Bæredygtig udnyttelse af fosfor fra spildevand

En operativ vejledning til de danske vandselskaber

Jensen, Mette Dam; Tychsen, Peter; Thomsen, Marianne; Martinsen, Louise; Hasler, Berit

Publication date:
2015

Document version
Også kaldet Forlagets PDF

Citation for published version (APA):
Bæredygtig udnyttelse af fosfor fra spildevand

En operativ vejledning til de danske vandselskaber

Miljøprojekt nr. 1661, 2015
Titel: Bæredygtig udnyttelse af fosfor fra spildevand

Forfattere: Mette Dam Jensen
Peter Tychsen
Krüger A/S

Marianne Thomsen
Louise Martinsen
Berit Hasler
DCE – Danish Centre for Environment and energy

Udgiver: Miljøstyrelsen
Strandgade 29
1401 København K
www.mst.dk

År: 2015

ISBN nr. 978-87-93283-94-7

Ansvarsfraskrivelse:

Må citeres med kildeangivelse.
Indhold

Forord .. 6
1. Baggrund ... 7
2. Læsevejledning .. 9
 2.1 Vejledningens ophøjning .. 9
 2.2 Definition af slamtyper, fosfortyper og de betragtede teknologier i vejledningen .. 10
 2.2.1 Definition of slamtyper .. 10
 2.2.2 Definition of fosfortyper angivet på figur 1 11
 2.2.3 Definition of teknologityper til fosforfjernelse inddraget i vejledningen .. 12
 2.2.4 Definition of teknologityper til fosforgenanvendelse inddraget i vejledningen .. 13
3. Fosforbehov og tilgængelige ressourcer ... 14
 3.1.1 Status for genanvendelse af fosfor fra spildevandsslam i Danmark 15
 3.2 Slam som en ressource eller et affaldsprodukt? 15
 3.2.1 Markedspris og markedsværdi for slam på landbrugsjord 16
4. Gødningsværdi af fosfor i spildevandsslam - forudsætninger og scenarier 18
 4.1 Jordens fosforpulje ... 18
 4.2 Fosfortilgængelighed i spildevandsslam .. 19
 4.3 Miljømæssige følgevirkninger af produktkvalitet vurderet ved forskellige gødningsscenarier ... 20
 4.3.1 Gruppering af anlægstyper til videre analyse 20
 4.3.2 Produktkvalitet for forskellige typer af fosforgødning 21
 4.3.3 Gødningsscenarier .. 22
 4.4 Konklusion ... 23
5. Incitament for forbedret fosforudnyttelse .. 24
 5.1 Råfosfat – udbud og prisudvikling ... 24
 5.2 Det fremtidige behov for fosfor og fosfortyper 25
 5.2.1 Regional fordeling af fosfortal i Danmark 27
 5.2.2 Udvikling i efterspørgslen efter fosfor i landbrukslandbrug 30
 5.3 Samlet vurdering af incitamentet for forbedret udnyttelse af fosfor i slam 32
6. Samfundsøkonomiske omkostninger ved udnyttelse af fosfor fra spildevand ... 33
 6.1 Beregnede sundhedsomkostninger for cadmium i slam og mineralsk gødning 34
 6.2 Eksempler på beregnede direkte velfærdsøkonomiske omkostninger af teknologier ... 35
 6.3 Konklusioner .. 37
7. Sammenlignede LCA af udnyttelse af fosfor fra spildevand 38
 7.1 Definition of standard renseanlægstyper ... 39
 7.1.1 Type 1: Mindre dansk renseanlæg (20.000 PE) 40
 7.1.2 Type 2: Mellemstort dansk renseanlæg med rådnetank (100.000 PE) 40
 7.1.3 Type 3: Mellemstort dansk renseanlæg med forklaring og rådnetank (100.000 PE) 41
8. Udgangspunkt for benchmarking af teknologier til den operationelle vejledning ... 52
 8.1 Miljømæssig benchmarking af teknologier til fosforfjernelse fra spildevand .. 52
 8.1.1 Definition af SPRi (Sustainable Phosphorus Removal index) .. 54

9. Operationel vejledning til benchmarking af fosforfjernelse fra spildevand 56
 9.1 Kendte teknologier til fosforfjernelse fra spildevand .. 56
 9.2 Miljømæssig benchmarking af teknologierne til fosforfjernelse fra spildevand .. 57
 9.2.1 Størrelsesorden/område for SPRi-værdier .. 59
 9.3 Anbefaling ud fra den miljømæssige benchmarking af fosforfjernelse fra spildevand .. 60
 9.3.1 Type 1: Mindre dansk renseanlæg (20.000 PE) .. 60
 9.3.2 Type 2 og 3: Mellemstort dansk renseanlæg (100.000 PE) med rådnetank .. 60
 9.4 Driftsøkonomisk bedømmelse af teknologierne til fosforfjernelse fra spildevand .. 61
 9.4.1 Økonomiske vurderinger for renseanlægstypen: Type 1 .. 62
 9.4.2 Driftsøkonomiske vurderinger for renseanlægstype: Type 2 og 3 .. 64
 9.5 Samlet vejledning til fosforfjernelse med fokus på høj biotilgængelighed for fosforproduktet samt økonomisk fordelagtighed for forsyningerne .. 66

10. Operationel vejledning til genanvendelse af fosfor fra spildevand 67
 10.1 Kendte teknologier til genanvendelse af fosfor fra spildevand .. 67
 10.2 Benchmarking af fosforudnyttelse fra spildevand .. 69
 10.2.1 Genanvendelse af fosfor via direkte udsmedning af slam på landbrugsjord .. 69
 10.2.2 Udvælgelse af fosfor via ekstrahering fra slamanke .. 69
 10.2.3 Genanvendelse af fosfor via struvitudfældning i kombination med anden slutanvendelse af restslammet .. 70
 10.2.4 Samlet vurdering af metoder til udtjænelse af fosfor fra spildevandsslam .. 71
 10.3 Økonomisk benchmarking af fosforudnyttelse fra spildevand og spildevandsslam .. 72
 10.3.1 Sammenligning af den økonomiske værdi af fosfor .. 72
 10.3.2 Anlæg- og driftsudgifter .. 73
 10.3.3 Vurdering af strategiernes følsomhed overfor afsættning af slutprodukter .. 74
 10.4 Anbefaling af strategi for nyttiggørelse af fosfor .. 76

11. Sammenfatning .. 78
 11.1 En sammenlignende LCA for udtjænelse af fosfor fra spildevand .. 79
 11.2 Operationel benchmarking af teknologier .. 80
 11.2.1 Miljømæssig benchmarking af teknologier til fosforfjernelse fra spildevand .. 81
 11.2.2 Økonomisk benchmarking af teknologier til fosforfjernelse fra spildevand .. 81
 11.2.3 Miljømæssig benchmarking af metoder til nyttiggørelse af fosfor fra spildevandsslam .. 82
11.2.4 Økonomisk benchmarking af metoder til nyttiggørelse af fosfor fra spildevandsslam.. 82
12. Konklusion.. 84
13. Perspektivering ... 87
14. Referencer .. 89
 14.1 Type 1: Mindre dansk renseanlæg (20.000 PE)... 96
 14.2 Type 2: Mellemstort dansk renseanlæg med rådnetank (100.000 PE).................... 96
 14.3 Type 3: Mellemstort dansk renseanlæg med forklaring og rådnetank (100.000 PE).. 97
 14.4 Standard husholdningsspildevand .. 97
 14.5 Procestechniske vurderinger for renseanlæg ... 98
 14.5.1 Eksempel: Renseanlæg Type 1: 20.000 PE... 99
 14.5.2 Renseanlæg uden bæredygtige teknologier ... 104
 14.5.3 Renseanlæg med delvis Bio-P og kemisk støttefældning 104
 14.5.4 Renseanlæg med maksimal Bio-P andel ... 104
 14.5.5 Intern fosforfældning ... 105
 14.5.6 Tertiær rensning af suspenderet stof ... 105

Bilag 1: Teknologier for fosforudnyttelse fra spildevand
Bilag 2: Miljømæssig bæredygtighed – sammenlignende LCA af repræsentative anlægstyper
Bilag 3: Eksempler på anvendelse af SPRi i praksis
Bilag 4: Diverse økonomiske vurderinger af fosforfjernelse fra spildevand
Bilag 5: Forudsætninger for den samfundsøkonomiske beregning
Forord

Det er rapportens målsætning at kunne bidrage med konkret viden til de danske vandselskaber, så fosforudnyttelsen kan indtænkes i driftsstrategien for renseanlæg og ved fremtidige investeringer.

I følgegruppen har Miljøstyrelsen deltaget v/Linda Bagge.

Øvrige i følgegruppen er:
Helle Strandbæk, Aalborg Forsyning
Niels Møller Jensen, Herning Vand
Lars Sigvardsen, Aarhus Vand
Per Henrik Nielsen, Vandcenter Syd
Kim Tietze, Energiforsyningen Køge
Ole Jensen, NK forsyning
Peder L. Sørensen, Lolland Spildevand

I forbindelse med dataindsamling har en lang række forsyningsvirksomheder i Danmark bistået med data om drift af renseanlæggene.
1. Baggrund

Fosforressourcen er vigtig for produktionen af fødevarer og andre biobaserede produkter, og der er i den senere tid kommet øget fokus på genanvendelse af fosforressourcen. Det er også blevet klart, at fosfor er en begrenset ressource, der på sigt vil kunne blive en mangelvare og derfor blive dyreste.

Samtidig er fosfor et af de primære næringsstoffer, som spildevandet i Danmark renes for. Dette, sammenholdt med samfundets øgede fokus på genanvendelse, betyder, at der blandt de danske vandselskaber er stor fokus på at kunne udnytte denne værdifulde ressource. Udledningen af fosfor forsøges begrænset ved kilder (eks. vaskemidler), og fosformængden har således været faldende. Den udledning, der stammer fra mennesker og forarbejdning af organiske produkter, vil fortsat være i spildevandet og dermed tilgængeligt for genanvendelse. Med de tekniske muligheder, der er på markedet i dag, er det muligt for vandselskaberne at foretage de prioriteringer, der skal til, for at foretage langsigtede investeringer, der i højere grad sikrer udnyttelsen af fosfor.

Danmark er kendetegnet ved at have en stor landbrugsproduktion og en meget stor dyretæthed i nogle dele af landet. En høj dyreproduktion i landbruget medfører høj recirkulering af fosfor med udspredning af gylle. Udover denne fosforrecirkulering er der en signifikant import af handelsgødning, som delvist vil kunne substitueres af fosfor leveret af vandselskaberne. En sådan recirkulering af fosfor vil bidrage til ønsket om at forbedre miljøet. Vandselskaberne vil hermed leve op til kriterierne for fremtidens grønne industri, som netop går på at levere miljøforbedrende (bio-)produkter.

Ovenstående forhold afsører spørgsmålet om, hvorledes fosforressourcen fra spildevandet bedst kan udnyttes i det danske fosforkredsløb? Med den nuværende praksis regnes fosfor fra spildevandet som genanvendt, når dette udspredes på landbrugsjorden med spildevandsslammet, uanset kemisk form og uanset jordens fosforindhold, i overensstemmelse med Bekendtgørelse nr. 1650 af 13. december 2006 om anven
delse af affald til jordbrugsformål, herefter betegnet "slambekendtgørelsen".

Flere virksomheder i Danmark og internationalt arbejder på at udvikle og kommercialisere teknologier til at genvinde fosfor fra spildevandet. Teknologiudviklingen målrettes efter at adskille fosforressourcen fra slammet og dermed producere fosfor på en form, der er nemmere at håndtere i praksis, kan udnyttes til flere formål og kan give grundlag for en indtægt til vandselskabet. Dette udviklingsarbejde fokuserer bl.a. på fosforkvalitet og fosforgtænslighed, dvs. gødningsevndel, for at øge markedssværdet af slutproduktet og dermed forbedre rentabiliteten af investeringen. Igennem dette udviklingsarbejde er det bl.a. konstateret, at tilgængeligheden af fosfor, der er kemisk bundet til jern eller aluminium, er lav. Dette er i dag den form en stor del af slammets fosforindhold findes på, når det udnyttes på den danske landbrugsjord.

Baggrunden for denne vejledning er bl.a. spørgsmålet, om dette er den bedste måde at udnytte fosforressourcen på, eller om det vil give samfundsmæssig større værdi at målrette vandselskaberne teknologivalg og investeringer med henblik på at producere fosforprodukter med ønsket om: En øget biotilgængelighed af forfor og dermed en umiddelbar større
udnyttelsesefektivitet, samt med fokus på strategiernes samlede bidrag til langsigtede miljø- og klimaforbedringer.

Kun få vandselskaber har i dag fokus på at tilpasse fosfortilgængeligheden i spildevandsslammet til den valgte udnyttelse af fosforproduktet efterfølgende, ligesom slambekendtgørelsen ikke differentierer mellem forskellige former for fosfor i slammet, eksempelvis som hhv. vandopløseligt, citratopløseligt eller hårdt bundet fosfor. Årsagen hertil vurderes at være manglende konkret viden på området; manglende viden om fosforudnyttelsen i jorden samt manglende analysemetoder til at differentiere mellem de forskellige typer af fosfor.

Valgmulighederne til udnyttelse af fosfor fra spildevandet er fortsat begrænset, men området er under stor udvikling. Der kan bl.a. henvises til det store fosforpartnerskabssamarbejde, der er gennemført i Danmark i 2012/2013.

Det er målsætningen for denne vejledning, at kunne bidrage med viden til beslutningsgrundlaget for vandselskaberne, så de i højere grad kan indtænke fosforudnyttelsen i driftsstrategier og fremtidige investeringer. Ambitionen er at kunne vurdere, hvorledes der opnås en mere bæredygtig udnyttelse af fosfor på de typiske renseanlægstyper i Danmark.
2. Læsevejledning

Der er i dette projekt taget udgangspunkt i spildevandsbehandlingen på renseanlæg, der behandler spildevand afledt til offentlig kloak. Der tages udgangspunkt i spildevand sammensat som husholdningsspildevand. Denne afgrænsning er lavet, da der på renseanlæg med en stor andel af industriel spildevand ofte vil være en helt unik spildevandssammensætning, der betinger nogle specifikke teknologivalg, der ikke umiddelbart kan overføres til andre renseanlæg.

Rapportens målgruppe er således primært de danske forsyningsvirksomheder med ansvar for afledning og rensning af spildevand.

2.1 Vejledningens opbygning

Vejledningen har to primære formål, der afspejles i opbygningen af rapporten:

1. At bidrage med viden, der kan danne grundlag for en beslutningsproces vedr. udnyttelse af spildevandets fosforressource (kapitel 3, 4, 5, 6, 7)

2. At give en operationel vejledning til, hvordan beslutningsprocessen kan gennemføres med det aktuelle beslutningsgrundlag (kapitel 9, 10)

Vejledningen belyser, hvorledes fosforindholdet i spildevand og slam udnyttes optimalt med minimale driftsomkostninger (kapitel 9, 10). Vejledningen belyser også de miljømæssige og samfundsekonominiske forhold, der er vurderet som vigtige i forhold til at få en ressourceeffektiv udnyttelse af fosfor fra de danske renseanlæg (kapitel 5, 6, 7, 8). Vejledningen præsenterer den viden, der er tilgængelig og diskuterer desuden de aspekter, der pt. ikke vurderes som tilstrækkeligt belyst (kapitel 4).

Vejledningen er lavet for at belyse kompleksiteten i de forhold, der giver et væsentligt bidrag til, hvad der for det enkelte vandselskab giver den forretnings- og miljømæssige mest effektive udnyttelse af fosfor fra spildevandsbehandlingen.

Ved generel gennemgang af metoder og teknologier til udnyttelse af fosfor fra spildevand kan der konstateres stor vekselvirkning mellem den teknologi, der vælges til at fjerne fosfor fra spildevandet på renseanlægget (afsnit 2.2.3 og kap. 9) og den teknologi der vælges til at udnytte det fosfor, der bliver bundet herved (afsnit 2.2.3 og kap.10). Denne vekselvirkning er søgt illustreret på overordnet niveau på Figur 1.

1 Med ressourceeffektiv menes minimalt forbrug af kemikalier og energi, maksimal genvinding af fosfor, minimale effekter på miljø og sundhed.
2.2 Definition af slamtyper, fosfortyper og de betragtede teknologier i vejledningen

I det følgende gennemgås Figur 1 for samtidig at definere slamtyper og typer af fosfor udtaget fra spildevandsrensningen.

Figur 1 Illustration af vekselvirkning mellem valg af teknologier til at fjerne fosfor fra spildevand og teknologier til at genvinde og nyttiggøre fosformængden derfra efterfølgende. Med røde cirkler er det illustreret, hvornår og på hvilken fysisk/kemisk form fosfor kan udtages fra spildevandsrensningen. Nummereringen af den fysis/kemiske form af fosfor er beskrevet i teksten. Skitsen illustrerer de muligheder, der er medtaget i vejledningen, men hvert enkelt renseanlæg vil ikke have samtlige muligheder som en del af anlægsophygningen.

2.2.1 Definition af slamtyper

Figur 1 viser overst spildevandsbehandlingen, hvorfra fosfor kan udtages to steder: Med primær slam fra en forklaringstank og med det biologiske overskudsslam, oftest fra efterklaringstanken.

Imellem disse to overordnede behandelingslinjer på renseanlægget findes rejektvandet, der stammer fra afvandingen af det udrådnede slam, og som tilbageføres til anlæggets spildevandsbehandling for rensning. Dette rejektvand kan indeholde større mængder af fosfor og kan anvendes til en intern gødningsproduktion på renseanlægget ved udfældning af fosforholdigt struvit, der kan udtages som en delproces på renseanlægget.
2.2.2 Definition af fosfortyper angivet på figur 1

På Figur 1 er der lavet en nummerering af de forskellige typer af fosfor, der kan udtages fra spildevandsrensningen og slambehandlingen. Disse beskrives herefter:

1. **Fosfortype 1**: Dette er fosfor, der er bundet i organisk stof. Dette organisk bundne fosfor kan stamme fra: Primær slam og fra biologisk overskudsslam. Hvis det stammer fra primær slam, vil det organiske stof være det bidrag, der tilles renseanlægget fra køkken, toilet og industri. Det organiske stof fra det biologiske overskudsslam har en helt anden karakter, da dette primært består af renseprocessens bakterier: Det aktive slam. Normalt aktiv slam indeholder ca. 1,5 % fosfor. Hvis der er etableret avanceret biologisk fosforfjernelse på renseanlægget, vil slammet normalt indeholde ca. 3,5 % P. Fælles for fosfortypen markeret med nummer 1 på figuren er, at det frigives ved mikrobiel omsætning af det organiske stof, hvis dette anvendes som gødning til landbrugsjorden.

