Upper limits on Einstein's weak equivalence principle placed by uncertainties of dispersion measures of fast radio bursts

Hashimoto, Tetsuya; Goto, Tomotsugu; Santos, Daryl Joe D.; Ho, Simon C.-C.; Hsiao, Tiger Y.-Y.; Wong, Yi Hang Valerie; On, Alvina Y. L.; Kim, Seong Jin; Lu, Ting-Yi; Kilerci-Eser, Ece

Published in:
Physical Review D

DOI:
10.1103/PhysRevD.104.124026

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Upper limits on Einstein’s weak equivalence principle placed by uncertainties of dispersion measures of fast radio bursts

Tetsuya Hashimoto,†‡ Tomotsugu Goto, Daryl Joe D. Santos, Simon C.-C. Ho, Tiger Y.-Y. Hsiao, Yi Hang Valerie Wong, Alvina Y. L. On,§∥ Seong Jin Kim, and Ting-Yi Lu

Department of Physics, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung 40227, Taiwan, Republic of China

Institute of Astronomy, National Tsing Hua University, 101, Section 2. Kuang-Fu Road, Hsinchu, 30013, Taiwan, Republic of China

Max Planck Institute for Extraterrestrial Physics, Gießenbachstraße 1, 85748 Garching, Germany

DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen, Denmark

Sabancı University, Faculty of Engineering and Natural Sciences, 34956 Istanbul, Turkey

(Received 24 May 2021; revised 26 October 2021; accepted 17 November 2021; published 16 December 2021)

Fast radio bursts (FRBs) are astronomical transients with millisecond timescales occurring at cosmological distances. The observed time lag between different energies of each FRB is well described by the inverse-square law of the observed frequency, i.e., dispersion measure. Therefore, FRBs provide one of the ideal laboratories to test Einstein’s weak equivalence principle (WEP): the hypothetical time lag between photons with different energies under a gravitational potential. If WEP is violated, such evidence should be exposed within the observational uncertainties of dispersion measures, unless the WEP violation also depends on the inverse-square of the observed frequency. In this work, we constrain the difference of gamma parameters ($\Delta \gamma$) between photons with different energies using the observational uncertainties of FRB dispersion measures, where $\Delta \gamma = 0$ for Einstein’s general relativity. Adopting the averaged ‘Shapiro time delay’ for cosmological sources, FRB 121002 at $z = 1.6 \pm 0.3$ and FRB 180817.J1533+42 at $z = 1.0 \pm 0.2$ place the most stringent constraints of $\log \Delta \gamma < -20.8 \pm 0.1$ and $\log(\Delta \gamma/r_E^2) < -20.9 \pm 0.2$, respectively, where r_E is the energy ratio between the photons. The former is about three orders of magnitude lower than those of other astrophysical sources in previous works under the same formalization of the Shapiro time delay while the latter is comparable to the tightest constraint so far.

DOI: 10.1103/PhysRevD.104.124026

I. INTRODUCTION

Einstein’s general relativity (GR) [1] is the basis of modern astronomy and astrophysics [2–5]. Thus, testing the validity of basic assumptions made in GR is significant.

One of the basic assumptions of GR is the so-called Einstein’s weak equivalence principle (WEP). WEP states that any uncharged free-falling test particle will follow a trajectory, which is independent of its internal composition and structure (see e.g., [6,7]). Any possible deviation from WEP is characterized by a γ parameter for each particle whereas $\gamma = 1$ for GR. Here γ describes how much space curvature is produced by a unit test mass [8]. The test particle can be massless such as photons and gravitational waves (GWs) [e.g., [9]]. Under the WEP assumption, different types of messenger particles (e.g., photons and GWs) must follow the same ‘Shapiro time delay’ [10] as far as they travel through the same gravitational field. This is also the case for the same-type particles with different internal properties such as energies and polarization states. Here, the Shapiro time delay is the time delay of a particle...
caused by gravitational fields in its path. Therefore, the differences in Shapiro time delays between different particles (or the same particles with different internal properties) have been used to test WEP (see e.g., [11]).

