim by what has already been proved and by Theorem [A]. □

Finally, we record the \(T(n) \)-local (for \(n \geq 2 \)) analog of the Farrell–Jones conjecture; the following has been also observed by Marco Varisco for connective ring spectra. We refer to the surveys [RV18, Lück20] for an introduction to this conjecture and its applications. This will rely on the following result about the assembly map in \(p \)-adically completed topological cyclic homology, which follows by combining a result of Lück–Reich–Rognes–Varisco [LRRV17] and finiteness properties of TC from [CMM18]. By contrast, the assembly map from (non-\(p \)-completed) \(p \)-typical TC need not be an equivalence for the family of cyclic subgroups, cf. [LRRV17] Sec. 6.

Proposition 4.32. Let \(R \) be any connective ring spectrum, and let \(G \) be any group. Let \(\mathcal{O}_c(G) \) be the subcategory of the orbit category of \(G \) spanned by \(G \)-sets of the form \(G/H \), with \(H \subset G \) cyclic. Then the assembly map

\[
\colim_{G/H \in \mathcal{O}_c(G)} \text{TC}(R[H]) \to \text{TC}(R[G])
\]

is a \(p \)-adic equivalence.

Proof. By [LRRV17] Theorem 1.19, the assembly map for the family of cyclic groups for \(\text{THH} \) is an equivalence. Since \(\text{TC}/p \) commutes with colimits as a functor from connective cyclotomic spectra to spectra, [CMM18] Theorem 2.7, the result follows. □

Corollary 4.33. Let \(R \) be any ring spectrum, and let \(G \) be any group, and let \(\mathcal{O}_c(G) \) be as in Proposition 4.32. Then the assembly map

\[
\colim_{G/H \in \mathcal{O}_c(G)} K(R[H]) \to K(R[G])
\]

is a \(T(n) \)-equivalence for \(n \geq 2 \).

Proof. By Corollary 4.29, we may assume \(R \) is connective, and replace \(K \) by TC. The result follows from Proposition 4.32. □

References

PURITY IN CHROMATICALLY LOCALIZED ALGEBRAIC K- THEORY