3. **Fosfortype 3**: Dette er kemisk bundet fosfor, udføldt som struvit. Struvit udføldes ved en dosering af magnesium (Mg) til en væskestroom, hvor der er høj koncentration af opløst fosfor (PO$_4^{3-}$) og ammonium (NH$_4^+$), hvilket primært findes i rejektvandsstrømmen på et renseanlæg. Dette fosforprodukt (i form af struvit) kan opnå en høj kvalitet, da indholdet af tungmetaller i denne udfølnning kan reducieres betragteligt. Struvitudføldning betragtes i denne vejledning som en fosforfjernelse, der giver en intern gødningsproduktion på renseanlægget. Struvit produktet er ikke vandopløseligt, men frigiver fosfor i løbet af en ca. 9 måneders periode (se evt. bilag 1 for beskrivelse af de teknologiske muligheder).

4. **Fosfortype 4**: Dette er et fosforprodukt, der kan laves ud fra slamasken efter forbrænding. Ved at behandle asken kemisk og/eller termisk er det muligt at producere vandopløseligt fosfor med høj kvalitet, der kan anvendes på lige fod med handelsgødning. Alternativt kan der produceres fosforprodukter, der kan indgå i gødningsproduktionen som erstatning for råfosfat. (se evt. bilag 1 for beskrivelse af de teknologiske muligheder).
2.2.3 Definition af teknologityper til fosforfjernelse inddraget i vejledningen

Det er væsentligt at skelne mellem teknologier, der; fjerner fosfor fra spildevandet og teknologier der benyttes til genanvendelse af fosfor. Den måde, det i vejledningen er valgt at definere teknologier til at fjerne fosfor på, er beskrevet nedenfor.

Til fosforfjernelse er følgende teknologier inddraget i vejledningens vurderinger, se Tabel 1:

<table>
<thead>
<tr>
<th>Teknologi nummer</th>
<th>Teknologi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Direkte udtag af suspenderet fosfor</td>
</tr>
<tr>
<td></td>
<td>- Praktiseres ved udtag af primær slam, uden supplerende dosering af fældnings kemikalier</td>
</tr>
<tr>
<td>2</td>
<td>Alm. biologisk fosforfjernelse</td>
</tr>
<tr>
<td></td>
<td>- Fosfor fjernes ved biologisk indbygning af fosfor i slammets bakterier</td>
</tr>
<tr>
<td>3</td>
<td>Kemisk fosforfjernelse m./u. onlinestyring</td>
</tr>
<tr>
<td></td>
<td>- Praktiseres ved fældning af fosfor med jern eller aluminium</td>
</tr>
<tr>
<td>4</td>
<td>Avanceret biologisk fosforfjernelse (Bio-P)</td>
</tr>
<tr>
<td></td>
<td>- Fosfor fjernes ved biologisk indbygning af fosfor i særligt fosforakkumulerende bakterier</td>
</tr>
<tr>
<td>5</td>
<td>Tertiær renseproces til fjernelse af suspenderet stof</td>
</tr>
<tr>
<td></td>
<td>- Dette er betegnelsen for en efterfølgende polering af det rensedes vand mht. Suspenderet Stof (SS). Dette kan være et sandfilter, et mekanisk filter eller en membran</td>
</tr>
<tr>
<td>6</td>
<td>Intern fosforgenvinding via rejektvand(^A)</td>
</tr>
<tr>
<td></td>
<td>- Dette er betegnelsen for etablering af fosforgenvinding eksempelvis via struvit</td>
</tr>
</tbody>
</table>

\(^A\) Forudsætter, at fosfor findes i høje koncentrationer på renseanlægget og forudsætter dermed stor andel af Bio-P. I vejledningen er der taget udgangspunkt i, at teknologien implementeres på rejektvandsstrømmen fra rådnetanken. Der findes alternative anlægs konfigurationer hertil, men disse er ikke inddraget i vurderingerne.

På Figur 2 er teknologierne vist som installationer på et typisk 2 trins aktivt slam renseanlæg.
2.2.4 Definition af teknologityper til fosforanvendelse inddraget i vejledningen

Til genanvendelse af fosfor efter dette er fjernet fra spildevandet, er følgende teknologier inddraget i vejledningens vurderinger i det omfang, det er muligt:

Direkte udspredning af spildevandsslam på landbrugsjord:
Slam vil efter enten en aerob stabilisering eller efter anaerob udrådninng kunne uddrages på landbrugsjord i overensstemmelse med slambekendtgørelsen. Her vil fosforressourcen være delvist biologisk bundet (fosfortype 1) og delvist kemisk bundet (fosfortype 2). Fordelingen mellem disse to fosfortyper vil afhænge af renseanlæggets aktuelle opbygning og driftsform.

Anvendelse af struvit til gødning af landbrugsjord:
Her vil kun en del af spildevandets fosforindhold blive anvendt via dette gødningssprodukt, der betegnes som fosfortype 3 (det vil normalt være ca. 30 % af den tilførte mængde i spildevandet, der kan udtages som struvit), mens den resterende fosformængde fra spildevandet forsat findes i overskudsslamproduktionen.

Denne teknologitype kan således ikke anvendes som en komplet fosfornyttigelsesstrategi uden kombination med én af følgende løsninger: Landbrugsanvendelse eller forbrænding af restslammet. Begge teknologityper giver mulighed for udyttelse af de resterende ca. 70 % fosfor fra spildevandet.

Det skal supplere bemærkes, at selve struvit produktet også kan indgå som råstof i en industriell produktion foruden at kunne anvendes direkte som et gødningssmiddel til landbruget. Denne slutanvendelse er ikke inddraget i denne vejlednings vurderinger.

Anvendelse af fosfor ekstraheret fra slamasken efter slamforbrænding:
Hvis fosfor bliver ekstraheret fra slamasken efter slamforbrænding, vil fosforressourcen kunne blive udyttet som erstatning for handelsgødning eller råfosfat (som fosfortype 4). Denne teknologi vurderes endnu ikke som kommerciel tilgængeligt og er således kun inddraget perspektiverende i vejledningen.
Danmark er ikke i besiddelse af nogen form for fosforholdige råstoffer og importerer derfor fosfor. Fosforbehovet i landbruget forsynes i dag med fosfor importeret som foderstoffer og som handelsgødning. Handelsgødningsforbruget kan på sigt erstattes med genvundet fosfor fra fosforholdige affaldsprodukter, såsom restfødevarer og grønt affald, benmel, gylle og spildevandsslam.

- Landbrugets fosforforbrug: ca. 53.000 t/år
- Fosfor import til Danmark: ca. 15-20.000 t/år
- Fosfor i spildevandsslam: ca. 5.000 t/år
- Fosfor i gylle: ca. 45.000 t/år
- Fosfor i kød og benmel: ca. 3.000 t/år

Figur 3 Sammenligning af fosforforbrug i landbrug og den potentielle fosformængde i forskellige affaldstyper. Desuden er den importerede fosformængde vist [MST,2013].
Fra figuren ses det, at den fosformængde, der tilsammen er bundet i hhv. gylle, spildevandsslam og kød og benmel, principielt kan dække landbrugets godningsforbrug af fosfor. Dette er naturligvis betinget af, at fosfor kan recirkuleres til landbrugsjorden på det ønskede tidspunkt og med den ønskede tilgængelighed for plantevæksten. For at kunne opnå fuld fleksibilitet i forhold til ovenstående, er det nødvendigt at kunne genvinde fosfor på en form:

- Der er lagerstabil
- Der er håndterbar i forhold til transport og udspredning
- Der egner sig som godning til de aktuelle typer af jord og afgrøder

3.1.1 Status for genanvendelse af fosfor fra spildevandsslam i Danmark

I 2009 har Miljøstyrelsen opgjort den samlede producerede mængde af spildevandsslam fra de danske renseanlæg til 140.000 t tørstof/år. Med en gennemsnitlig afvandingsgrad på 22 % TS, svarer dette til en samlet slammængde på ca. 636.000 t våd slam/år. I samme år fordelte afsætningen af spildevandsslammet sig som vist på Figur 4:

![Figur 4 Afsætning af spildevandsslam i 2009 [MST, 2012].](image)

Som det ses af figuren, slutdisponeres størstedelen af slammængden i dag til landbrugsjord, og det er i forbindelse med denne vejledning opgjort, at ca. 2.400 ton fosfor herved recirkuleres til landbrugsproduktionen. Dette svarer til ca. halvdelen af den potentielle fosformængde i den samlede slamproduktion på ca. 5.000 ton P/år, jf. Figur 3.

3.2 Slam som en ressource eller et affaldsprodukt?

Spildevandsslam, der udranges på landbrugsjord, skal overholde Slambekendtgørelsen (BEK nr. 1650 af 13/12/2006). Bekendtgørelsen fastlægger grænseværdier for tungmetaller og miljøfremmede stoffer i spildevandsslam udbragt på landbrugsproduktionen. Dette svarer til ca. halvdelen af den potentielle fosformængde i den samlede slamproduktion på ca. 5.000 ton P/år, jf. Figur 3.

Slambekendtgørelsen stiller krav til, at der maksimalt må udringes 30 kg P/ha/år. I praksis er der mulighed for at udringe 3×30kg P/ha hvert 3. år under hensyntagen til slammets indhold af kvalstof, hvor der maksimalt må udspredes 170 kg N/ha/år. Oftest er slammets kvalstofindhold ikke tilstrækkeligt til at give en så stor dosis med udspredningen.

De retningsgivende godningsnormer for fosfor til hovedafgrøderne er til sammenligning 18-24 kg P/ha/år, se evt. Tabel 6.
Der findes i vandbranchen, medierne og i offentligheden en periodelvis skepsis til udbrygning af spildevandsslam på landbrugsjord; en skepsis der kan bero på frygt for at de kendte og ukendte miljø- og sundhedsskadelige stoffer i spildevandsslammet, der på sigt kan påvirke den generelle sundhed. Dette forhold tages alvorligt af den danske fødevarevirksomhed Arla, der som Danmarks største mejeri har indført, at "landmanden ikke må gode med spildevandsslam fra offentlige rensningsanlæg eller fra private rensningsanlæg, som behandler hussipildevand" (www.arla.dk).

3.2.1 Markedspris og markedsværdi for slam på landbrugsjord

Beregneren medregner de sparede udgifter til spredning af handelsgødning, men indregner dog ikke udgifterne til spredning af slam. Udbrygning af slam og gylle med lastbil kostet ca. 1 kr./m³/km transport (ved transport længere end 10-15 km), mens transport med traktor over kortere afstande er dyreere (2007-tal, kilde: FarmTest om transport af gylle, Landscentret (nu Videnscenter for Landbrug).

2 Beregningsværktøjet kan alene anvendes på brugerens eget ansvar, men opgiver følgende startværdier for slammets godningsværdi: 130 kg N/ha, 45 % udnyttelse af N; 7,25 kr./kg N; 90 kg P/ha, 50 % udnyttelse af P; 14 kr./kg P; 15 kg K/ha; 80 % udnyttelse af K; 6,25 kr./kg K; 15 kg Mg/ha; 80 % udnyttelse af Mg; 4,5 kr./kg Mg. Denne dosis svarer til udbrygning af 3x30 kg P/ha, der må tilføres hver 3 år.

Bæredygtig udnyttelse af fosfor fra spildevand
Når slammets gødningsevne, fastlagt via det før omtalte beregningsværktøj, er til perspektivering omregnet til en tilsvarende værdi pr. ton våd slam, da dette er den pris vandselskaberne forholder sig til i daglig drift. Hvis der til denne perspektivering tages udgangspunkt i opgørelsen af slam og fosformængder i Danmark, vist i afsnit 3.1.1, kan der beregnes et gennemsnitligt fosforindhold i slammet udbragt på landbrugsjord i 2009 på ca. 2,68 % P. Det gennemsnitlige tørstofindhold i slammet er i samme opgørelse 22 % TS. Dette betyder, at der for at dosere 90 kg P/ha, skal tilføres ca. 15,3 ton våd slam/ha. Hvis gødningssværdiberegneren fra [www.spildevandsslam.dk] anvendes, vil den samme slammængde give landmanden en ”sparet udgift” til handelsgødning på ca. 1.300 kr./ha. Opgjort i forhold til slammængden giver dette en positiv gødningsevndi af slammet på 85 kr./ton våd slam, der tilfalder landmanden. Dette skal ses i forhold til den økonomiske kompensation, der betales for udnyttelsen af slammet. I praksis er det oftest slammængden, der håndterer udbetalingen af denne kompensation, der udgør en del af den samlede ydelse, som vandselskabet kober af slamdistributøren for at kunne lagre og afsætte slammet til landbrugsjord. Den samlede betaling er som før nævnt i størrelsesorden 300 kr./ton våd slam.

Set fra dette økonomiske paradoks, vurderes det, at slammet ved den direkte landbrugsanvendelse i Danmark forsat betragtes som et affaldsprodukt og ikke som en positiv ressource. Årsagen til dette er givetvis de nævnte begrænsninger i forhold til dyrkningen af jorden, der følger med anvendelsen af spildevandsslam, samt en generel skeptis vedr. slammets indhold af mikroforureninger, der periodisk sår tvivl omkring værdien af at udbringe fosforholdigt spildevandsslam som erstatning for mineralsk gødning (afsnit 4.3.2).

Denne vejledning fokuserer primært på fosforressourcen i slammet, men det skal pointeres, at slammet foruden fosfor og de før omtalte forureningskomponenter også indeholder kvælstof og kalium, f.d. ovenstående gennemgang som positiv ressource, samt organisk og uorganisk stof, der på tilsvarende vis kan nyttiggøres som positiv ressource. På følgende Figur 5 er det generelle fosforindhold i udrådnet dansk slam illustreret i forhold til det øvrige slamtørstof.

![Figur 5 Generel fordeling af hhv. fosfor, organisk og uorganisk stof i udrådnet dansk spildevandsslam. Indholdet kan i praksis variere fra anlæg til anlæg og figuren skal således betragtes som en vejledende fordeling på tørstoffbasis.](image-url)
For at kunne adressere slammets fosforgødningsevne, rettes fokus på tilgængeligheden af fosfor ved landbrugsanvendelsen. En bedre forståelse af biotilgængeligheden, tidshorisonten for tilgængeligheden samt den samlede udnyttelsesgrad af fosforressourcen, vil kunne bidrage til en mere nuanceret opfattelse af slam som en ressource frem for et affaldsprodukt.

4.1 Jordens fosforpulje

Figur 6 Ligevægt for mobilisering af jordens fosfor indhold. Frit efter (Rubæk et.al., 2005).

For at opnå et optimalt udbytte fra planteproduktionen er det vigtigt, at Jordens fosforindhold er højt, så planterne ikke sultes i vækstperioden. Omvendt bør fosforindholdet ikke være for højt af hensyn til risikoen for udvaskning til vandmiljøet.

4.2 Fosfortilgængelighed i spildevandsslam

Norske undersøgelser (Krogstad et al., 2005) har vist, at biologisk slambehandling uden brug af støttefældning giver den højeste mængde af plantetilgængeligt fosfor i godningsproduktet, mens kemisk fældning af fosfor med jern og aluminium giver et godningsprodukt med lavere fosforgodningseffekt. Den norske undersøgelse viser endvidere, at eftervirkningseffekten af anvendelsen af slam fra forskellige typer af spildevandesbehandlingsanlæg varierede afhængig af: Jordtype, kombinationen af anvendelsen af mineralsk gødning hhv. biologisk og kemisk P-beriget slam.

Jordtypen

For at maksimere genvinding og biotilgængelighed af fosfor i spildevandsslam og samtidig forhindre udvaskning og tab af fosfor fra jorden, er det vigtigt at forstå effekten af anvendelse af fosfor i spildevandsslam i samspil med jordtypen, og at kvantificere slammets gødningsværdi. I denne sammenhæng er det eksempelvis vigtigt, at lerede jorde generelt har en lavere fosforabsorptionskapacitet sammenholdt med morænejorde, og kortsigtet viser norske undersøgelser (Krogstedt et al., 2005), at fosforoptaget i afgrøderne er højere i de lerede jorde, mens eftervirkningseffekten kan være højere i morænejorde. En betydelig akkumulering af total fosfor i jorden (50-95% stigning) betragtes som en potentielt miljømæssig risiko på grund af muligheden for erosion og afstrømning af fosfor til vandmiljøet.

Effekter af langsigtet gødnings

Målinger af biotilgængelighed

Godningsmæssigt er kemisk fældet fosfor, tilført med spildevandsslam, tungt oppløseligt, og mindre tilgængeligt på kort sigt, uanset om der bruges jern eller aluminium ved fældning på reneanlæggene, men på lidt længere sigt kan dette fosfor formentlig også indgå i jordens fosforpulje på lige fod med andet godningsfosfor; dog er der ingen dokumentation for dette forhold og dermed stor usikkerhed herom. Generelt anses fosfat bundet til aluminium som mindre tilgængeligt end fosfor, der er bundet til jern.

Selvom det kun er de vandopløselige fosfationer, der er tilgængelige for planterne, angives tilgængeligheden af fosfor normalt som mængden af fosfor ekstraheret i en svag syre (dvs. forholdsvis lav pH værdi sammenlignet med pH i jordvæsken), f.eks. citratopløselig fosfor (Linderholm, 2011).
Målinger af citratoploselig fosfor på fem danske renseanlæg har vist, at mængden af biotilgængeligt fosfor for de renseanlæg, som anvender avanceret biologisk fosforfjernelse i kombination med en mindre kemisk støttefældning, ligger på en gennemsnitsværdi omkring 40%. Renseanlæg med avanceret biologisk fosforfjernelse vil altså kunne levere et gødningsprodukt, der er hårdere bundet og dermed ikke umiddelbart tilgængeligt.