Fast radio bursts (FRBs) are new astronomical transients that show sudden brightening at radio wavelengths [e.g., [12]]. The timescale of FRBs is ∼1 millisecond [e.g., [13]], and most FRBs are extragalactic events [e.g., [14,15]] likely to be encountering huge gravitational potentials, e.g., the Laniakea supercluster [16]. Some FRBs occurred at cosmological distances of z ≥ 1 [15], where z is redshift. Therefore, FRBs provide one of the ideal laboratories to test WEP through the Shapiro time delays [9,17–19]. In this paper, we present new upper limits on the difference of photons with different energies using FRBs. Throughout this paper, we focus on constraints provided by photons, GWs, and neutrinos with different energies.

The structure of the paper is as follows. We describe our approach to constrain the WEP violation in Sec. II. In Sec. III, the data used in this work is described. Results and discussions are provided in Secs. IV and V, respectively, followed by conclusions in Sec. VI.

Throughout this paper, we assume the Planck15 cosmology [20] as a fiducial model, i.e., Λ cold dark matter cosmology with (Ωm, ΩΛ, Ωb, H0) = (0.307, 0.693, 0.0486, 67.7), unless otherwise mentioned.

II. METHOD

The observed time delays of FRBs between different energies (Δtobs) can be expressed in terms of the contributions from at least the following components [21],

$$\Delta t_{\text{obs}} = \Delta t_{\text{DM}} + \Delta t_{\text{int}} + \Delta t_{\text{spe}} + \Delta t_{\text{LIV}} + \Delta t_{\text{gra}},$$

(1)

where ΔtDM is due to the so-called dispersion measure (DM); the change of the speed of light depending on frequency when the radio emission passes through ionized materials in the host galaxy, intergalactic space, and the Milky Way. Δtint is the intrinsic time delay originating from the FRB source. Δtpe is the time delay from special-relativistic effects in the case of photons with nonzero rest mass. ΔtLIV is the time delay from Lorentz invariance violation. Δtgra is the difference of Shapiro time delay (tgra) [10] which is caused by gravitational fields in the path of photons. According to literature (see e.g., [9,19,21–23]), the upper limit on the WEP violation is estimated based on the following arguments. The terms Δtpe and ΔtLIV in Eq. (1) are negligible compared to the other terms [9,21,22]. Assuming that Δtint > 0 [9], Eq. (1) is approximated as

$$\Delta t_{\text{obs}} - \Delta t_{\text{DM}} > \Delta t_{\text{gra}},$$

(2)

Conventionally, tgra and Δtgra are parametrized by γ, which uses an approximation of the Minkowski metric with additional linear perturbation [9,19,21–23]. However, such approximation is well justified only for the local Universe but is not the case for sources at cosmological distances of z ≥ 1 [23]. For cosmological sources, tgra and Δtgra do not monotonically increase with increasing gravitational potential sources [23]. Therefore, assuming one gravitational source (conventionally, either the Milky Way or Laniakea supercluster [9,19,21,22]) does not provide a lower limit on Δtgra anymore in Eq. (2). In this sense, all of the gravitational sources near the light path needs to be taken into account to derive Δtgra for cosmological sources. However, such analysis is not practical using observational data of galaxies and galaxy clusters because galaxy observations are incomplete especially at higher redshifts (e.g., z ≥ 1). Therefore, we use a cosmological analytic solution of tgra for the averaged matter distribution [23]. The averaged Shapiro time delay, tgra,ave, consists of two terms,

$$t_{\text{gra,ave}} = t_{\Lambda} + t_{\text{matter}},$$

(3)

where

$$t_{\Lambda} = \frac{\Omega_{\Lambda} H_0^2}{12 c^3} d_S^3,$$

(4)

and

$$t_{\text{matter}} = -\frac{\Omega_m H_0^2}{6 c^3} d_S^3,$$

(5)

where d_S is the comoving distance to the cosmological source. Equation (5) is consistent with the Shapiro time delay calculated from observed galaxy clusters, at least, up to ~400 Mpc (z ~ 0.1) [23]. We caution that some works on the theoretical ground might be still needed to be sure that one can safely use the model given in Minazzoli et al. [23] for this purpose. We leave such theoretical studies for future works because the main focus of this paper is to present the advantage of FRBs over other astrophysical sources under the same assumptions on the Shapiro time delay.

Because we focus on the time lag under gravity in this work, we assume that the t_{Λ} term is canceled out when Δtgra is derived from two photons with different energies. Using the matter contribution term (t_{matter}) and the γ parameter, Δtgra is expressed as

$$\Delta t_{\text{gra}} = (\gamma_2 - \gamma_1) \frac{\Omega_m H_0^2}{6 c^3} d_S^3.$$

(6)

Here, γ_1 and γ_2 are the gamma parameters of photons 1 and 2, respectively. Equations (2) and (6) provide
\[\Delta \gamma := \gamma_2 - \gamma_1 < (\Delta t_{\text{obs}} - \Delta t_{\text{DM}}) \frac{6c^3}{\Omega_{\text{m}}H_0^2d_S^2}. \] (7)

In the FRB case, \(\Delta t_{\text{obs}} \) is well described by \(\Delta t_{\text{DM}} \) with a dependency of \(\nu_{\text{obs}}^{-2} \) [13,24], where \(\nu_{\text{obs}} \) is the observed frequency. If WEP is violated, this effect should appear within the uncertainties of DM\(_{\text{obs}}\) measurements (\(\delta \text{DM}_{\text{obs}} \)), where DM\(_{\text{obs}}\) is the observed dispersion measure. We note that this argument holds unless the WEP violation has such \(\nu_{\text{obs}}^{-2} \) dependency. In case both the WEP violation and \(\Delta t_{\text{DM}} \) follow the same \(\nu_{\text{obs}}^{-2} \) law, the two effects are degenerate (i.e., indistinguishable), and may cause systematically higher or lower values of observed dispersion measures than that of cosmological predictions (see, e.g., [25,26]), indicating no clear evidence of the \(\nu_{\text{obs}}^{-2} \) law for the WEP violation.

The time lag due to DM\(_{\text{obs}}\) is approximated as

\[\Delta t_{\text{DM}} \approx 4.15 \left(\frac{\nu_{\text{obs}}}{1 \text{ GHz}} \right)^{-2} \frac{\text{DM}_{\text{obs}}}{10^3 \text{ pc cm}^{-3}} \text{ s}, \] (8)

(see, e.g., [25,26]). The uncertainty of \(\Delta t_{\text{DM}} \) (\(\delta \Delta t_{\text{DM}} \)) is proportional to \(\delta \text{DM}_{\text{obs}} \),

\[\delta \Delta t_{\text{DM}} \approx 4.15 \left(\frac{\nu_{\text{obs}}}{1 \text{ GHz}} \right)^{-2} \frac{\delta \text{DM}_{\text{obs}}}{10^3 \text{ pc cm}^{-3}} \text{ s}. \] (9)

For some bright FRBs, DM\(_{\text{obs}}\) are accurately measured with \(\delta \text{DM}_{\text{obs}} \lesssim 0.01 \text{ pc cm}^{-3} \) and corresponding \(\delta \Delta t_{\text{DM}} \) [27]. The time lag due to the WEP violation should be within \(\delta \Delta t_{\text{DM}} \) as mentioned above. Therefore, \(\delta \text{DM}_{\text{obs}} \) places an upper limit on \(\Delta \gamma \). In this work, we use \(\delta \Delta t_{\text{DM}} \) as the upper limit on \(\Delta t_{\text{obs}} - \Delta t_{\text{DM}} \) in Eq. (7),

\[\Delta t_{\text{obs}} - \Delta t_{\text{DM}} < \delta \Delta t_{\text{DM}}. \] (10)