Tabel 3 Biotilgængeligheden af fosfor i slam fra anlæg, der anvender avanceret biologisk fosforfjernelse i kombination med kemisk støttefældning [Aalborg Forsyning, Kloak A/S].

<table>
<thead>
<tr>
<th>Anlægs nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalfosfor (P), [mg/kg T]</td>
<td>47.380</td>
<td>22.862</td>
<td>29.318</td>
<td>3.753</td>
<td>28.100</td>
</tr>
<tr>
<td>Citratoploselig P, [mg/kg TS]</td>
<td>18.920</td>
<td>5.152</td>
<td>10.538</td>
<td>4.880</td>
<td>5.370</td>
</tr>
<tr>
<td>Let biotilgængeligt P, [%]</td>
<td>40%</td>
<td>36%</td>
<td>19%</td>
<td>63%</td>
<td>55%</td>
</tr>
</tbody>
</table>

4.3 Miljømæssige følgevirkninger af produktkvalitet vurderet ved forskellige gødningsscenarier

Det er muligt at adressere slamstrategiens miljømæssige bæredygtighed mht. fosforudnyttelse ved at evaluere produktkvaliteten i form af:

1. En analyse af kvaliteten af det fosforprodukt, som ekstraheres fra restslammet eller slamsunken
2. En vurdering af de miljømæssige følgevirkninger, der måtte forekomme ved substitution af et kommercielt fosforprodukt udbragt på landbrugsjord.

4.3.1 Gruppering af anlægstyper til videre analyse

Til analysen er de eksisterende danske renseanlæg grupperet i fire anlægstyper repræsentative for de scenarier, der ønskes undersøgt med hensyn til slamkvaliteten. To kriterier blev anvendt:

1. anlægskapacitet målt i PE
2. anaerob udrådning vs aerob stabilisering af slammet

De fire grupper er opsummeret herunder og ses i Tabel 4.

T1) Anlæg <20.000 PE uden udrådning. Direkte udringning af slutafvandet slam
T2) Anlæg 20.000-100.000 PE uden udrådning. Direkte udringning af slutafvandet slam
T3) Anlæg 20.000-100.000 PE inkl. udrådning. Forbrænding af udrådnet slutafvandet slam
T4) Anlæg >100.000 PE inkl. udrådning. Forbrænding af udrådnet slutafvandet slam

20 Bæredygtig udnyttelse af fosfor fra spildevand
Tabel 4 Fire repræsentative anlægstyper brugt i vejledningens gødningskvalitetsvurderinger.

<table>
<thead>
<tr>
<th>Anlægstype</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>< 20.000</td>
<td>> 20.000;</td>
<td>> 20.000;</td>
<td>> 100.000</td>
</tr>
<tr>
<td>Slambehandling</td>
<td>Aerob stabilisering</td>
<td>Aerob stabilisering</td>
<td>Anaerob udrådnings/biogas produktion</td>
<td>Anaerob udrådnings/biogas produktion</td>
</tr>
<tr>
<td>Sludisponering af slam</td>
<td>Landbrugsjord</td>
<td>Landbrugsjord</td>
<td>Forbrænding</td>
<td>Forbrænding</td>
</tr>
</tbody>
</table>

Til den videre analyse er vandkvalitetsparametre for de danske renseanlæg ekstraheret fra miljøportalen og grupperet iht. de fire repræsentative anlægstyper. Renseanlæg, der både har afrapporteret til vandkvalitetsparameterdatabase og slamdatabase i perioden 2005-2007, er medtaget i vurderingerne af slamkvaliteten, efter kvalitetssikring af data i form af verifikation af massebevarelse for fosfor i en sammenlignende analyse af overensstemmelse imellem fosfor i indløb minus fosfor i udløb og det afrapporterede fosforindhold i slam (Thomsen et al., 2012).

4.3.2 Produktkvalitet for forskellige typer af fosforfødning

På Figur 7 er slammets indhold af fire udvalgte tungmetaller præsenteret for de fire anlægstyper beskrevet i afsnit 4.3.1. Foruden slammets produktkvalitet mht. fosfor er produktkvaliteten for fosfor genvundet som struvit fra renseanlæget og genvundet som fosforfødning fra slammasken også vist (MST, 2013; www.kommunekemi.com). Som referencer ses tungmetallindholdet i handelsgødning samt i hhv. svine- og kvæggylle (Schwærter & Grant, 2003; MFLF, 2012a,b).

![Diagram af produktkvalitet for forskellige typer af fosforfødning](image)

Figur 7 Gødningsproduktkvalitet målt som indholdet af fire tungmetaller per kg fosfor i produktet. T1 repræsenterer gennemsnit kvaliteten af slam produceret på små decentrale anlæg med en behandlingskapacitet på mindre end 20.000 PE; T2 og T3 repræsenterer anlæg i størrelse kategorien over 20.000 PE og under 100.000 PE, T2 med aerob slambehandling og T3 med anaerob behandling; T4 repræsenterer anlæg med en kapacitet på over 100.000 PE. Struvit repræsenterer et uorganisk gødningsprodukt ekstraheret fra en delstrøm på renseanlægget (MST, 2013). Fosfatsalt repræsenterer kvaliteten af fosforfodningsprodukter fra Kommunekemi (MST, 2013; KK, 2013); Svinegylle, kvæggylle og sidst kvaliteten af handelsgødning beregnet ud fra et gennemsnit indhold af fosfor i importerede mineralsk gødning i DK (MFLF, 2012a; 2012b).

4.3.3 Godningsscenarier
Da LCA3 metoden, som ønskes anvendt til bæredygtighedsbetrægtninger i denne vejledning (kapitel 6), ikke er i stand til at integrere over tid, dvs. analysere og opgøre akkumulering af tungmetaller i jorden ved vedvarende gødning med slam, har vi supplerende valgt at modellere udviklingen i tungmetalkoncentrationen i pløjelaget (Pizzol et al., 2012; Thomsen et al., 2012) med udgangspunkt i cadmium, idet cadmium er det tungmetal, som har højst optagelse i afgrøder og dermed vurderes som repræsentativ for tungmetallavirkningen.

Vi har modelleret akkumulering af cadmium i det øverste jordlag ved udbringning af de forskellige gødningsprodukter iht. dyrkningsvejledningen for gødskning af afgrøretypen hvede (se evt. Tabel 6) (NaturErhvervsstyrelsen, 2012). Herudover er slamdirektivets retningslinjer anvendt; dvs. udbringning af 30 kg fosfor per ha per år. Resultatet af anvendelsen af forskellige gødningsprodukter over 100 år er visualiseret på Figur 8.

Figur 8 Figuren viser den tidslige udvikling i koncentrationen af cadmium i det øverste jordlag ved anvendelse af de forskellige gødningsprodukter vist i Figur 7. En nærmere beskrivelse af de målte baggrunds koncentrationer samt en detaljeret beskrivelse af jordmodeller findes i (Pizzol et al., 2012).

Den røde stipplede linje repræsenterer det økotoksikologiske jordkvalitetskriterium for cadmium, og er et udtryk for hvilke jordkoncentrationer, der, med den nuværende viden, ikke forventes at give

3 LCA: Livscyklusanalyse

22 Bæredygtig udnyttelse af fosfor fra spildevand
effekter på organismer. Som det ses af Figur 8, overskrides det okotoksikologiske jordkvalitetskriterium indenfor de næste knap 60-80 år i værste tilfælde afhængig af cadmium indholdet i slutslammet. Struvit er det produkt, som har bedste kvalitet mht. cadmium og dermed ligger tættest på baggrundsscenariet, der repræsenterer udviklingen i jordkvaliteten uden nogen yderligere tilførsel af cadmium fra gødskning af marken (Pizzol et al., 2014). Når struvit ikke påvirker jordkvaliteten i samme omfang som slam, skyldes det, at det teknologisk er muligt at reducere indholdet af tungmetaller i struvitproduktet til sammenligning med indholdet i slam. Det skal dog bemærkes, at tungmetallerne vil findes i restslammet efter struvitproduktionen og skal således håndteres derfra, enten ifølge Slambekendtgørelsen, hvis muligt, ellers via forbrænding. Hvis restslammet efter struvitproduktionen kan udbringes på landbrugsjord, vil cadmium i dette scenario selvsagt også akkumuleres i jorden.

Kvaliteten af den handelsgødning, der er på markedet i dag, har stadig et et lavere indhold af cadmium sammenholdt med slam. Det skal nævnes, at det ikke er påkrævet at inddrage okotoksikologiske jordkvalitetskriterier i en vurdering af jordkvaliteten (Schärer & Grant, 2003). Dog er der en øget fokusering på dokumentation af produktkvalitet og bidraget til miljøforbedringer, hvilket er en betingelse for grøn produktion (fx Danish Energy Agency, Ministry of Climate; Energy and Building; Danish Business Authority, Ministry of Business and Growth; Danish EPA, Ministry of the Environment, 2012).

Formålet her er at illustrere varierende miljøforbedringer ved forskellige fosfor genanvendelsesteknologier. En anden måde at værdisætte P genanvendelsesteknologiernes bidrag til miljøforbedringer eller forringelser i relation til ressourceeffektivitet er at opgøre de ændrede sundhedsmæssige omkostninger i forhold til referencescenariet. En sådan metodisk tilgang er beskrevet i afsnit 6.1 samt i Pizzol et al., 2014.

4.4 Konklusion
Når slammet udbringes på landbrugsjorden, er det fordelagtigt med et så højt fosforindhold som muligt i slammet, da der derved bliver udbragt en samlet mindre mængde af tungmetaller og miljøfremmede stoffer via fosforgodskningen, der doseres pr. ha i forhold til fosforindholdet. Teknologierne til at fjerne fosfor fra spildevandet påvirker i sig selv ikke mængden af tungmetaller i slammet.

Struvit, udfældet fra rejektvandet, har den bedste produktkvalitet sammenholdt med de øvrige uorganiske såvel som organiske godningsprodukter. Det er dog vigtigt at overveje den resulterende kvalitet af slammet, hvis en del af spildevandets fosforindhold udtages og nyttiggeses som struvit. Dette vil sænke fosforindholdet i restslammet (T1-T4 i Figur 7). Hvis dette udbringes på landbrugsjord, vil det medføre en mere koncentreret tilførsel af tungmetaller og miljøfremmede stoffer og dermed kortere tidshorisont før overskridelse af det okotoksikologiske jordkvalitetskriterier for de respektive tungmetaller og miljøfremmede stoffer indeholdt i slammet. Det skal dog påpeges, at udbringning af slammet, uanset forudgående udvinding af fosfor som struvit, altid skal overholde gældende grænseværdier i slambekendtgørelsen.

Det konkluderes på baggrund af ovenstående model, at en fortsat tilførsel af spormetaller og andre forureningskomponenter til jorden via godningsprodukter generelt vil føre til en gradvis tiltagende forringelse af jordkvalitet såvel som kornafgrødekvalitet (Pizzol et al., 2013); en problemstilling vi på sigt ikke kan undgå at tage stilling til, hvordan vi håndterer på bedste vis.
5. Incitament for forbedret fosforudnyttelse

Skal de danske vandselskaber foretage langsigtede investeringer for at forbedre udnyttelsen af fosforressourcen fra spildevandet, er det nødvendigt med en vurdering af den nuværende og fremtidige efterspørgsel efter forskellige fosfortyper i landbruget. Dette er afgørende, da teknologivalget til fosforudnyttelsen, som beskrevet i afsnit 2.2.3, giver forskellige typer af fosfor mht. biotilgængelighed, foruden forskellig udnyttelsesgrad og forskellige omkostninger.

Fremtidens prisudvikling og efterspørgsel efter bestemte typer af fosfor er vigtig for afsætningen af fosforprodukterne og derfor en vigtig drivkraft for teknologiudviklingen.

Dette afsnit indledes med en kort beskrivelse af den nuværende viden om udbuddet af råfosfat, samt efterspørgslen efter fosfor internationalt og den deraf følgende prisudvikling.

I afsnittet analyseres den fremtidige danske efterspørgsel efter fosfor ud fra følgende parametre:
- Det nuværende gødningsforbrug og gødningsefterspørgsel fordelt på slam, gylle og mineralsk gødning
- Hvordan vil efterspørgslen efter fosfor udvikle sig iht. afgrødernes gødningsbehov?
- Forbrug af fosfor efter jordtype; har jordtypen betydning for forbruget af fosfor?
- Har fosfortallet i jorden betydning for efterspørgslen efter fosfor?

5.1 Råfosfat – udbud og prisudvikling

UNEP (2011) beskriver, at hvis fosfor-reserverne indeholder mindre koncentreret fosfor end tidligere, så vil udvindingen af råfosfat fra disse kilder kunne være behæftet med større miljøskader og et større beslag af areal end nu, samtidigt med at ressourceforbruget ifm. udvindingen stiger. Hermed kan prisen på råfosfat stige voldsomt og en sådan prisstigning kan medføre en øget efterspørgsel efter substitutter til råfosfat ift. den nuværende situation, hvor prisen på råfosfat er relativ lav ift. andre fosforkilder.

Så selv om der er en vis uenighed og usikkerhed om ressourcegrundlaget, råfosfatkildernes størrelse og hvor lange de vil holde, er der ingen tvivl om, at udvikling i såvel efterspørgsel efter fødevarer og

5.2 Det fremtidige behov for fosfor og fosfortyper

På Figur 9 ses fosfortilførsel og fraførsel fra det danske landbrug gennem 20 år. Der har i mange år været et fosforoverskud i dansk landbrug, der er illustreret med rød graf på figuren, hvilket viser, at det ikke har været noget problem at få dækket efterspørgslen efter fosfor med husdyrgødning og handelsgødning. Tilførslen med slam dækker en forholdsvis lille del af det samlede fosforgesningsbehov, ca. 3 % (Grant et al, 2011).

For at opretholde et stort udbytte er det nødvendigt, at jorden indeholder en vis mængde bundet fosfor, hvorfra planterne kan forsyne løbende gennem vækstperioden. Når det på landsplan i praksis har været muligt at fraføre mere fosfor med høsten end der er tilført, er det netop fordi, der findes en stor fosforpulje i jorden, der er opbygget gennem adskillige år. Ifølge Rubæk (2013) er det nuværende fosforoverskud i den danske jord på 3,8 mio. tons fosfor, svarende til ca. 1,4 ton P/ha.

Hvis perioden for de sidste 20 år betragtes isoleret, kan der, ud fra værdierne vist på Figur 9, laves en illustrativ overslagsberegning af det fosforoverskud, der alene i denne periode er genereret. Resultatet ses på Figur 11.

Figuren illustrerer, at det først er indenfor de sidste 5 år, at fosforophobningen på landsplan er stagneret.

5.2.1 Regional fordeling af fosfortal i Danmark

For at kunne forstå det danske behov for fosfor er det nødvendigt ikke kun at vurdere ud fra landets gennemsnitstal, men også betragte den regionale fordeling af fosfor i jordpuljen.

De regionale variationer i tildelingen af fosfor, primært gennem husdyrgødningen, er meget store, og har stor betydning for vurderingen af fordelingen af den fremtidige efterspørgsel efter alternative fosfortyper regionalt.

Jordens fosfortal kan anvendes som en vejledning til at vurdere, om mængden af plantetilgængeligt fosfor er tilstrækkelig til at opnå det ønskede udbytte. Som beskrevet i afsnit 4.1 er det ønskede fosfortal for landbrugsjord mellem 2-4 (Rubæk et al., 2005) og den anbefalede fosfortilførsel i forhold til jordens fosfortal, som vist i Tabel 2.
Analyser udført i NOVANA overvågningsprogrammet viser, at der er underskud på fosfor ved plantevælvsbrug. På kvæg- og svinebrug over 0,7 dyreenheder per ha er der et overskud af fosfor i kg P/ha, mens der er underskud på bedrifter, der har en lavere husdyrtæthed, jf Figur 12.

Dette betyder, at behovet for tilførsel af fosfor fra andre kilder end de nuværende varierer meget mellem regioner og brugstyper. Efterspørgslen efter andre fosforgødningstyper end handels- og husdyrgødning vil derfor være meget afhængigt af hvor meget husdyrgødning, der er tilgængeligt i området, også i fremtiden.

På Figur 13 og Figur 14 ses den danske regionale fordeling af jorde med fosfortal, grupperet fra 1 til >10.

Figur 12 Fosforoverskud i NOVANA overvågningsoplande, fordelt på brugstype og brugsstørrelse (Grant et al. 2011).

Figur 13 og Figur 14 viser, at det er en stor andel (ca. 50 %) af de østdanske jorde (Sjælland og Fyn), der har et fosfortal, der ligger under 4, hvor det anbefalede niveau er 2-4.

Det ses, at der er en overrepræsentation af jorde med et fosfortal over 2-4 i Nord- og Vestjylland, hvilket skyldes den intensive husdyrproduktion og dermed udbringning af gylle med et højere indhold af svært tilgængeligt fosfor sammenlignet med handelsgodning.

Sammenholder vi disse oplysninger om den geografiske fordeling af de lave og højere fosfortal med jordbundtypefordelingen i Danmark vurderes det, at der er sammenfald mellem lave fosfortal og sandblandede lerjorde (JB 5 og JB 6), idet særligt Sjælland, Bornholm, Fyn og Østjylland har en høj fraktion af disse to jordtyper (Thomsen 2012).

Årsagen til de lavere fosfortal på Sjælland, Fyn, Bornholm og Østjylland skyldes til dels, at disse repræsenterer de mest intensivt dyrkede jorde, og at areal anvendelsen her primært er planteproduktion. Der tilføres derfor ikke så meget husdyrgødning til disse jorde. Andre årsager til de lavere fosfortal i disse områder kan tilskrives nedgangen i tilførslen af mineralsk handelsgodning (tillængeligt fosfor). Den reducerede tilførsel af fosfor kan resultere i en stigning i planterøddernes frigivelse af enzymer, der omdanner jordens organiske fosfor til mineralsk plantetillængeligt fosfor (Christensen, 1997) og dermed en nedgang i jordens fosfortal over længere tid.
Høstudbyttet fordelt på landsdele (Tabel 5) viser størst høstudbytte på Sjælland uanset jordtype, dog med en tendens til forhøjede udbytter på jordbundstype 5 og 6 på tværs af regioner.