III. DATA

We use the FRB catalog [28] constructed by Hashimoto et al. [15]. This catalog includes all the information from the FRBCAT project [13] as of 24 Feb. 2020 as well as complementary information on individual bursts of repeating FRBs compiled from literature [27,29–35]. The catalog also includes redshifts of individual FRBs and their uncertainties calculated from DM\(_{\text{obs}}\) (see [15,36] for details). In this work, we use DM\(_{\text{obs}}\), \(\delta \text{DM}_{\text{obs}}\), \(\nu_{\text{obs}}\), redshift, redshift uncertainty, and observed bandwidth of FRBs in the catalog. The spectroscopic redshifts are utilized if they are available; FRB 121102, 180916.J0158 + 65, 180924, 181112, and 190523 [37]. Figure 1 shows \(\delta \text{DM}_{\text{obs}}/\text{DM}_{\text{obs}} \) as a function of DM\(_{\text{obs}}\) for nonrepeating and repeating FRBs. Some nonrepeating FRBs show \(\log(\delta \text{DM}_{\text{obs}}/\text{DM}_{\text{obs}}) \sim -5 \) which are one order of magnitude more accurate DM\(_{\text{obs}}\) measurements than those of repeating FRBs. The mean values of \(\log(\delta \text{DM}_{\text{obs}}/\text{DM}_{\text{obs}}) \) of nonrepeating and repeating FRBs are \(-3.29 \pm 0.99\) and \(-2.77 \pm 0.03\), respectively, where the uncertainties represent standard errors. This is because the nonrepeating FRBs are brighter than the repeating ones on average [36]. According to Eqs. (7), (9), and (10), a more accurate DM\(_{\text{obs}}\) provides a stricter constraint on the time lag between different energies and thus \(\Delta \gamma \). We utilize both nonrepeating and repeating FRBs in the following sections while nonrepeating FRBs provide the most stringent constraints on \(\Delta \gamma \) (see Sec. IV).

IV. RESULTS

A. Tightest constraints in this work

Figure 2 shows the upper limits on \(\log \Delta \gamma \) calculated by Eqs. (7), (9), and (10) as a function of observed
frequency (red dots) along with constraints in previous works [9,17–19,22,38–46]. For a fair comparison, the upper limits on \(\log \Delta \gamma \) in previous works are recalculated based on Eq. (7) using redshifts (or distances) and delay times adopted in the literature. Each data shown in Fig. 2 is derived from the time lag between the same particles (any of photons, GWs, and neutrinos) with different energies. We note that the frequencies of the left panel in Fig. 2 indicate the frequencies of GW signals [39,40,46] while those in the middle and right panels are observed frequencies of photons derived from the time lag between the same particles (any of photons, GWs, and neutrinos) with different energies. To take such different energy ratios into account, Tingay and Kaplan [17] introduced the Shapiro delay [Eq. (7)] is shown by the red vertical error bar in Fig. 2.

The most stringent constraint on \(\log \Delta \gamma \) in this work is \(\log \Delta \gamma < -20.8 \pm 0.1 \) which is provided by FRB 121002 at \(z = 1.6 \pm 0.3 \) with \(\delta \text{DM}_{\text{obs}} = 0.02 \text{ pc cm}^{-1} \) and \(\nu_{\text{obs}} = 1.2\text{–}1.5 \text{ GHz} \) [13]. The recalculated most stringent constraint in the previous works is \(\log \Delta \gamma < -17.56 \pm 0.05 \) using Eq. (7) and FRB 121102 at \(z = 0.1927 \pm 0.00008 \) [48] with the delay time of 0.4 ms between 1.344 and 1.374 GHz [19]. Therefore, our constraint on \(\log \Delta \gamma \) is about three orders of magnitude tighter than those from other astrophysical sources in the previous works.

For FRB cases, the fractional energy differences between photons are typically \(\sim 20\% \) [9,17–19]. In contrast, the high-energy astrophysical sources such as gamma-ray bursts (GRBs) and the Crab pulsar allow a comparison with much larger energy differences, e.g., more than three orders of magnitude [22,43]. The deviation from the WEP may be more obvious for photons with larger energy differences if \(\gamma \) is energy dependent. Therefore, the same \(\Delta \gamma \) values constrained from different energy ratios might indicate different meanings. To take such different energy ratios into account, Tingay and Kaplan [17] introduced \(\log (\Delta \gamma/\nu_E) \) where \(r_E \equiv E_{\text{high}}/E_{\text{low}} \) is the ratio of particle energies and \(E_{\text{high}} \) (\(E_{\text{low}} \)) is the higher (lower) energy.