<table>
<thead>
<tr>
<th>Jordtype</th>
<th>JB 1</th>
<th>JB 2</th>
<th>JB 3</th>
<th>JB 4</th>
<th>JB 5</th>
<th>JB 6</th>
<th>JB 7</th>
<th>JB 8</th>
<th>JB 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grovsand jord</td>
<td>56</td>
<td>0</td>
<td>47</td>
<td>53</td>
<td>92</td>
<td>27</td>
<td>83</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Finsandet jord</td>
<td>66</td>
<td>55</td>
<td>96</td>
<td>96</td>
<td>102</td>
<td>102</td>
<td>84</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>Grov lerlvandet sandjord</td>
<td>98</td>
<td>65</td>
<td>85</td>
<td>85</td>
<td>98</td>
<td>91</td>
<td>90</td>
<td>76</td>
<td>98</td>
</tr>
<tr>
<td>Finsandet lerlvandet sandjord</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>83</td>
<td>75</td>
<td>70</td>
<td>33</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Grov sandblan det lejrjord</td>
<td>85</td>
<td>70</td>
<td>81</td>
<td>83</td>
<td>102</td>
<td>92</td>
<td>45</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Finsandet sandblan det lejrjord</td>
<td>94</td>
<td>97</td>
<td>80</td>
<td>97</td>
<td>88</td>
<td>89</td>
<td>22</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Svar lejrjord</td>
<td>99</td>
<td>128</td>
<td>145</td>
<td>177</td>
<td>152</td>
<td>176</td>
<td>154</td>
<td>0</td>
<td>140</td>
</tr>
</tbody>
</table>

5.2.2 Udvikling i efterspørgslen efter fosfor iht. afgrødernes gødningsbehov

Tabel 6 Afgrødespecifikke fosforbehov, kg/ha/år.

<table>
<thead>
<tr>
<th>Afgrøde</th>
<th>Vinterhvede</th>
<th>Vårhvede</th>
<th>Rug</th>
<th>Vinterbyg</th>
<th>Vårbyg</th>
<th>Vårraps</th>
<th>Vinterraps</th>
<th>Ærter</th>
<th>Græs</th>
<th>Majs</th>
</tr>
</thead>
<tbody>
<tr>
<td>P behov</td>
<td>22</td>
<td>19</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>32</td>
<td>27</td>
<td>15</td>
<td>38-45</td>
</tr>
</tbody>
</table>

Tabellen viser, at for korndafgrøder er fosforbehovet ganske ens, men det er højere for raps, ærter og majs samt lavere for græs. Sker der en forskydning af afgrødesammensætningen i Danmark mod mere raps og ærter, så vokser fosforbehovet, mens det aftager, hvis der sker en forskydning mod mere græs.
Nielsen et al. (2011) fremskriver udviklingen i det totale landbrugsareal frem til 2030, ved at implementere udtagning af areal iht Grøn Vækst planen (50.000 ha) til dyrkningsfrie bræmmer omkring vandløb og søer og ved at antage en fortsat reduktion i landbrugsarealet iht hidtidig trend (160.000 ha) fra 2009-2030 som følge af udtagning af jord til udbygning af veje og byer samt udtagning af arealer i natur- og miljøfølsomme områder. Det antages, at der ikke sker en væsentlig ændring i afgrodesammensætningen, så den samme afgrodefordeling som i 2009 fortsættes.

<table>
<thead>
<tr>
<th>Landbrugsareal, 1000 ha</th>
<th>2009</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>2654</td>
<td>2530</td>
<td>2492</td>
<td>2454</td>
<td>2414</td>
<td></td>
</tr>
</tbody>
</table>

Formålet med denne fremskrivning er en vurdering af omfanget af emissionen fra landbruget i 2030, og i den sammenhæng er fremskrivningen af det totale landbrugsareal vigtig, mens fremskrivningen af afgrodefordelingen spiller en mindre afgørende rolle. Dette skyldes de mange usikkerhedsfaktorer som fx fremtidige priser, klima og udbytteeffekt, udvikling i diæter og efterspørgsel efter vegetabilske kontra animalske produkter etc. Der anvendes samme antagelse til fremskrivningen af fosforbehovet.

Iht. Figur 9 blev der tilført 56.000 tons P i 2009 til et samlet areal på 2.654.000 ha. Da 2009 var et år med et meget lavt fosforforbrug, vælges et gennemsnit af årene 2008-2010, dvs. 60.000 tons. Hvis vi regner med, at fosforbruget på landsplan skal svare til afgroders behov, så balancen går i nul og ikke er negativ, vil efterspørgslen efter fosfor med den nuværende afgrodefordeling skulle være (60.000 tons P/2.654.000 ha), dvs. 23,5 kg/ha.

Under disse forholdsvis grove antagelser vil den fremtidige efterspørgsel efter fosfor i 2030 være reduceret til (23,5*2.414.000 ha) = ca. 57.000 tons. Denne vurdering af det fremtidige danske fosforbehov i landbruget er illustreret med tilsvarende forbrug og fraførsel siden 1990 på Figur 15

Figur 15: Sammenligning af de sidste 20 års tilførsel og fraførsel af fosfor (data frem til 2010 er taget fra: Grant et al. (2011). Figuren er suppleret med det i denne rapport fremskrevne forbrug og fraførsel for 2030.
Ud fra denne fremskrivning, illustreret på Figur 15 ved 2030, vurderes det danske landbrugs forbrug af fosfor som værende på vej mod stagnering og efterspørgslen forventes dermed at forblive som i dag.

5.3 Samlet vurdering af incitamentet for forbedret udnyttelse af fosfor i slam

For at blive i stand til at vurdere incitamenterne til at forbedre fosforudnyttelsen og genanvende en større del af fosforressourcen i spildevandet, er den nuværende gødningsefterspørgsel undersøgt; hvordan den fordeler sig på slam og andre fosforkilder, samt hvordan udbud og efterspørgsel vil ændre sig over tid.

Slam udgør i dag en meget lille andel af den samlede fosfor gødningstilførsel, < 3%, og der er et potentielle for at udnytte en større del af spildevandets indhold. Fosforgødning tilført som slam er i dag den billigste måde at tilføre fosfor på, da landmanden modtager betaling herfor. Incitamenterne for landmændene til at efterspørge en større mængde fosfor fra spildevandet afhænger dels af prisen på andre fosfortyper ift. prisen på fosforgødning fra spildevand, udbuddet af andre fosfortyper og dels af behovet for øget fosforudnyttelse i jorden.

Analyseren af den fremtidige efterspørgsel efter fosfor indikerer, at der, pga de lave fosfortal i de østlige dele af Danmark, kan opstå behov for en øget tilførsel af fosfor i denne region ift. det, der tilføres i dag. En bedre fordeling af husdyrgødning kan være et andet middel til at dække fosforunderspørgslen i denne del af Danmark, men det er dyrt at transportere husdyrgødningen over lange afstande, hvorfor spildevandsslam kan være et godt alternativ.

Som nævnt i afsnit 4.2 kan slam fra renseanlæg med bio-P processen levere et gødningsprodukt via slammet, som er i stand til at tilføre jorden biotilgængelig fosfor og samtidigt bidrage til opbygningen af jordens fosfortal, hvis dette er påkrævet. Gødningsprodukter fra nye teknologier til intern fosforgenvinding via struvit, har tilsvarende potentielle for at kunne levere et produkt, der kan understøtte genopbygning af jordens fosfortal og samtidigt levere labilt plantetilgængeligt fosfor.
6. Samfundsøkonomiske omkostninger ved udnyttelse af fosfor fra spildevand

Omkostningerne ved udnyttelse af fosfor fra spildevand kan opgøres i forhold til:

- De driftsøkonomiske omkostninger for selskaberne
- Omkostningerne for samfundet.

I dette kapitel gennemgås de samfundsøkonomiske omkostninger, mens de driftsøkonomiske omkostninger for selskaberne gennemgås i kapitel 9 og 10.

På baggrund af det foreliggende datagrundlag og modeller er der foretaget beregninger, der viser forskel mellem rensningsmetoderne, når det gælder det resulterende indhold af cadmium i slammet sammenlignet med mineralsk godning. Resultaterne viser en rangordning af gødningstyper efter cadmiumindhold og de beregnede sundhedsomkostninger4 som cadmium kan medføre ved human eksponering. Ved at indregne omkostningerne ved cadmiumekspansion i sammenligningen mellem handelsgødningsfosfor og fosfor fra slam kan vi illustrere5 gødningstypernes fordele og ulemper, hvis man rangorder dem udelukkende efter cadmiumindhold og de sundhedsomkostninger som cadmiumekspansion medfører.

Som del af den samfundsøkonomiske analyse har vi også beregnet, hvordan omkostningerne for rensningsteknologiernes varierer ift. hvad et kg P koster for de forskellige teknologier. Denne type information kan bruges til at bedømme slams evt. fordelagtighed i forhold til andre gødningstyper.

4 De mulige sundhedseffekter er bl.a. nyresygdom og osteoporose, og sundhedsomkostningerne som de tabte leveår som følge af disse sygdomme.

5 De viste beregningsresultater er primært ment som illustration af forskelle mellem gødningstyperne, da det kun er cadmium det er muligt at analysere med den anvendte model fra DEFRA (2011), mens det ikke er muligt at analysere andre tungmetaller, organiske miljøfremmede stoffer mv.
et samfundsøkonomisk grundlag og også til at vurdere niveauet for et evt. tilskud til recirkulering af slam i det omfang, det anses som vigtigt at tilskynde til en øget substituering af mineraled gødning med gødnings fra slam.

I det følgende afsnit præsenteres derfor de beregnede sundhedsomkostninger for cadmium i slam, og derefter beregningerne af omkostningerne per kg P produceret, beregnet i velfærdsøkonomiske beregningspriser (se forklaringsboks i bilag 5).

6.1 Beregnede sundhedsomkostninger for cadmium i slam og mineralsk gødning

De modellerede jordkoncentrationer vist i Figur 8 i afsnit 4.3.3 er input parametre i en model, der kombinerer eksponeringsberetninger for cadmium med en økonomisk opgørelse af sundhedsomkostningerne, udviklet af DEFRA (2011). Modellen er blevet tilpasset fra engelske til danske betingelser (jf. Pizzol et al 2014), og anvendes til at beregne sundhedsomkostningerne ved brug af cadmiumholdige gødningsprodukter.

Ud fra en model til estimation af tungmetallers speciering og transport i jord (Simplified Fate and Speciation Model - SFSM modellen udviklet af Pizzol et al., 2012) kan vi beregne optagelsen af cadmium i brødhvede, som er input parameter i den anvendte model til beregning af sundhedsomkostningerne, herefter kaldet cadmium-modellen (DEFRA, 2011; Pizzol et al., 2014).

Foreløbige resultater er angivet i Tabel 8, der viser den beregnede nutidsværdi af sundhedsomkostningerne ved forskellig grad af Cd eksponering i kg/ kg P ved spredning af 2200 kg P/km²/år (Pizzol et al., 2014).

Tabel 8 Årlige sundhedsomkostninger ved anvendelse af de forskellige gødningsprodukter af varierende kvalitet, som dog alle overholder kravværdierne i slambekendtgørelsen, DKK/kg P (Pizzol et al., 2014).

<table>
<thead>
<tr>
<th>Mineralsk gødning</th>
<th>T1 slam</th>
<th>T2 slam</th>
<th>T3 slam</th>
<th>T4 slam</th>
<th>Struvit</th>
<th>Svinegylle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,053</td>
<td>0,09</td>
<td>0,1</td>
<td>0,2</td>
<td>0,09</td>
<td>0,001</td>
<td>0,013</td>
</tr>
</tbody>
</table>

6 I SFSM modellen ganges tilvæksten i Cd koncentration (Δ-Cdsoil) med bioconcentrationfaktoren (BCF), hvorved det bestemmes hvor meget ekstra Cd, der optages i planter (i modellen bruges brødhvede som modelafgrøde) sammenlignet med et referencescenario (BAU). Når planteeptagelsen er bestemt, er det efterfølgende muligt at beregne den humane Cd indtagelse, ved at gange Cd koncentrationen i planter med den daglige indtagelse af hvede. For de scenarierne, vist i Figur 8 i afsnit 4.3.3, har vi med anvendelse af DEFRA’s cadmium model (DEFRA 2011) tilpasset til dansk indtagelse af fødevarer beregnet som det daglige indtagelse af cadmium for den danske befolkning over en periode på 100 år. Herudfra er det muligt at beregne sundhedeffekterne af en livslang dagligt indtagelse af cadmium via hvedeprodukter, ved at beregne hvor stor en del af befolkningen (i forhold til baggrundsbelastningen), der akkumulerer cadmium i et omfang, som resulterer i nyresygdom og osteoporose i en alder af 50 år. De samlede velfærdsøkonomiske omkostninger, forårsaget af de helhedsforstyrrelser som cadmium forårsager, bestemmes ved at gange antallet af individer, som estimeres at blive ramt, ganget med værdien af et leveår - VOLY (value of a lifetime year), korrigeret for nedsat livskvalitet på grund af nyresygdom og osteoporose (QALY) (Pizzol et al., 2014).
Tabellen viser de laveste sundhedsomkostninger ved anvendelse af struvit som fosforgødningsprodukt. På grund af det højere indhold af Cd i slam angivet i mg Cd / kg P sammenlignet med mineralsk gødning er omkostningerne ved anvendelsen af slam på landbrugsjorden højere end ved anvendelse af mineralsk gødning og svinegylle. Hertil skal det præciseres, at anvendelsen af struvit ikke kan sammenlignes direkte med fosforgødning med slam, da struvit kun er en del af det produkt, der er resultatet af spildevandsrensningen med denne teknologi. Restslammet vil indeholde størstedelen af spildevandets fosforindhold og skal på tilsvarende vis udringes på landbrugsjord, eller alternativt anvendes på et slamforbrændingsanlæg.

Tilsvarende er sundhedsomkostningerne ved indholdet af bly og andre miljøfremmede stoffer ikke opgjort, da der ikke findes en tilgængelig model herfor, som tilfældet er for cadmium.

6.2 Eksempler på beregnede direkte velfærdsøkonomiske omkostninger af teknologier

I tillæg til værdien af de øvrige positive eller negative miljøeffekter bør de velfærdsøkonomiske omkostninger ved selve udnyttelsen af fosforindholdet i spildevandslammet medtages i beregningerne.

Disse omkostninger, beregnet som de årlige ekstraomkostninger ved slamhåndtering i renseanlægstrperne, hvorfra produktkvaliteten er opgjort i afsnit 4.3.1:

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Anlæg <20.000 PE uden udrådning. Direkte udringning af slutafvandet slam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2</td>
<td>Anlæg 20.000-100.000 PE uden udrådning. Direkte udringning af slutafvandet slam</td>
</tr>
<tr>
<td>Type 3</td>
<td>Anlæg 20.000-100.000 PE inkl. udrådning. Forbrænding af udrådnet slutafvandet slam og uden genvinding af fosfor</td>
</tr>
<tr>
<td>Type 4</td>
<td>Anlæg >100.000 PE inkl. udrådning. Forbrænding af udrådnet slutafvandet slam og uden genvinding af fosfor</td>
</tr>
</tbody>
</table>

Omkostningerne er opgjort i Tabel 9.
Bæredygtig udnyttelse af fosfor fra spildevand

Tabel 9 Beregnede velfærdsøkonomiske omkostninger for de 4 teknologier, samt beregnet DKK/kg P i slam.

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total P i slam per år, tons per år</td>
<td>16.241</td>
<td>16.241</td>
<td>81.204</td>
</tr>
<tr>
<td>Totale omkostninger, fosfor, kr. per anlæg</td>
<td>3.227.452</td>
<td>2.887.352</td>
<td>9.341.427</td>
</tr>
<tr>
<td>Årlige driftsomkostninger per PE</td>
<td>161</td>
<td>144</td>
<td>93</td>
</tr>
<tr>
<td>Omkostning per kg P (total P)</td>
<td>198,7</td>
<td>185,5</td>
<td>115</td>
</tr>
</tbody>
</table>

Kilde: Beregningerne er udført af AU/DCE, og er baserede på data fra typeanlæggene (Anlægsspecifikke grønne regnskaber samt Peter Tychsen, Krüger).

De samlede årlige omkostninger er størst for type 3 anlægget, mens de højeste årlige omkostninger per personekvivalent (PE) samt per kg P er beregnet for anlægtype 1.

Den laveste omkostning per kg P (målt som total P) opnås for anlægtype 4, som er BioP-teknologien, implementeret på et stort anlæg med anaerob udrånding og en behandlingskapacitet på 100.000 PE. På trods af, at driftsduggifterne til BioP er større ved dette anlæg end for anlægget uden BioP, så er der dels større omkostninger til kemikaliar i anlægtype 3, som er uden bio-P og også en mindre kraftvarmeproduktion som sælges.

I tillegg til at BioP teknologien giver en lavere total omkostning samt lavere omkostning per kg total P udvundet, så er fosfor indholdet mere biotilgængeligt end det fosfor, der udvindes med kemisk fældning, og med større biotilgængelighed af fosforet fra BioP, synes denne teknologi umiddelbart mere fordelagtig end de øvrige teknologier.

Omkostningerne i Tabel 9 er opgjort i velfærdsøkonomiske beregningspriser. Metoden til denne opgørelse er beskrevet i (Miljøstyrelsen 2011), og kort gengivet i Box 1 i Bilag 5. Til sammenligning er omkostningerne per kg P i handelsgodning beregnet til 16,2 kr/kg P i velfærdsøkonomiske beregningspriser (12 kr/kg P i faktorpriser).