Figure 3 shows \(\log (\Delta \gamma/\nu_E) \) as a function of frequency, where \(\nu_E \) in our sample is calculated from the observed bandwidth. The upper limits on \(\log (\Delta \gamma/\nu_E) \) in previous works are recalculated based on Eq. (7) using redshifts (or distances) and delay times adopted in the literature. The most stringent constraint on \(\log (\Delta \gamma/\nu_E) \) in this work is \(\log (\Delta \gamma/\nu_E) < -20.9 \pm 0.2 \) which is provided by FRB 180817.J1553 + 42 at \(z = 1.0 \pm 0.2 \) with \(\delta \text{DM}_{\text{obs}} = 0.002 \text{ pc cm}^{-1} \) and \(\nu_{\text{obs}} = 0.4\text{–}0.8 \text{ GHz} \) [27]. The recalculated most stringent constraint in the previous works is \(\log (\Delta \gamma/\nu_E) < -20.77 \pm 0.05 \) using Eq. (7) and GRB
there are multiple measurements of log FRB sources have multiple measurements of radio bursts, repeating FRB sources out of five. Since such repeating cosmology (see Sec. IVA for details). There are two for these FRBs, the uncertainty of log Δγ is comparable to the tightest constraint so far within the error.

B. Robust constraints with spectroscopic redshifts

FRBs have been used to constrain Δγ in previous studies [9,17–19]. Wei et al. [9] used Δtobs (~1 s) of FRB 110220 between 1.2 GHz and 1.5 GHz. They conservatively assumed that Δtobs is dominated by the WEP violation rather than ΔtDM to obtain log Δγ < −7.6. Tingay and Kaplan [17] estimated log Δγ < −7.7. They argued that this limit would be reduced down to log Δγ < −9.0 assuming that the WEP violation is masked by a ~5% uncertainty of DMobs. Nusser [18] proposed to use the gravitational potential of large-scale structures such as the Laniakea supercluster [16] rather than the conventionally used Milky Way potential. The potential fluctuations due to the large-scale structures can be used to constrain the Shapiro time delay and log Δγ at the cosmological scales [18] (see the Appendix A for constraints are summarized in Table I together with the tightest constraints.

V. DISCUSSIONS

FRBs have been used to constrain Δγ in previous studies [9,17–19]. Wei et al. [9] used Δtobs (~1 s) of FRB 110220 between 1.2 GHz and 1.5 GHz. They conservatively assumed that Δtobs is dominated by the WEP violation rather than ΔtDM to obtain log Δγ < −7.6. Tingay and Kaplan [17] used Δtobs (~0.8 s) of FRB 150418 between 1.2 GHz and 1.5 GHz. Based on the same assumption by Wei et al. [9], Tingay and Kaplan [17] estimated log Δγ < −7.7. They argued that this limit would be reduced down to log Δγ < −9.0 assuming that the WEP violation is masked by a ~5% uncertainty of DMobs. Nusser [18] proposed to use the gravitational potential of large-scale structures such as the Laniakea supercluster [16] rather than the conventionally used Milky Way potential. The potential fluctuations due to the large-scale structures can be used to constrain the Shapiro time delay and log Δγ at the cosmological scales [18] (see the Appendix A for

![Graph](image)

FIG. 3. Same as Fig. 2 except for log(Δγ/γ) in the vertical axis, where rE := Ehigh/Elow is the energy ratio between two particles with higher and lower energies (Ehigh and Elow, respectively). For GW sources [39,40,46], we assumed energies of gravitons which are proportional to their frequencies [49]. Adopted frequencies of two particles are 35–150 Hz [39] and 35 Hz–256 Hz for GW150914 and 35 Hz–256 Hz for GW170104 and GW170823 [46].

TABLE I. A summary of constraints on log Δγ and log(Δγ/γE) in this work.

<table>
<thead>
<tr>
<th>FRB ID</th>
<th>Redshift</th>
<th>δtDM (ms)</th>
<th>Adopted frequencies (GHz)</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>121102</td>
<td>1.6 ± 0.3</td>
<td>0.045</td>
<td>1.2–1.5</td>
<td>log Δγ < −20.8 ± 0.1</td>
</tr>
<tr>
<td>180817J1533 + 42</td>
<td>1.0 ± 0.2</td>
<td>0.023</td>
<td>0.4–0.8</td>
<td>log(Δγ/γE) < −20.9 ± 0.2</td>
</tr>
</tbody>
</table>