Der er ikke indsamlet data i dette projekt til belysning af omkostningerne for fosfor fra struvit. Et svensk studie viser, at både kemikalieomkostningerne til fældning af fosfor, og hvordan man fælder struvit i anlægget, har stor betydning for prisen på fosfor fra struvit (Stockholm Vatten 2006). Det svenske studie viser, at ved kontinuerlig struvitfældning kan kemikalieomkostningerne reduceres betragtligt sammenlignet med andre metoder, og struvitfældning kan reducere kemikalieomkostningerne fra 24 til 4,6 SEK/m³ rejektvand, hvilket giver en reduktion fra 720 SEK/kg fosfor, til 160 SEK/kg fosfor. Forsøg ved svenske anlæg viser endvidere, at storskala struvitfældning reducerer kemikalieomkostningerne til 1 kr/m³ rejektvand og modsværer en pris per kg P på 25 SEK. Det vil sige, at denne metode kan producere P til lavere omkostninger per kg total P end de øvrige anlæg.
6.3 Konklusioner
Analysen af den fremtidige efterspørgsel efter fosfor (vist i afsnit 5.2) indikerer, at der pga, de lave fosforal især i de østlige dele af Danmark, er behov for en øget tilførsel af fosfor ift. det, der tilføres i dag, mens der i den vestlige del af Danmark stadig findes overskud af fosfor i jorden.

Fosforgødning som handelsgødning er den samfundsøkonomiske billigste måde at tilføre fosfor på, og nyere analyser viser, at fosforressourcen ikke ophører indenfor en overskuelig tidshorisont – men den er ikke ubegrænset. I tillæg kommer, at råfosfat udvindes i lande og egne, hvor urolige samfundsforhold kan medføre ustabile leverencer. Dette taler for, at teknologier til recirkulering af de nationale fosforkilder videreudvikles, så prisen ved disse produkter kan tilnærme sig handelsgødningssprisen.

Analysen og sammenligningen af de velfærdsøkonomiske omkostninger ved teknologierne til at udvinde fosfor fra slammene viser, at BioP teknologien medfører en lavere omkostning per kg P, når man sammenligner med tilsvarende anlæg med kemisk fældning. Dette gælder både for anlæg af størrelserne 20.000 PE og 100.000 PE, men omkostningerne både per PE og kg P er lavere for de store anlæg på 100.000 PE.

Analysen af sundhedsomkostningerne ved de forskellige teknologier til udvinding af fosfor fra slammene viser også, at BioP er den bedste løsning, men også at sundhedsomkostningerne er større ved denne fosforkilde end ved anvendelse af handelsgødning i den form, der anvendes idag.
7. Sammenlignede LCA af udnyttelse af fosfor fra spildevand

LCA’en er designet med henblik på at bidrage til vandselskabernes beslutningsgrundlag omkring valg af teknologi til at fjerne fosfor fra spildevandet samt genanvendelsesteknologi. LCA’en bidrager med viden om forskelle i miljøpåvirkningerne af fosfor ved de forskellige teknologier, herunder klimaeffekt, utømming af fossil olie, human toksicitet, jord og ferskvandstoksicitet samt eutroferingseffekt. Analysen er baseret på data vedr. fosforproduktets kvalitet som funktion af tilgængeligheden af fosfor, der har betydning for udnyttelsen af fosfor, når de konkrete teknologier vurderes. Kapitlet omfatter en beskrivelse af de renseanlægstyper og teknologier, som analysen er baseret på (afsnit 7.2.).

Generelt mangler der detaljeret viden om fosforomsetningen fra slam i jord, samt analysemetoder, der kan bruges til at kvantificere tilgængeligheden af forskellige fosfortyper i forskellige jordtyper og dermed beskrive dette modelmessigt7. Dette er problematisk, idet fosforudnyttelsen er afhængig for markedsværdien af produkterne fra spildevandsrensningen.

Fosfor kan findes på følgende former (se Figur 2 samt Tabel 11):
- Biologisk indbygget i slammet som organisk bundet fosfor
- Kemisk fældet og dermed hårdt bundet til aluminium og/eller jern
- Udfældet som struvit og dermed kemisk bundet til magnesium og ammonium

I LCA’en ser vi udelukkende på vandselskabernes fosforfjernelse hhv. genanvendelsesteknologi, mens kvaliteten af indløbsspildevandet holdes konstant og dermed betragtes som værende uafhængigt af renseanlæggets opbygning.

Det er væsentligt at pointere, at valg af strategi for udnyttelse af fosfor er direkte forbundet med valg af slamhåndteringsstrategi (dvs. genanvendelse frem for nyttiggørelse ifølge affaldshierarkiet).

For LCA’en er spildevandsrensningens energinøgletal samt en teoretisk betragtning af biotilgængelighed af det fosforberigede slutslam indenfor et år fra udbringning på marken, anvendt som input data.

Som beskrevet i kapitel 4.2 er der forskel på biotilgængeligheden af de forskellige fosfortyper, der kan udtages fra spildevandet. Betragtningerne omkring biotilgængeligheden af fosfor i de slambaserede gødningstyper ved forskellige fosforfjernelsesteknologier er nærmere beskrevet i afsnit 8.1 ud fra en generel hypotese for tilgængeligheden af fosfor fordelt på de fire fosfortyper, der er defineret i afsnit 2.2.2.

7 Der er påbegyndt et PhD studie ved KU med emnet: ”Overordnet tilgængelighed af fosfor i spildevandslam og afledte produkter”. Dette projekt vil kunne bibringere mere konkret viden til dette område, der forventeligt vil kunne nuance problemstillingen
Hypotesen for tilgængeligheden af fosfor er illustreret i Figur 16, der viser, at det antages, at:

- nytteværdien af fosfor, der er kemisk bundet til jern eller aluminium (Fe/Al), bidrager til jordens pulje af svært tilgængeligt fosfor og dermed er egnet som supplerende fosforgodningstype, hvis jorden er intensivt dyrket og dermed udpint mht. fosfor
- fosfor, der er organisk bundet eller bundet i struvit, bidrager til jordens pulje af tilgængeligt fosfor, der frigives til jordvæsken i løbet af en vækstseson, såfremt planteoptagelsen medfører dette
- fosfor ekstraheret fra slamaske potentielt kan tilføres landbruget på vandopløselig form, der er direkte tilgængelig for planterne og dermed kan være egnet som startgødning. Denne genanvendelses teknologi ved askeekstraktion er ikke medtaget i den sammenlignende LCA af fosforfjernelse- og genanvendelses teknologier, da dette pt. ikke betragtes som en kommercielt tilgængelig teknologi

Figur 16 Vejledningens hypotese for biotilgængelighed af de fosforprodukter, der kan produceres fra spildevandet

I LCA’en tages der yderligere højde for varierende energi og kemikalieforbrug i de teknologier, som indgår i spildevandsbehandlingen såvel som i produktionen af de kemikalier, der er forbrugt i de valgte fosforfjernelse- og genanvendelsesteknologier fra spildevand.

I den sammenlignende LCA er systemafgrænsningen udvidet til at inkludere anvendelsesfasen af de slambegide gødningsprodukter, der er spredt ud på marken⁸, samt kemikalie-, energi- og massestrømme for alle teknologitirin fra indløbsspildevand til gødningsprodukt. Resultaterne fra den sammenlignende LCA er særlig følsom for overfor antagelserne vedr. biotilgængeligheden af fosfor i slutproduktet.

De anlægstyper, som indgår i den sammenlignende LCA, er beskrevet i afsnit 7.1.

7.1 Definition af standard renseanlægse
Vurderingen af teknologier i vejledningen er i høj grad betinget af renseanlæggenes størrelse og opbygning. Det er derfor valgt at beskrive de mest almindelige anlægstyper i vejledningens analyser.

Vandselskaberne kan således basere deres konkrete vurderinger ud fra det af de 3 standardanlæg, der bedst repræsenterer selskabets eget anlæg.

- Type 1: 1 trins anlæg uden rådnetank
- Type 2: 1 trins anlæg med rådnetank
- Type 3: 2 trins anlæg med rådnetank

⁸ Det skal her nævnes, at vi ikke har inddraget tilstedeværelsen af de organiske miljøfremmede stoffer i slutsammet, idet effekterne af disse ikke er kvantificeret i eksisterende Livscyklus Impact Analyse Modeller.
Anlæggene er beskrevet og skitseret herefter.

7.1.1 Type 1: Mindre dansk renseanlæg (20.000 PE)
Type 1 repræsenterer de mindre danske renseanlæg, der er opbygget som et 1 trins anlæg uden rådnetank. Denne anlægstype er defineret med en forureningsbelastning på 20.000 PE, sammensat som normalt husspildevand. Anlæggets principielle opbygning er skitseret på Figur 17.
De vigtigste karakteristika for anlægsopbygningen er, at der ikke findes nogen forklaringstank eller rådnetank på anlægget.

![Figur 17: Skitse af Type 1: Mindre dansk renseanlæg, defineret med en belastning på 20.000 PE.](image)

7.1.2 Type 2: Mellemstort dansk renseanlæg med rådnetank (100.000 PE)
Type 2 repræsenterer et større dansk renseanlæg, der tilsvarende Type 1 er opbygget som et 1 trins anlæg, men suppleret med en rådnetank til biogasproduktion. Denne anlægstype er defineret med en forureningsbelastning på 100.000 PE, sammensat som normalt husspildevand. Anlæggets principielle opbygning er skitseret på Figur 18.

![Figur 18: Skitse af Type 2: Mellemstort dansk renseanlæg med rådnetank. Anlægget er i vejledningen defineret med en belastning på 100.000 PE.](image)
7.1.3 **Type 3: Mellemstort dansk renseanlæg med forklaring og rådnetank (100.000 PE)**

Renseanlæget Type 3 repræsenterer anlæg, der er opbygget som et 2 trins anlæg, dvs. med forklaringstank før aktiv slamanlægget. Denne anlægstype er tilsvarende Type 2 suppleret med en rådnetank, til biogasproduktion fra primær slam og biologisk overskudsslam. Anlægstype 3 er defineret med en forureningsbelastning på 100.000 PE, sammensat som normalt husspildevand. Anlæggets principielle opbygning er skitseret på Figur 19.

![Figur 19 Principiel opbygning af Type 3: Mellemstort dansk renseanlæg med forklaring og rådnetank. Anlægget er i vejledningen defineret med en belastning på 100.000 PE](image)

7.2 **Systemafgrænsning**

De syv anlægsobygninger ses beskrevet i følgende tabel, hvor det er angivet, hvilket af de tre standardanlæg der er taget udgangspunkt i, den forudsatte belastning samt om der er anvendt alm. kemisk fældning af fosfor (angivet med k) eller om der er etableret biologisk fosforfjernelsesteknologi (angivet med b). Som et alternativ er der lavet et scenarie, hvor der etableres intern fosforgenvinding via struvit på anlægget i kombination med biologisk fosforfjernelse. Dette scenarie er betegnet T3b+s.

For alle scenarier er det forudsat, at alle slutprodukter anvendes på landbrugsjord. Dette betinger, at slutprodukterne er med en kvalitet, så slambekendtgørelsen overholdes. Følsomheden ved denne antagelse ligger især ved scenarie T3b+s, da tungmetalkoncentrationen relativ til fosforholdet i slutslammet vil blive øget, når ca. 30 % af spildevandets fosforhold bliver udtaget via en intern genvindingsproces på anlægget. Det er således en vigtig forudsætning, at der ikke er en forhøjet tildeling af tungmetaller til renseanlæg, der overvejer denne teknologikombination. I nærværende analyser betragtes struvitfældning som en additionel ekstraktionsteknologi, som primært har til formål at udfase brugen af jern og aluminium som fældningsmiddel til fosforfjernelsen, mens outputtet fra scenarie T3b+s er et blandingsprodukt af Bio P genvindings- og struvit ekstraktionsteknologierne. De ovenfor nævnte aspekter vedr. en mulig forringet slutslamskvalitet ved intern struvitproduktion er ikke inkluderet i Scenarie T3b+s analysen. Men problemstillingen
er vigtig at holde i fokus i forhold til forsyningernes teknologivalg og valg af slamhåndteringsstrategi.

<table>
<thead>
<tr>
<th>Med eller uden forklaringstank</th>
<th>1-trin</th>
<th>1-trin</th>
<th>1-trin</th>
<th>1-trin</th>
<th>2-trin</th>
<th>2-trin</th>
<th>2-trin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlægtype</td>
<td>T1k</td>
<td>T1b</td>
<td>T2k</td>
<td>T2b</td>
<td>T3k</td>
<td>T3b</td>
<td>T3b+s</td>
</tr>
<tr>
<td>PE belastning</td>
<td>20.000</td>
<td>20.000</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
<td>100.000</td>
</tr>
<tr>
<td>P fjernelsesteknologi</td>
<td>ingen</td>
<td>Bio P</td>
<td>ingen</td>
<td>Bio P</td>
<td>ingen</td>
<td>Bio P</td>
<td>Bio P og struvit</td>
</tr>
<tr>
<td>Udrådning</td>
<td>Nej</td>
<td>nej</td>
<td>Ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
</tbody>
</table>

Der er anvendt gennemsnitstal for spildevandskarakteristika såvel som slotslammets indhold af tungmetaller⁹. Variable parametre er således kemikalie- og energiforbrug i henhold til fosforfjernelse og genanvendelsestrategi. Det afgørende for teknologiernes miljømæssige præstation er således:

1. mængden af input kemikalier og emissionen ved deres produktion, samt
2. fosfor biotilgængeligheden i slotslammet, som er afgørende for, hvor stor en mængde mineralsk gødningsmiddel (og dertilhørende emissioner), der substatiseres.

Ligeledes afspælles kemikalie- og energiprofilerne for de syv teknologier med og uden Bio-P teknologien implementeret.

Data anvendt i LCAen er vist i bilag 2.

Mængden af undgået handelsgødnings er beregnet ud fra ligningen:

\[
\text{Substitutionsrate} = \frac{f_p\text{, slam} \times C_{p,\text{slam}}}{C_{p,\text{ref}}}
\]

Hvor:
- \(f_p\text{, slam}\) er fraktionen af biotilgængeligt fosfor i slotslammet indenfor 1 år
- \(C_{p,\text{slam}}\) er koncentrationen af fosfor i slam
- \(C_{p,\text{ref}}\) er P-indholdet i handelsgødning

⁹ Dette betyder, at anlægsudviklings forskelle i spildevandslammets sammensætning ikke påvirker konklusionerne.
LCA'en differentierer således mellem de forskellige typer af fosfor, der kan udtages fra spildevandsrensningen: Organisk bundet P, kemisk let bundet P og kemisk hårdt bundet P. (se beskrivelse i afsnit 2.2.2) samt de tilhørende antagelser vedrørende plantebiotilgængeligheder for hvert enkelt produkt, som præsenteret i kapitel 7 og 8.

I de følgende afsnit præsenteres de miljømæssige afledte effekter af de syv teknologiscenarier præsenteret i Tabel 10.

7.3 Miljopåvirkninger
Hovedformålet med LCA'en er at belyse relative ændringer i de afledte miljøeffekter forbundet med forskellige fosфорfjernelses- og -genanvendelsesstrategier. Vurderingen af påvirkningskategorierne er baseret på recipemidpoint metoden (Goedkoop et al., 2009). Spildevandsrensning vedrører primært to typer af miljøspørgsmål, nemlig klimarelateret virkning og miljøkvalitetskrav (Renou et al, 2008), hvorfor vi har fokuseret på følgende seks påvirkningskategorier (mere detaljeret beskrevet i Niero et al., 2014):

- Klimaændringer (kg CO2eq.);
- Fossil udtømming (kg olie ækv.);
- Human toksicitet (kg 1,4-DB ækv.)
- Jord- og ferskvandsøkotoksicitet (kg 1,4-DB ækv.)
- Ferskvand eutrofiering (kg P-ækv.)

I de følgende afsnit gennemgås processspecifikke bidrag til de afledte effekter på ovenfor listede påvirkningskategorier. Positive værdier repræsenterer negative miljøpåvirkninger (og altså en potentiel miljøbelastning eller skade), mens negative værdier repræsenterer undgåede påvirkninger (og dermed potentielle miljømæssige fordele) ved en given fosforfjerningsteknologi. Er summen af positive og negative værdier nul har vi en situation, hvor der ingen positive eller negative miljøeffekter er. Er summen af positive og negative værdier større end nul, har vi en situation med en netto negativ effekt på klima, miljø og/sundhed, og endelig vil en situation, hvor summen af positive og negative værdier er mindre end nul, bidrage positivt til klima, miljø og/sundhedsforbedringer.

For alle impact kategorierne har vi opdelt de afledte effekter i delbidrag fra produktion af input kemikalier (MgSO4, NaOH, polymer og FeCl), varme fra biogas anvendt på anlægget (Varme-Biogas(P/U)), Energiforbrug (Elektricitet mix/DK (U)), el og varme produktion (P) fra biogas og sidst anvendelse af slam som gødning med substitution af mineralsk gødning (Slam på landbrugsjord).
7.3.1 Klimaforandringer

For alle teknologiscenarier gælder, at energi og kemikalieforbruget tilsammen bidrager mest til forværring af påvirkningskategorien klimaforandringer. Den vigtigste positive bidragyder til påvirkninger for alle anlægstyper er forbruget af fossil baseret el (Figur 20). Den interne produktion og eksport af grøn energi (el og varme produktion), tæller som en negativ værdi, da de antages at substituere fossil-baseret energiproduktion uden for anlæget; der er altså her tale om et bidrag til at modvirke klimaforandringer.

Forbruget af jernklorid er størst på de tre anlægstyper T1k, T2k og T3k, hvilket medfører en lavere substitution af handelsgodning ved udbringning af fosforberiget slam på landbrugsjord sammenholdt med de øvrige scenarier, fordi den jernbundne fosformængde antages som utilgængelig indenfor 1 år. Udbringning af fosforberiget slam på landbrugsjord fra T1k, T2k og T3k kompenserer mindst for bidraget til klimaforandringer, mens teknologierne T1b, T2b, T3b og T3b+s i særdeleshed kompenserer for bidraget til klimaforandringer. Generelt kan det konkluderes, at en omlægning fra ren kemisk fosforfældning til biologisk fosforfjernelse har en positiv effekt på de afledte klimaeffekter, idet den samlede score bliver mindre positiv, når vi sammenligner hhv. T1k og T1b, T2k og T2b og T3k og T3b.

Den plantebiotilgængelige fraktion af fosfor er afgørende for gødningseffektiviteten. LCAen viser, at den samlede genvindingseffektivitet af plantebiotilgængeligt fosfor er afgørende for den mængde handelsgodning, der substitueres og de dertilhørende undgåede procesemissioner.

Resultatet er således følsomt i forhold til vejledningens betragtninger omkring biotilgængeligheden af fosfor i de producerede gødningsprodukter, men eftersom for kategorien klimaforandringer, at biotilgængeligheden har en betydning for strategiens bæredygtighed.

![Diagram](image.png)
7.4 Udtømning af fossile ressourcer

Figur 21 Visualisering af proces-specifikke bidrag til påvirkningskategorien udtømning af fossile ressourcer, målt i kg olie-äkvivalenter.

Figur 21 viser negative afledte effekter (positive værdier) fra elforbrug til spildevandsrensningen (for alle teknologiscenarier) og fra brugen af jernklorid for teknologiscenarierne T1k, T2k og T3k samt et mindre forbrug ved støttefældning for teknologiscenarierne T2b og T3b. Analogt til påvirkningskategorien ”klimaforandringer” udviser teknologiscenarier baseret på avanceret biologisk fosforfjernelse større fosforgenvindingseffektivitet, dvs. substitutionsrate, undgået produktion og brug af handelsgødning. Dette forhold sammen med en større energieffektivitet betyder, at de store anlæg med avanceret biologisk fosforfjernelse og biogasproduktion resulterer i mindst udtømning af fossile ressourcer. De afledte negative effekter af teknologiscenariet med kombineret Bio P og struvitfældning (T3bs) er mindst (jf. Figur 26). Dette skyldes, at struvitfældningen erstatter forbruget af jernklorid og samtidig giver et fosforprodukt med større biotilgængelighed end ved traditionel kemisk fældning.

For påvirkningskategorien ”udtømning af fossile ressourcer” er biotilgængeligheden af fosforproduktet fra spildevandsrensningen (der for teknologiscenarie T3bs er et blandingsprodukt af hhv. fosfor bundet i slam og fosfor bundet i struvit), således også betydende for den bæredygtighed, der er forbundet med de undersøgte strategier.
7.4.1 Eutrofiering

Alle anlægstyper har et fast bidrag til negative afledte effekter på ferskvandseutrofieringsniveauet fra fosfor udledt med det rensede spildevand, hvilket skyldes, at det er antaget, at alle anlæg renser til samme udledningskvalitet. Som nævnt er der ikke taget højde for lokalt specifikke forhold i denne analyse, hvilket er nødvendigt hvis man skal foretage en reel vurdering af eutrofieringseffekten af fosfor.

For teknologiscenariene, T1b, T2b, T3b og T3bs er produktionen af fosforberiget slam så stort, at det resulterer i en samlet reduktion af ferskvandseutrofiering fra produktion af mineralsk gødning. Bidraget til reduktion af ferskvandseutrofiering er faldende i rækkefølgen T1b, T2b, T3b, mens den er signifikant større for T3bs, der giver den samlet set største biotilgængelighed, da brugen af jern og aluminium udføres med dette teknologivalg. For teknologivalg, der resulterer i et slutslam-produkt med en substitutionsrate på mere end 50% opnås en netto reduktion af ferskvandseutrofiering. Dette skyldes, at en selvforsyning på mere end 50% er ensbetydende med at den undgåede emission fra produktion af mineralsk gødning overstiger behovet for at supplere med mineralsk gødning. Det skal nævnes, at et eventuelt bidrag fra overfladeafstrømning fra landbruget ikke er inkluderet i ReCiPe LCIA modellen.
7.4.2 Human toksicitet

Figur 23 visualiserer af proces-specifikke bidrag til påvirkningskategorien human toksicitet, målt i kg 1.4 DB ækv.

Figur 23 viser for alle teknologiscenarier et bidrag til påvirkningskategorien "human toksicitet". Dette bidrag er forbundet med forbruget af fossile brændstoffer. Endvidere er der for teknologiscenarier med et forbrug af jernklorid et dominerende bidrag til påvirkningskategorien "human toksicitet". Produktion af grøn energi samt udbringning af slam på landbrugsjord substituerer procesemissioner fra energiproduktion fra fossile brændsler samt indvinding af råfosfat. Det samlede resultat bliver, at teknologiscenarierne baseret på biologisk fosforfjernelse fra spildevandet har et lavere niveau af negative effekter på påvirkningskategorien "human toksicitet" end lignende anlægstyper, hvor spildevandsrensningen er baseret på kemisk fældning af fosfor. Teknologiscenarierne T1b og T3bs er forbundet med laveste niveau af afledte effekter på human sundhed, da der i disse scenarier undgås at anvende jernklorid.

7.5 Terrestrisk økotoksicitet

Figur 24 visualiserer af proces-specifikke bidrag til påvirkningskategorien terrestrisk økotoksicitet, målt i kg 1.4 DB ækv.
Figur 24 viser de direkte afledte effekter ved at udbringe slam på landbrugsjord. Her fremgår det, at betydningen af biotilgængeligheden af fosfor i slutproduktet er afgørende for påvirkningen på miljøet. Dette skyldes, at der opstår en fortyndingseffekt på indholdet af mikro-forureninger i slutproduktet ved et teknologivalg, der øger koncentrationen af biotilgængeligt fosfor i slutproduktet. Sistnævnte understøtter relevansen af, at efterprøve den bagvedliggende hypotese vedr. den varierende biotilgængelighed af fosfor i de forskellige slutprodukter fra spildevandsrensningen.

Det bør nævnes, at enhedsprocessen "slam på landbrugsjord" omfatter både positive og negative afledte effekter på påvirkningskategorien "terrestrisk økotoksicitet"; mikroforureninger ved udbringning af slam på landbrugsjord, såvel som undgåede mikroforureninger ved substitution af brug af mineralsk gødning.

T1k repræsenterer et scenarie med mindst substitution af fosfor og hermed højest negative afledte toksicitetseffekter på jordens økosystem. Sammenligner man hhv. T1k og T1b, T2k og T2b, samt T3k og T3b, ses en ensartet relativ sønkelse i niveauet af afledte økotoksikologiske effekter på landbrugsjorden, hvilket skyldes et sønket brug af fældningskemikalier hhv. en øget biotilgængelig fraktion af fosfor.

Kombination af Bio P med samtidig struvitfældning fra rejetvandet på anlæg med udrådning af slam falder ud som den bedste teknologilösning, hvilket skyldes en samlet fjernelse af fosfor på en plantetilgængelig form samt et undgået forbrug af jernklorid i denne teknologiscenario. For denne konklusion er det en vigtig forudsætning, at slamkvaliteten opretholdes, når fosforindholdet i restslammet reduceres efter den interne genvinding af fosfor som struvit; dvs. at struvit evl. tilføres landbrugsjorden sammen med det fosforberigede slam. Dette er en følsom antagelse, da der på de enkelte anlæg kan være oplandsspecifikke problemlister med tilledning af tungmetaller til renseanlægget. Hvis tilledningen af tungmetallerne øges med dette teknologivalg, vil påvirkningen terrestrisk økotoksicitet svare til T3b scenariet.

7.6 Ferskvandsøkotoksicitet

![Diagram](image)

Figur 25 Visualisering af proces-specifikke bidrag til påvirkningskategorien ferskvandsøkotoksicitet, målt i kg 1.4 DB eq.

Som for human toksicitet er forskellene indenfor påvirkningskategorien” ferskvandsøkotoksicitet” primært bestemt af brugen af fældningskemikalier hhv. el forbrug. Inden for disse processer, er de
stoffer, der er ansvarlige for den negative påvirkning af ferskvandsmiljøet, emissioner af nikkel og mangan i vandet fra kulbaseret energiproduktion udenfor anlægget. Som for alle øvrige påvirkningstyper er teknologiløsningen baseret på kombineret biogasproduktion og fosforekstraktionsteknologien Bio P og struvitfældning fra rejektvandet, T3bs, den miljømæssigt bedste løsning. Dette er igen vurderet ud fra LCAens bagvedliggende hypotese om biotilgængelighed af fosfor i de forskellige produkter fra spildevandsrensningen.

7.7 Konklusion på sammenlignede LCA

Figur 26 giver en oversigt over de syv fosforgenindringsteknologiscenariers scoringsværdier på hver af de fem påvirkningstyper, som er vist i tabellen nedenfor.

Figur 26 Relativ fordeling af den samlede score for de syv teknologiscenariers scoringsværdier på hver af de fem påvirkningstyper (negative + positive værdier) for hver impact kategori fordelt på teknologiscenariene T1k til T3b+s.

Renseanlæg type 1 og type 2:1 trins-anlæg u/m rådnetank

Ser vi på et-trins anlæggen T1k til T2b er der en generel tendens til lidt lavere negativ impact fra de to store anlæg og en behandlingskapacitet på 100.000 PE i forhold til de to mindre anlæg og en behandlingskapacitet på 20.000 PE. Den største forskel skyldes dog ikke anlægsstorrelse, men derimod teknologien. For impact kategoriene ”Klimaforandring”, ”Udtømning af fossile ressurser” og ”Terrestrisk økotoksicitet” er der et sammenhængende mønster mellem anlægsstorrelse og teknologiscenarien for 1 trinsanlæggen; De store anlæg har lavere impact end de små og samtidig er de negative impact mindre for teknologiscenario T1b sammenholdt med T1k hhv. T1b.

Ses på ”ferskvandseutrofiering”, ”human toksicitet” og ”ferskvandstoksicitet” vender billedet for teknologiscenarierne T1b og T2b således at T1b har den bedste miljø- og sundhedsynssagige profil. Det skyldes udrådningsprocessen, som får større positiv betydning end den negative effekt, som anlægsstørrelsen medfører, hvorved vi får en lavere substitutionsrate af mineralsk gødning. Dette resulterer i en lavere reduktion af eutrofieringsnivealet (Ferskvandseutrofiering) og en tilsvarende
højere proces-emission fra udvinding af råfosfat, hvilket er årsagen til en lidt højere positiv værdi på effekt kategorierne “human toksicitet” og “ferskvandsøkotoksicitet <2for T2b sammenholdt med T1b.

Renseanlæg type 3: 2 trins-anlæg med rådnetank Sammenholdes T3b med T2b, medfører T2b en dærligere effekt på alle effektkategorier primært grundet et øget energiforbrug og øget forbrug af jernklorid, hvilket resulterer i lavere substitution af mineralsk gødning som igen resulterer i forhøjede proces emissioner fra udvinding af råfosfat.

I teknologiscenariet T3b+s erstattes brugen af jernklorid med magnesium, dvs. struvitutfældning fra rektvantet. Dette forhold sammen med en øget biotilgængelig fraktion af fosfor i den organiske fase (Bio P) resulterer i den bedste performance for teknologiscenarie T3b+s

muligheder i dag, kan være vanskelige at imødekomme. Dette understreger, at der for nu behøv
for videreudvikling af teknologier, der giver en samlet optimal løsning.

LCAen viser, at der ved udbringelse af slam med et stort indhold af plantebiotilgængeligt fosfor, vil
skulle udbringes mindre slam per hektar årligt. Der opnås maksimal kvalitet af
slutblandingsproduktet ved en kombination af struvit og BioP. Anvendelse af lokale
blandingsprodukter vil være i linie med kravet om valg af fosfor fjernelsesteknologier med minimal
miljøeffekt. LCAen viser, at slutslam beriget med biotilgængeligt fosfor kan udgøre et virkemiddel
med positive effekter på påvirkningskategorien terrestriske økotoxicitet ved samtidig overholdelse
af udledekraavene.
8. Udgangspunkt for benchmarking af teknologier til den operationelle vejledning

I denne del af vejledningen (kapitel 8-10) fokuseres på, at lave et operationelt værktoj til vandselskaberne, så disse bliver i stand til at vurdere forskellige fosforstrategier i forhold til hinanden. Til dette formål er der til vejledningen udviklet en metode til miljømæssig benchmarking af strategierne, der, ligesom den udarbejdede LCA, tager udgangspunkt i vejlodningens hypotese om biotilgængelighed af fosfor (se evt. Figur 16)

8.1 Miljømæssig benchmarking af teknologier til fosforfjernelse fra spildevand

Der er, til denne vejledning, udviklet et indeks til miljømæssig benchmarking af teknologier til fosforfjernelse på renseanlæg. Dette indeks er udviklet i forbindelse med udarbejdelsen af vejledningen og kan bruges som operationelt værktoj til at kunne give en umiddelbar vurdering af nytteeffekten af det producerede gødningsprodukt og dermed supplere de generelle konklusioner fra den sammenlignende LCA i en bæredygtighedsvurdering af anvendelsen af fosfor fra spildevand som gødningsressource.

Dette indeks til miljømæssig benchmarking af fosforfjernelse fra spildevand er benævnt: SPRi (Sustainable Phosphorus Removal index).

SPRi er vejledningens forslag til vægtning af aspekter, der bør indgå i vurderingen af den miljømæssig bæredygtighed ved de forskellige teknologier til at fjerne fosfor fra spildevandet. Det skal understreges, at fosforfjernelsen fra spildevandet ikke alene kan betragtes som en ressourcestrategi uden at medtage den efterfølgende genanvendelse af det fosforprodukt, der produceres ved spildevandsrensningen. Dette vurderes nærmere i kap. 10.

Indekset til miljømæssig benchmarking af teknologier til fosforfjernelse fra spildevand (SPRi) er sammensat af tre vigtige forhold, der alle vurderes som væsentlige for en samlet miljøvurdering. Disse tre forhold er følgende:

1. Tab af fosfor fra kredsløbet
2. Følgевirkning af fosforudledning til recipienten
3. Tilgængelighed af fosfor i fosforproduktet produceret ved renseteknologien på renseanlægget

Ad 1) Tab af fosfor fra kredsløbet
Såfremt en teknologi til fosforfjernelse på renseanlægget giver en høj koncentration af fosfor i udlobet, er der et tab fra fosforkredsløbet, der ikke vil kunne nyttiggøres til substitution af fosfor i
Bæredygtig udnyttelse af fosfor fra spildevand

den danske produktion. Tabet af fosfor til recipienten skal derfor vægtes miljømæssigt højt i bedømmelsen af teknologier og indgår derfor med en vægtning i beregningen af SPRi.

Ad 2) Følgevirkning af fosforudledning til recipienten
Renseanlæggets udlederkvadrat til den pågældende recipient beskriver grænsen for den tilladelige udledning af fosfor, uden dette skader recipienten. I miljøvurderingen af teknologier til fosforfjernelse er det derfor forudsat, at alle teknologier overholder udlederkvadratet og der indregnes derfor ingen negative miljøpåvirkninger af recipienten som følge af tabet af fosfor. Negative følgevirkninger i recipienten indgår således ikke i SPRi.

Ad 3) Tilgængelighed af fosforressourcen efter rensningen på renseanlægget

Som beskrevet antages biotilgængeligheden af fosfor som afgørende for den nytteværdi, det potentielt kan have i fosforkredsløbet. Biotilgængeligheden er derfor en vigtig del af miljøvurderingen af fosforfjernelsen.

Til brug for den operative vejledning er tilgængeligheden af fosfor vurderet som direkte bestemt af den valgte teknologi til fosforfjernelse og er defineret alene til brug for vejledningens benchmarking af fosforrecirkuleringsseffektivitet. Den tidshorisont, der benyttes til vurderingen af tilgængeligheden, vil have afgørende betydning for resultatet. Til vejledningens SPRi er det valgt at arbejde med en tidshorisont på 1 år, idet dette beskriver tidshorisonten for godningsplanerne for bl.a. landmanden og fortolkes som den tidshorisont, der er i bedst overensstemmelse med den værdi, fosforproduktet vil have for at blive indtænkt som en kommersiell positiv ressource rent økonomisk set.

Tilgængeligheden af fosfor, der anvendt til vejledningens benchmarking af teknologier til fosforfjernelse, er vist i Tabel 11. Her ses de antagede fosfortilgængeligheder som følge af de teknologier, der er iddraget i vejledningens vurderinger.

I vurderingen af tilgængeligheden af fosfor i slutproduktet/slutslammet indgår også fordelingen af fosormængden på de forskellige former, da spildevandsrensningens ofte resulterer i flere typer af fosfor i slutproduktet, eksempelvis som en blanding af biologisk bundet og kemisk hårdt bundet fosfor som angivet i kapitel 2, afsnit 2.2.2.
Bæredygtig udnyttelse af fosfor fra spildevand

<table>
<thead>
<tr>
<th>Teknologinummer</th>
<th>Teknologi til fosforfjernelse</th>
<th>Tilgængelighed af fosfor i jorden i løbet af et år</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Direkte udtag af suspenderet fosfor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dette sker ved udtag af primær slam, uden supplerende dosering af fældningskemikalier</td>
<td>100 %</td>
</tr>
<tr>
<td>2</td>
<td>Kemisk fosforfjernelse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dette sker ved fældning af fosfor med jern eller aluminium</td>
<td>0 %</td>
</tr>
<tr>
<td>3</td>
<td>Alm. biologisk fosforfjernelse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fosfor fjernes ved biologisk indbygning af fosfor i slammets bakterier</td>
<td>100 %</td>
</tr>
<tr>
<td>4</td>
<td>Bio-P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Fosfor fjernes ved biologisk indbygning af fosfor i særligt fosforakkumulerende bakterier</td>
<td>100 %</td>
</tr>
<tr>
<td>5</td>
<td>Tertiær renseproces *)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dette er betegnelsen for en efterfølgende polering af det renseede vand mht. SS. Dette kan være et sandfilter, et mekanisk filter eller en membran</td>
<td>0-100 %</td>
</tr>
<tr>
<td>6</td>
<td>Intern fosforgenvinding **)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Dette er betegnelsen for etablering af fosforgenvinding, eksempelvis via struvit</td>
<td>100 %</td>
</tr>
</tbody>
</table>

*) Øger ikke den relative tilgængelighed af fosfor i spildevandslam, men øger mængden af tilgængeligt spildevandsslam.