Robust constraints with spectroscopic redshifts

<table>
<thead>
<tr>
<th>FRB ID</th>
<th>Redshift</th>
<th>δtDM (ms)</th>
<th>Adopted frequencies (GHz)</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>121102*</td>
<td>0.19273</td>
<td>0.115</td>
<td>4.0–8.0</td>
<td>log Δγ < −18.10 ± 0.05, log(Δγ/γE) < −18.40 ± 0.05</td>
</tr>
<tr>
<td>180916J0158 + 65*</td>
<td>0.0337</td>
<td>1.153</td>
<td>0.4–0.8</td>
<td>log Δγ < −14.88 ± 0.05, log(Δγ/γE) < −15.18 ± 0.05</td>
</tr>
<tr>
<td>180924</td>
<td>0.3214</td>
<td>0.143</td>
<td>1.2–1.5</td>
<td>log Δγ < −18.63 ± 0.05, log(Δγ/γE) < −18.74 ± 0.05</td>
</tr>
<tr>
<td>181112</td>
<td>0.4755</td>
<td>0.077</td>
<td>1.1–1.4</td>
<td>log Δγ < −19.35 ± 0.05, log(Δγ/γE) < −19.47 ± 0.05</td>
</tr>
<tr>
<td>190523</td>
<td>0.66</td>
<td>1.251</td>
<td>1.3–1.5</td>
<td>log Δγ < −18.50 ± 0.05, log(Δγ/γE) < −18.55 ± 0.05</td>
</tr>
</tbody>
</table>

*Since these are repeating FRB sources, the most stringent constraints are selected for each FRB source among values derived from multiple radio bursts.
details of this approach using our sample). The constraint estimated by Nusser [18] is log Δγ < −12 to −13 for FRB 150418. Xing et al. [19] used sub-bursts of FRB 121102 at different frequencies of 1.344 GHz and 1.374 GHz. The time lag between these sub-bursts is Δt_{obs} = 0.4 ms, which provides log Δγ < −15.6 assuming the Laniakea supercluster potential. These FRBs utilized for the WEP test are at z < 1. These previous works used an approximation of the Shapiro delay in our formalization of the averaged Shapiro time delay for cosmological sources, the most stringent constraints are log Δγ < −13 for cosmological dispersion measures of FRBs. Adopting the analytic formulas for cosmological sources [Eqs. (4) and (5)] allowed us to make use of distant FRBs at z > 1 to constrain Δγ in this work.

Our approach is similar to the argument by Tingay and Kaplan [17] which takes δDM_{obs} into account. They assumed 5% as a typical uncertainty of DM_{obs}. However, we use exact values of δDM_{obs} for all of the extragalactic FRBs as of 24th February 2020 [15], including FRBs at cosmological distances (e.g., z ≈ 1). In both log Δγ and log(Δγ/r_E) cases, this work provides the most stringent constraints on WEP so far in the framework of the same particles with different energies.

In this work, we assumed that the Λ terms of different particles [Eq. (4)] are canceled out because we focus on the time lag under gravity. If this is not the case, the Λ term has to be taken into account. In such a case, the absolute values of log Δγ presented in this work would depend on the assumption on the Λ term. However, both the matter term and Λ term show the same dependency on the source distance or redshift [Eqs. (4) and (5)]. Therefore, as far as the same formalization is utilized for different sources, the relative constraints on log Δγ do not change. In this sense, this work still provides the most stringent constraints on the WEP violation so far even if the Λ term is taken into account.

VI. CONCLUSION

FRBs are cosmological transients with millisecond timescales. The observed time lag between different energies of each FRB is well described by the dispersion measure. The time lag due to the dispersion measure follows the ν_{obs}^{-2} law. Therefore, FRBs allow us to test the WEP violation, which is the hypothetical time lag between photons with different energies under a gravitational potential. If WEP is violated, such evidence should appear within the observational uncertainties of dispersion measures unless the WEP violation also has the ν_{obs}^{-2} dependency.

In this work, we tested the time lag between photons with different energies using the observational uncertainties of dispersion measures of FRBs. Adopting the analytic formula of the averaged Shapiro time delay for cosmological sources, the most stringent constraints are log Δγ < −20.8 ± 0.1 for FRB 121002 at z = 1.6 ± 0.3 and log(Δγ/r_E) < −20.9 ± 0.2 for FRB 180817J1533 + 42 at z = 1.0 ± 0.2. The former is about three orders of magnitude lower than those of other astrophysical sources in previous works, including GWs, FRB 121102, 110220, FRB/GRB100704A, 150418, the Crab pulsar, SN1987A, GRBs, and Blazars under the same formalization of the Shapiro time delay. The latter is comparable to the tightest constraint so far. Much larger number of FRBs are expected to be discovered in the near future. Cosmological FRBs and the uncertainties of dispersion measures have a great potential to test the WEP violation accurately.