**) Forudsætter, at fosfor findes i høje koncentrationer på renseanlægget og forudsætter stor andel af Bio-P.

8.1.1 Definition af SPRi (Sustainable Phosphorus Removal index)

Definitionen af fosforfjernelseseffektiviteten fra spildevand bestemmes i denne vejledning på baggrund af de før beskrevne forhold som følger:

SPRi har enheden % og angiver, hvor stor en andel af den tilledte fosformængde, der fjernes med teknologier på renseanlægget, der sikrer, at fosfor på et senere tidspunkt potentielt kan substituere et kommersielt fosforprodukt. Jo tættere indekset er på 100 %, jo bedre benchmarking i relation til en potentiel genanvendelse af fosfor.

SPRi værdien beregnes efter følgende beregningsformel:

\[
SPRi = \left(\frac{P_{\text{ind}} [t/år] - 3 \times P_{\text{ud}} [t/år] - P_{\text{kem}} [t/år]}{P_{\text{ind}}} \right) \times 100
\]

- \(P_{\text{ind}} \) angiver fosformængden, der i gns. ledes til renseanlægget
- \(P_{\text{ud}} \) angiver fosformængden, der i gns. udledes fra renseanlægget
- \(P_{\text{kem}} \) angiver den fosformængden, der i gns. bindes til slammets bakterier via jern og/eller aluminumsprodukter

Det ses, at den mængde fosfor, der tabes fra kredsløbet, via udledningen til recipienten, vægtes med en faktor 3. Denne vægtningseffekt er valgt for at opprioritere SPRi for teknologier, der renser spildevandet til udlederkrav og derunder. Størrelsen af denne vægtningseffekt bør fastlægges af den enkelte vandforsyning for derved at tage højde for følsomheden af den aktuelle recipient samt

54 Bæredygtig udnyttelse af fosfor fra spildevand
selskabets egne miljømål, der kan være mere ambitiøse end udlederkravet. Den valgte værdi på 3 afspejler, at der for miljømålene tilsvarende er et udledekrav på 1,5 mg/l og at der ikke udledes til særlig følsom recipient.

Vægtningsfaktoren kan nuanceres så:
- der vælges en værdi > 3, hvis der udledes til særlig følsom recipient
- der vælges en værdi > 3, hvis vandselskabet har egne miljømål, der stiler efter lavere P-udledning end udlederkravet tillader
- der vælges en værdi < 3, hvis der ikke er krav til P udledning
- der vælges en værdi <3, hvis der udledes til en ikke følsom recipient

I Bilag 3 er beskrevet eksempler på, hvordan SPRi kan anvendes i praksis.
9. Operationel vejledning til benchmarking af fosforfjernelse fra spildevand

I det efterfølgende kapitel 10 vil udnyttelsen af fosforproduktet fra spildevandsrensningen blive særskilt behandlet.

9.1 Kendte teknologier til fosforfjernelse fra spildevand
De i dag kendte teknologier til fosforfjernelse fra spildevand omfatter alle en mekanisk fjernelse af fosfor på suspenderet form, dvs. fosfor indbygget i slam på forskellig kemisk/biologisk form. Dette kan være som hhv. primær slam, biologisk slam eller kemisk slam.

Foruden indbygningen af fosfor i slam er der, som nævnt i afsnit 2.2.3, mulighed for at etablere en intern genvinding af fosfor, hvor fosfor udfældes kemisk som struvit, der er mere tilgængelig end den mest anvendte praksis i dag, hvor der fældes med jern eller aluminium. Denne interne fosforførgivening giver struvit-kristaller, der kan udtages fra anlægget separat i mere eller mindre koncentreret form.

Den fosforfraktion, der ikke omdannes til suspenderet fosfor – den opløste fosforfraktion - vil ende i udlobet af renseanlægget.

Der kan findes yderligere information om teknologier til fjernelse af fosfor fra spildevand i bilag 1 samt i Miljøstyrelsens udgivelse af 2013, "Innovationspartnerskab for anvendelse af fosfor fra spildevand og spildevandsslam fra spildevandsforsyninger".
9.2 Miljømæssig benchmarking af teknologierne til fosforfjernelse fra spildevand

Den miljømæssige benchmarking af teknologierne til fosforfjernelse laves, jf. afsnit 8.1.1, ved beregning af SPRI-værdien. Denne vurdering kan summeres til følgende sammenhæng;

- Fosfor skal indbygges i spildevandsslammet for i det hele taget at være tilgængelig for genanvendelse som gødningsprodukt efterfølgende. Fosfor, der ender i udløbet fra renseanlægget, vil være tabt og kan ikke genvindes.

- Jo mere kemikalieforbruget til fosforfjernelse kan udfases, des højere fosforrecirkuleringseffektivitet opnås via SPRI, idet biotilgængeligheden af fosfor i slammet forbedres, når der ikke anvendes kemisk fældning (se evt. Tabel 11). Dette betinger, at der ikke sker et forøget tab af P til recipienten ved at udfase brugen af fældningskemikalier.

Disse forhold er indeholdt i SPRI-værdien og fosfortabet vægtes relativt højt, idet tabet af fosfor til recipienten vurderes som tabt for fosforkredsløbet til den danske landbrugsproduktion. I Bilag 3 er vist eksempler på beregning af SPRI værdien.

På Figur 27 ses et eksempel på beregning af SPRI værdien for forskellige teknologier til fosforfjernelse fra spildevand som funktion af udløbskoncentrationen af fosfor. Eksemplet tager udgangspunkt i vejledningens forud definerede anlægstype: Type 1: et 1 trins renseanlæg uden rådnetank.

Figuren illustrerer, hvordan udløbskoncentrationen af fosfor påvirker SPRI for den valgte strategi til fosforfjernelse. En strategi uden brug af fældningskemikalier kan alt afhængig af den afledte fosforkoncentration i udløbet således godt være mindre bæredygtig sammenlignet med en strategi med støttefældning (delvis Bio-P), idet udløbskoncentrationen herved holdes på et meget lavt niveau.

I eksemplet på Figur 27 vil en 100 % udfasning af kemikalieforbruget være den mest bæredygtige teknologi, såfremt udløbskoncentrationen kan holdes under ca. 1,0 mg TP/l. Dette ses på figurens
røde graf (SPRi for anlæg med 100 % Bio-P). Såfremt udlebskonzcentrationen stiger til over ca. 1,0 mg TP/l, vil en løsning med delvist Bio-P kombineret med kemisk støttefældning være den mest bæredygtige teknologikombination. Dette illustrerer, at tabet af fosfor fra kredsløbet vægtes højere end tilgængeligheden af fosforproduktet i slammet. Det er således vigtigt, at fosfor opsamles fra spildevandet for dernæst at kunne genanvendes som gødning.

En spildevandsrensning med ren kemisk fosforfjernelse vil i dette eksempel altid være ringest betragtet ud fra ressourceefektiviteten, idet biotilgængeligheden af den del af fosforen, der er kemisk fældet med jern eller aluminium er defineret som 0% i løbet af et år i denne vejledning. Det skal understreges, at slamm fra anlæg med kemisk fosforfældning naturligt indeholder biologisk bundet fosfor i bakterierne og dermed også indeholder en større fraktion af umiddelbart biotilgængeligt fosfor, der er organisk bundet.

Et stigende fosfortab til recipienten kan begrænses ved at etablere en tertiær rensning af suspenderet stof i udløbet fra renseanlægget. Dette gøres i praksis ved etablering af: Sandfiltre, mekaniske filtre eller membranfiltrering. Suspenderet stof indeholder normalt ca. 3-4 % fosfor og udgør en ikke uvæsentlig del af fosforfraktionen i udløbet fra et renseanlæg. På Figur 28 er effekten af en forbedret tertiær fjernelse af suspenderet stof afbildet.

Mange renseanlæg opnår uden tertiær rensning en gns. koncentration på 10-20 mg SS/l i udløbet. Med tertiær rensning ved filtring vil det gennemsnitlige niveau af suspenderet stof ligge omkring 5 mg/l. I begge tilfælde skal indholdet af opløst fosfor, PO4-P, lægges til for at få mængden af Total-P i udløbet.

Figur 28 Effekten af en forbedret tertiær fjernelse af suspenderet stof på udløbskonzcentrationen af fosfor. Antaget er 4 % P i SS.

Det kan aflæses af Figur 28, at man ved at reducere koncentrationen af suspenderet stof i udløbet med 10 mg SS/l, kan reducere udløbskonzcentrationen af suspendert fosfor fra ca. 0,8 til ca. 0,4 mg P/l.

Har anlægget i forvejen en fosforfjernelsesgrad på 85 %, eksempelvis opnået ved en rensning fra 8 mg P/l i råspildevandet til 1,2 mg P/l i det rensede spildevand, kan en tertiær rensning af suspendert stof fra f.eks. 15 til 5 mg SS/l øge fosforfjernelsesgraden til 90 %.
Et sådant tiltag ville med samme forudsætninger på landsplan, dvs. på den samlede danske spildevandsmængde, medføre, at der årligt kunne tilbageholdes ca. 268 t ekstra fosfor, der dernæst kan genanvendes fra slammet. En mængde svarende til ca. 0,5 % af det samlede fosforforbrug i det danske landbrug.

9.2.1 Størrelsesorden/område for SPRi-værdier
Størrelsesordenen for SPRi værdien ligger for de danske renseanlæg og deres opbygningsprincipper på et sted mellem 50-90 %. Dette betyder, at mellem 50 og 90 % af råspildevandets fosforindhold er tilbageholdt og umiddelbart tilgængeligt for efterfølgende genanvendelse i landbruget.

I den lave ende af benchmarkingenen af teknologier til fosforfjernelse finder man renseanlæg med fuld kemisk fosforfjernelse, hvor SPRi typisk kan holdes over 50 % pga. af det lave fosfortab til recipienten samt den biologiske indbygning af fosfor i slammet via heterotrof bakterievækst. Anlæg udformet med 2 trins drift (Type 3), med meget kraftig reduktion af organisk stof i primærdelen, kan principielt godt have en SPRi værdi < 50 %, da en mindre andel af fosfor indbygges i bakterier med denne anlægsophyning, da den biologiske slamproduktion er væsentligt nedsat. For denne anlægstype vil det være fordelagtigt at supplere med struvitudfældning fra rejektvandet, da de nødvendige kemiske støttefældninger til fosfor herved resulterer i et mere biotilgængeligt fosforprodukt.

For at komme op i den høje del af skalaen for SPRi kræves i første omgang en etablering af Bio-P, hvor 100 % Bio-P fjernelse af fosfor naturligvis er det ønskelige. Renseanlæg med rådnetanke (Type 2 og 3) kan som regel ikke opnå fuld Bio-P, da egenbelastningen af fosfor via rejektvandet fra slutafvandingen er så højt, at en del fosfor må fjernes med kemisk støttefældning.

Fuld Bio-P kan medføre et forøget fosfortab til recipienten, såfremt spildevandssammensætningen er som standard husholdningsspildevand, hvilket giver nedadgående SPRi værdi. En tertiær renning af suspenderet fosfor (ved filtrering) kan kompensere for dette tab og vil typisk være nødvendigt for at nå op på en SPRi værdi > 90-95 %.

Ovenstående betragtninger er skitseret på Figur 29.

Figur 29 Miljømæssig benchmarking af teknologier til fosforfjernelse. SPRi området for forskellige teknologier og teknologikombinationer til fosforfjernelse og betydningen for SPRi værdien.

80 Da en del anlæg har skarpede fosforkrav, vil udledningen ofte være lavere og eksemplet skal bruges som indikation af, hvor stor/lille effekt en sådan indsats kan have i den store sammenhæng for fosforkredsløbet
81 Når bakterier omsætter organiske stof og vokser, indbygges fosfor som en naturlig del af bakterier biomasse.
9.3 **Anbefaling ud fra den miljømæssige benchmarking af fosforfjernelse fra spildevand**

Nedenstående bedømmes de teknologiske muligheder til fosforfjernelse fra spildevandet for vejledningens tre typer af renseanlæg (Type 1, 2 og 3). Bedømmelsen foretages efter SPRi værdien og de præsenteres efter en skala, hvor A+++ er at betragte som meget god og D er en mindre god løsning, når det tilsigtet at have mest muligt af spildevandets fosforindhold tilgængeligt til udnyttelse i landbruget i løbet af et år efter udsprædning. De tre anlægstyper præsenteres særskilt og beregningerne til baggrund for vurderingen ses i bilag 3.

9.3.1 **Type 1: Mindre dansk renseanlæg (20.000 PE)**

For anlægstypen: Type 1 (1 trins anlæg uden rådnetank) vil en løsning med Bio-P kombineret med en onlinestyring og en tertiær rensning af suspenderet stof give den højeste SPRi værdi. SPRi kan her komme op på 90-95 %. Løsningen forudsetter, dels en optimeret Bio-P proces, der kan køre uden kemisk støttefældning, dels et udlederkrav til fosfor på ≥ 1,0 mg/l, da det med normalt sammensat husholdningsspildevand ikke er muligt at rense kontinuerligt til < 1 mg/l uden brug af støttefældning.

Hvis Bio-P processen ikke kan holde fosforkoncentrationen i udløbet < 1,0 mg/l, vil den mest optimale løsning mht. fosforudnyttelse bestå af Bio-P, suppleret med kemisk støttefældning og tertiær rensning af suspenderet stof.

En løsning, hvor der kun anvendes kemisk fældning, vil give en SPRi værdi på 40-50 %.

Bedømmelsen af fosforfjernelsesteknologierne – enkeltvis og i kombinationen – kan for vejledningens renseanlæg Type 1 opsummeres til:

- **A+++** Bio-P + onlinestyring + tertiær rensning
- **A++** Delvis Bio-P + onlinestyring + tertiær rensning
- **A+** Bio-P + onlinestyring (< ca. 1,0 mg P/l i udløb)
- **A** Delvis Bio-P + onlinestyring (> ca. 1,0 mg P/l i udløb)
- **B+** Delvis Bio-P
- **B** Bio-P
- **C** Kemisk P fældning + onlinestyring + tertiær rensning
- **C+** Kemisk P fældning + onlinestyring
- **D** Kemisk P fældning

9.3.2 **Type 2 og 3: Mellemstort dansk renseanlæg (100.000 PE) med rådnetank**

For anlægstyperne: Type 2 og 3 (1 eller 2 trins anlæg med rådnetank) vurderes en løsning med Bio-P kombineret med onlinestyring og en tertiær rensning af suspenderet stof ikke at være tilstrækkelig til at sikre tilstrækkelige lave udløbskonzentrationer af fosfor < 1 mg P/l. Dette svarer til, hvad der blev vurderet som den bedste teknologikombination for Type 1 anlæggen. Når dette ikke giver den højeste SPRi værdi for Type 2 og 3 anlæggen, skyldes det den interne egenbelastning af fosfor via rejektvandet fra slutafvandingen af det udråndede slam. For at opnå den højeste SPRi værdi, kan der etableres en intern fosforgenvindingsproces, der tager fosfor ud fra rejektvandet som struvit (og dermed reducerer egenbelastningen). SPRi værdien kan herefter komme op på 90-95 %.

Løsningen forudsetter en optimeret Bio-P proces, der kan køre uden yderligere støttefældning end den nævnte struvitudfældningsproces.

Da dette uden kemisk støttefældning oftest vil resultere i udløbskonzentrationer >1 mg P/l
Hvis Bio-P processen ikke kan holde fosforkoncentrationen i udløbet < 1,0 mg/l vil det give den højeste SPRi værdi at vælge en løsning bestående af: delvis Bio-P kombineret med genvinding af fosfor i rejetvandet samt tertiar rensning af suspenderet stof.

Den laveste SPRi værdi opnås med en løsning, hvor kun kemisk fældning med jern eller aluminium anvendes. Her ligger SPRi på 30-40 %.

Bedømmelse af fosforfjerneløsteknologierne – enkeltvis og i kombinationen – kan for vejledningens renseanlæg Type 2 og 3 opsummeres til:

A** ** Bio-P + onlinestyring + tertiar rensning + intern genvinding af fosfor
A*** Bio-P + onlinestyring + intern genvinding af fosfor
A Delvis Bio-P + onlinestyring + tertiar rensning + intern genvinding af fosfor
A Delvis Bio-P + onlinestyring + tertiar rensning
B Delvis Bio-P
C* Kemisk P fældning + onlinestyring + tertiar rensning
C Kemisk P fældning + onlinestyring
D Kemisk P fældning
D Bio-P

9.4 Driftsøkonomisk bedømmelse af teknologierne til fosforfjernelse fra spildevand

I denne operationelle del af vejledningen er den driftsøkonomiske bedømmelse af de forskellige teknologier til fosforfjernelse fra spildevand defineret i forhold til:

- Behovet for nye anlægsinvesteringer i relation til fosforfjernelse
- Direkte og afledte driftsomkostninger
- Økonomisk risikovurdering

Alle beregninger tager udgangspunkt i anlægstyperne Type 1, 2 og 3 og medtager bl.a. de driftsudgifter der er relateret til fosforfjernelsen, herunder indkøb af fældningskemikalier, elforbrug til slamafvanding, polymerforbrug til slamafvanding og desuden slutanbringelse af slam. Der henvises til bilag 4 for gennemgang af beregningerne.

Følgende enhedspriser (ekskl. moms) er anvendt:

- El: 0,90 DKK/kWh
- Polymer: 25,00 DKK/kg
- Fældningskemikalie: 0,80 DKK/kg
- Slamhåndtering: 250,00 DKK/t (landbrug ekskl. lagring)

Udgifter til grønne afgifter på udledt mængde fosfor til recipienten er ikke medtaget i beregningen af driftsudgifter, da disse skal afregnes 1:1 til forbruger og dermed ikke indgår i vandselskabets prisloftsberøring. De grønne afgifter indgår derfor særskilt i vurderingen. Her er anvendt en afgiftssats på 110 DKK/kg P.

Udgifter til drift og vedligeholdelse af en fosfat onlinemåler er sat til ca. DKK 75.000,- ekskl. moms, og indeholder udgift til reagens, ekstern service, reservedele og mandtimebehov.