VII. DATA AVAILABILITY

The data underlying this article is publicly available at FRBCAT project ([54]) and references therein. The compiled catalog is available at [55].

ACKNOWLEDGMENTS

We are very grateful to the anonymous referees for many insightful comments. A. Y. L. O. is supported by the Centre for Informatics and Computation in Astronomy (CICA) at National Tsing Hua University (NTHU) through a grant from the Ministry of Education of Taiwan. T. G. and T. H. acknowledge the supports of the Ministry of Science and Technology of Taiwan through Grants No. 108-2628-M-007-004-MY3 and No. 110-2112-M-005-013-MY3, respectively. A. Y. L. O.’s visit to N. T. H. U. was supported by the Ministry of Science and Technology of the ROC (Taiwan) Grant No. 105-2119-M-007-028-MY3, hosted by Professor Albert Kong. This work used high-performance computing facilities operated by the CICA at NTHU. This equipment was funded by the Ministry of Education of Taiwan, the Ministry of Science and Technology of Taiwan, and NTHU. This research has made use of NASA’s Astrophysics Data System. The authors thank the Yukawa Institute for Theoretical Physics at Kyoto University. Discussions during the YITP International Molecule-type Workshop ‘Fast Radio Bursts: A Mystery Being Solved?’ were useful to complete this work.

APPENDIX: APPROACH BY NUSSER 2016

Nusser [18] proposed to use potential fluctuations due to the large-scale structures (LSSs) to constrain the Shapiro time delay and log Δγ_{LSS} at the cosmological scales. The subscript ‘LSS’ indicates the LSS approach by Nusser [18]. The evaluation of the Shapiro delay in Nusser [18] is one of the only estimations of the Shapiro delay that has not been invalidated by the work of Minazzoli et al. [23]. To follow their approach, we fit a two-term exponential function to log Δγ_{LSS}(t_{gra} = 1 s) as a function of redshift presented in Fig. 1 in Nusser [18]. The best-fit function is

$$\log \Delta \gamma_{LSS} = -12.85 + 0.85e^{-z/0.09} + 0.55e^{-z/0.43}, \quad (A1)$$
where \(\log \Delta \gamma \) is calculated for \(t_{\text{gra}} = 1 \) s. We calculate \(\log \Delta \gamma_{\text{LSS}} \) for both our FRB sample and samples in the previous works shown in Figs. 2 and 3 using their redshifts, delay times, and Eq. (A1). The results are shown in Figs. 4 and 5.

In this approach, the most stringent constraint on \(\log \Delta \gamma_{\text{LSS}} \) in this work is \(\log \Delta \gamma_{\text{LSS}} < -17.43 \pm 0.05 \) which is provided by FRB 180817.J1533 + 42 at \(z = 1.0 \pm 0.2 \) with \(\delta \text{DM}_{\text{obs}} = 0.002 \) pc cm\(^{-1}\) and \(\nu_{\text{obs}} = 0.4 \) GHz--0.8 GHz [27]. The recalculated most stringent constraint among the previous samples is \(\log \Delta \gamma_{\text{LSS}} < -15.80 \pm 0.05 \) derived from FRB 121102 at \(z = 0.1927 \pm 0.00008 \) [48] with the delay time of 0.4 ms between 1.344 GHz and 1.374 GHz [19]. Our constraint on \(\log \Delta \gamma_{\text{LSS}} \) is more than one order of magnitude tighter than those from other astrophysical sources in the previous works.

FRB 180817.J1533 + 42 also provides the tightest constraint of \(\log (\Delta \gamma_{\text{LSS}} / r_E) < -17.73 \pm 0.05 \) in this work. This value is comparable to the tightest constraint among the previous samples, \(\log (\Delta \gamma_{\text{LSS}} / r_E) < -17.60 \pm 0.05 \), derived from GRB 080319B at \(z = 0.937 \) with the delay time of 5 s between 2 eV and 650 keV [22].