Da dette uden kemisk støttefældning oftest vil resultere i udløbskoncentrationer >1 mg P/l
9.4.1 Økonomiske vurderinger for renseanlægstypen: Type 1

I Tabel 12 præsenteres resultaterne af de økonomiske vurderinger for anlæg tilsvarende opbygningen og belastningen af Type 1, med implementering af de teknologier, der er medtaget i denne vejledning. Resultaterne for de forskellige teknologier diskuteres og vurderes herefter.

Tabel 12 Økonomisk vurdering af fosforrelaterede investeringer på 1 trin renseanlæg uden rådnetank (Type 1). Vurderingerne er lavet ud fra generelle erfaringstal og kan således betragtes vejledende for de angivne anlægstyper med spildsvand sammensat som standard husholdningsspildsvand.

<table>
<thead>
<tr>
<th>Type 1: Mindre dansk renseanlæg (20.000 PE)</th>
<th>Onlinestyring af kemikaliedosering</th>
<th>Avanceret Bio-P fjernelse</th>
<th>Tertiær rensning af SS</th>
<th>Intern P-genvinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investering</td>
<td>Ca. 0,30 mio. DKK</td>
<td>Ca. 1,00 -2,50 mio. DKK</td>
<td>Ca. 5,59 mio. DKK</td>
<td></td>
</tr>
<tr>
<td>Driftsbesparelse</td>
<td>Ca. 0,00 mio. DKK/år</td>
<td>Ca. 0,18-0,45 mio. DKK/år</td>
<td>Ca. (-0,10) mio. DKK/år</td>
<td></td>
</tr>
<tr>
<td>Simpel tilbagebetalingstid</td>
<td>Uendelig</td>
<td>2 – 14 år</td>
<td>Uendelig</td>
<td></td>
</tr>
<tr>
<td>Gronne afgifter</td>
<td>3 – 6.000 DKK/år</td>
<td>10 – 400.000 DKK/år</td>
<td>(-60 -300.000)mio. DKK/år</td>
<td></td>
</tr>
</tbody>
</table>

1 Øgede udgifter til grønne afgifter, der afholdes 1:1 til forbrugeren
2 Reducerede udgifter til grønne afgifter, der afregnes 1:1 til forbrugeren

Etablering af onlinestyring af kemikaliedosering

En metode til at styre og reducere mængden af kemisk bundet fosfor er ved etablering af onlinestyring af kemikaliedoseringen. Tabel 12 viser de økonomiske aspekter ved etablering af en onlinestyring af den kemiske fosforafledning på renseanlæg uden Bio-P teknologien installeret.

Besparelsens på fældningskemikalier og håndtering af kemisk slam vil, selv om der for onlinestyringen er antaget en kraftig overdosering (20-30 % overdosering), gå lige op med de udgifter, der findes på drift- og vedligeholdelse af en fosfor onlinemåler. Investeringen på en onlinestyring, der er prissat til ca. 0,3 mio. DKK, vil derfor ikke, med den anvendte slamdisponeringspris på 250 DKK/t, være økonomisk rentabel. En højere slamdisponeringspris vil forbedre rentabiliteten af investeringen væsentligt, og vurderingerne for de mindre anlæg af Type 1 bør således gentages ved en øget slamdisponeringspris.

Etablering af avanceret Bio-P fjernelse

For mindre renseanlæg er en investering i Bio-P teknologien ikke nødvendigvis økonomisk attraktivt med den eksisterende værdiætning af fosforproduktet som slam. Tabel 12, der viser en potentiell investering på 1 – 2,5 mio. DKK og en driftsbesparelse på ca. 0,18 – 0,45 mio. DKK/år. Dette skyldes bl.a. de anlægs- og driftsudgifter, der er tilknyttet en formåler.

For vejledningens Type 1 anlæg kan den simple tilbagebetalingstid relateres til anlægsbelastningen med følgende resultat:

- På anlæg belastet med 10.000 PE: Tilbagebetalingstiden kan variere ml. 15-40 år
- På anlæg belastet med 15.000 PE: Tilbagebetalingstiden kan variere ml. 10-20 år
• På anlæg belastet med 20.000 PE: Tilbagebetalingstiden kan variere ml. 5-15 år

Af Figur 30 fremgår det, at renseanlægget skal være belastet > ca. 5.000 PE for at opnå en netto driftingbesparelse ved etablering af Bio-P på anlægget. Ligger belastningen under 5.000 PE, vil netto driftingbesparelsen være negativ, bl.a. pga. udgifterne til drift og vedligeholdelse af fosfat onlinemåleren, der udgør ca. 75.000 DKK/år.

![Diagram](image)

Figur 30 Netto driftingbesparelser i DKK/år ved etablering af delvis Bio-P med kemisk støttefældning (molførhold på ca. 1 i forhold til fosfor i indløb) på mindre 1 trins renseanlæg uden rådnetank (Type 1). Priser er ekskl. moms.

Driftsøkonomisk set er det en fordel, at 1 trins renseanlæg uden rådnetank (Type 1) går imod etablering af en drift med ren Bio-P, så snart renseanlægget er belastet med mere end ca. 5.000 PE. Herefter afgør størrelsen af anlægsbelastningen og anlæggets aktuelle udvidelsesmuligheder, hvilken tilbagebetalingstid der kan forventes.

Miljømæssigt kan en drift med ren Bio-P give den største biotilgængelighed af fosfor i slammef, jf. vedledningens hypotese om tilgængelighed (se evt. Figur 16). Men den samlede fosforverdi ved (beregnet ved SPRi) kan godt være dårligere end sammenlignet med en delvis Bio-P proces suppleret med kemisk støttefældning. Helt afgørende er det, hvor meget fosfortabet til recipienten stiger med, hvis der anvendes ren bio-P teknologi. Der er i denne vejledning fundet en grænse ved ca. 1,0 mg P/l – jo tættere fosforkoncentrationen i udlobet er ved 1,0 mg P/l des større risiko er det for, at fosforfjernelse med en ren Bio-P proces, giver en samlet ringere løsning end delvis bio-p suppleret med kemisk støttefældning, vurderet ud fra SPRi-værdien.
Etablering af tertiær renning af SS

Det fremgår af Tabel 12, at en etablering af tertiær renning ud fra en økonomisk betragtning er en mindre god investering, hvis vandselskabet ikke bedømmes på de grønne afgifter, da tiltaget, set i forhold til prisloftet, er forbundet med øgede driftsudgifter.

Miljømæssigt er en tertiær renning af suspenderet stof en god idé, idet tabet af fosfor fra kredsløbet bliver reduceret.

For at illustrere potentialet ved dette tiltag opstilles følgende betragtninger:

De mindre danske renseanlæg (< 20.000 PE) behandler ca. 23 % af den samlede spildevandsmængde, dvs. ca. 154 mio. m³/år. Hvis det antages, at denne fraktion af danske renseanlæg gik fra at have ingen til at have fuld tertiær renning (grov antagelse) ville den gennemsnitlige udledning af fosfor fra disse renseanlæg blive reduceret med ca. 61 t P/år. Dette svarer til ca. 1 % af den tillede fosformængde.

Etablering af intern fosforgenvinding

I Tabel 12 er en løsning med intern fosforgenvinding ikke medtaget i vurderingen, da denne løsning i vejledningen er forudsat slambehandling i en rådnetank jf. afsnit 2.2.3. Mindre anlæg, kan overveje muligheden for at udråde slammet centralt på større anlæg med overskudskapacitet. Dette vil give både energiudnyttelse af slammets samt gøre det muligt at genvinde det frigivne fosfor til rejektvandet fra udrådningen, såfremt denne strategi er den foretrukne for vandselskabet.

9.4.2 Driftsøkonomiske vurderinger for renseanlægstype: Type 2 og 3

I følgende Tabel 13 præsenteres resultaterne af de økonomiske vurderinger for anlæg med tilsvarende opbygning og belastning som: Type 2 og 3 i denne vejledning. Resultaterne for de forskellige teknologier diskuterer og vurderes heretter. Der henvises til bilag 4 for gennemgang af beregningerne.

Tabel 13: Økonomisk vurdering af fosforrelaterede investeringer på 2 trins renseanlæg med rådnetank, hhv. med og uden forklaringstank (Type 2 og 3). Vurderingerne er lavet ud fra generelle erfaringstal og kan således betragtes vejledende for de angivne anlægstyper med spildevand sammensat som standard husholdningspildevand.

<table>
<thead>
<tr>
<th>Type 2: Mellemstort dansk renseanlæg med rådnetank (100.000 PE)</th>
<th>Type 3: Mellemstort dansk renseanlæg med forklaring og rådnetank (100.000 PE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onlinestyring af kemikalie dosering</td>
<td>Avanceret Bio-P fjernelse</td>
</tr>
<tr>
<td>Investering</td>
<td>Ca. 0,7 mio. DKK</td>
</tr>
<tr>
<td>Driftsbesperlser</td>
<td>Ca. 0,2-0,3 mio. DKK/år</td>
</tr>
<tr>
<td>Simpel tilbagebetalingstid</td>
<td>< 4 år</td>
</tr>
<tr>
<td>Gørnne afgifter</td>
<td>15 – 30.000 DKK/år</td>
</tr>
</tbody>
</table>

1. Øgede udgifter til grønne afgifter, der afholdes 1:1 til forbrugeren
2. Reducerede udgifter til grønne afgifter, der afregnes 1:1 til forbrugeren
3. Beregnet med udgangspunkt i et renseanlæg uden Bio-P
Etablering af onlinestyring af kemikaliedosering

En metode til at styre og reducere mængden af kemisk bundet fosfor er ved etablering af onlinestyring af kemikaliedoseringen. Tabel 13 viser de økonomiske aspekter ved etablering af en onlinestyring af den kemiske fosforfældning på renseanlæg uden Bio-P teknologien installeret.

Besparelser på fældningskemikalier og håndtering af kemisk slam vil, selvom der før onlinestyringen ikke overdoseser kraftigt (her forudsat 5-10 % overdosering), ofte være tilstrækkelig til at opnå en simpel tilbagebetalingstid på investeringen, der er attraktiv (< 4 år).

Etablering af avanceret Bio-P fjernelse

Hvad angår teknologivalg til fosforfjernelse fra spildevandet på større renseanlæg er budskabet relativt enkelt; udfasning af kemikalieforbruget og etablering af mere avanceret Bio-P på renseanlæggene. Den simple tilbagebetalingstid ligger på under 3 år.

Hvis det vælges at køre mod ren Bio-P, vil der være en vis risiko forbundet med valget, da udgifter til gронne afgifter kan blive store set i forhold til driftsbesparelserne. Dette gælder for standard husspildevand, da det med denne sammensætning vil være vanskeligt at opnå <1 mg TP/l i udløbet, når der er en intern fosforbelastning fra rådnetanken.

Etablering af tertiar rensning af SS

Etablering af tertiar rensning vurderes, tilsvarende som for de mindre renseanlæg, ikke som en økonomisk bæredygtig investering, hvis vandselskabet ikke bedømmes på reduktion af de gронne afgifter. Tiltaget er i forhold til beregning af prisloftet forbundet med øgede driftsudgifter. Tilsvarende som for de mindre renseanlæg vurderes de miljømæssige perspektiver at være store, i form af en reduceret fosforbelastning af vandmiljøet, samt en større mængde fosfor til efterfølgende genanvendelse.

Etablering af intern fosforgenvinding

Fosforgenvinding vurderes at være en fornuftig økonomisk investering på de renseanlæg, hvor der er meget fosfor i rejektvandet (100-300 mg P/l), og hvor der anvendes delvis Bio-P fjernelse suppleret med kemisk støttefældning. En stor del af driftsbesparelserne skal hentes på de afledte udgifter, der er omfattet af genvindingsprocessens potentielle til at øge Bio-P andelen, dvs. kemikalieindkøb og mindre slamproduktion. Jo mere slamdisponeringen koster, des større besparelser kan der opnås.

En finansiering af anlægsinvesteringerne i denne teknologi udelukkende baseret på en indtjening ved salg af fosforslutproduktet (struvit), vil på nuværende tidspunkt, med de nuværende markedspriser på fosfor, ikke i sig selv give en attraktiv tilbagebetalingstid for løsningen ved den givne anlægsbelastning. Vandselskaberne anbefales at få lavet en individuel vurdering af fosforpotentialiet og de relaterede økonomiske aspekter indeholdt heri, da de afledte positive effekter med teknologien kan være medvirkende til at opnå en rentabel investering for denne løsning.
9.5 Samlet vejledning til fosforfjernelse med fokus på høj biotilgængelighed for fosforproduktet samt økonomisk fordelagtighed for forsyningerne

Vurderingerne i dette kapitel er baseret på vejledningens definition af SPRI værdien, samt de anlægsinvesteringer og driftsomkostninger, der kan forventes ud fra standard ophyldningen af de tre renseanlægstyper, der er medtaget i denne vejledning.

En investering i en effektiv teknologi til fosforfjernelse på renseanlægget, der målrettes mod en høj biotilgængelighed i slutproduktet, afhænger i særlig skarpe af renseanlæggets belastningsgrundlag – både i forhold til mængder samt i forhold til spildevandssammensætning.

Helt overordnet kan det konkluderes, at de teknologivalg, der udfaser brugen af jern og aluminium på renseanlæggene giver en høj SPRI værdi og derfor bliver vurderet som bedst i denne vejledning, hvor biotilgængeligheden af fosforproduktet fra renseanlægget er i fokus. Denne konklusion gælder, så længe teknologivalget giver den ønskede kvalitet i det rensede spildevand mht. fosfor.

Udfasningen af kemikaliefbruget må således ikke resultere i en forringet udløbskvalitet.

For renseanlæg belastet med mere end 5.000 PE, vil investeringer i teknologier til fosforfjernelse, der udfaser brugen af kemisk fældning med jern og aluminium, typisk være driftsøkonomisk attraktive. Jo tættere anlægsbelastningen er på de 5.000 PE, des mere usikkert bliver de driftsøkonomiske besparelser. Fordelagtigheden ved investeringen afhænger i særlig skarpe af de eksisterende fysiske muligheder på renseanlægget, og hvilke teknologier, der vælges.

En investering i fosforgenvinding fra rejektvand i form af struvit kan anbefales som en mulig teknologi til udfasning af jern og aluminium for de større renseanlæg, hvor slammeforbehandlings særligt på rådnetanke. Denne investerings økonomiske fordelagtighed afhænger af ligesom for de øvrige teknologier af de aktuelle forhold på anlægget, men det vurderes, at fordelagtigheden vil være stigende med en stigende markedspris på råfosfat.
10. Operationel vejledning til genanvendelse af fosfor fra spildevand

Der indgår mange relevante forhold, der skal vægtes, når vandselskaberne skal vurdere bæredygtigheden af den valgte strategi til genanvendelse af fosfor fra spildevandet. Det er i denne operationelle del af vejledningen, ligesom for den sammenlignende LCA i kap. 7, valgt at vægte fosfor som en begrænset ressource højest, hvorfor den miljømæssige benchmarking også her vurderes ud fra, hvor meget af spildevandets fosfor, der tilbageføres til landbruget og dermed substituerer kommercielle fosforprodukter eller råfosfat, der ellers skulle være importeret til Danmark som råvare. Ligesom for den sammenlignende LCA, betragtes fosfor alene som genanvendt, hvis det tilføres jorden på en umiddelbar biotilgængelig form, vurderet med en tidshorisont på et år: Dette er i denne vejledning fortolket som fosfor, der ikke er hårdt bundet til jern eller aluminium.

I dette kapitel findes en operationel vejledning til, hvorledes en genanvendelse af fosfor fra spildevandet kan gennemføres i praksis på de danske renseanlæg fordelt på vejledningens tre standard typer af renseanlæg. Genanvendelsen tager vel at mærke afsæt i det fosforprodukt, der kommer af den teknologi til fosforfjernelse fra spildevandet, der er valgt på renseanlægget og er beskrevet i kapitel 9.

Når der skal udarbejdes strategi for genanvendelse af fosfor fra spildevand, er strategien i væsentlig grad sammenfaldende med vandselskabernes strategiplanlægning i forbindelse med håndtering og slutdisponering af spildevandsødelser. Vejledningen har således fokus på, at slamhåndteringen nødvendigvis også bør tilgodese en miljømæssig og økonomisk hæredygtig håndtering af fosfor.

10.1 Kendte teknologier til genanvendelse af fosfor fra spildevand

Ifølge affaldshierarkiet er materialenytiggørelse af spildevandsødelser på landbrugssjord, i overensstemmelse med Slambekendtgørelsen, den højest placerede slutdisponeringsstrategi for forsyningerne. Forsyningerne bør således vælge denne strategi, såfremt dette er muligt.

I det videre arbejde tages der udgangspunkt i genanvendelse af fosfor ud fra vurderingen om biotilgængeligheden og dermed den mulige substitution af råstoffer. Selve slamhåndteringen tilpasses til de undersøgte strategier for fosforanvendelsen.

Der findes i dag følgende produkter eller mellemprodukter fra spildevandsrensning, der indeholder en væsentlig mængde fosfor og hvorfra fosfor kan genanvendes;

- Slamvæsken/rejektvandet fra udrådnet slam
- Spildevandsødelser (ubehandlet, udrådnet, komposteret, mineraliseret eller tørret)
- Slamaske (fra slamforbrænding eller termisk forgasning af tørret slam)
Udnyttelsen af fosfor fra disse tre produkter/mellemprodukter kan udføres på forskellig vis; enten ved direkte genanvendelse eller indirekte ved ekstraktionsprocesser med efterfølgende genanvendelse af forædlede fosforprodukter.

Følgende teknologier med mulighed for fosforogenanvendelse er vurderet i denne operationelle del af vejledningen:

Teknologierne 1-3 er kendetegnet ved i varierende omfang at kunne substituere et kommercielt fosforprodukt, der ellers skulle importeres til Danmark.

Strategier for slutdisponering af slam, der ikke opfylder betingelsen for fosforforsubstitution, og som derfor ikke er medtaget i nærværende vejledning, kan opsommeres til:

- Medforbrænding, hvor slammet forbrændes med andet affald, eksempelvis affaldsforbrænding
- Forbrænding med nyttiggørelse af slamaske i et ikke fosforrelateret produkt
- Deponering

I Tabel 14 ses den potentielle fosforforsubstitution ved brug af det fosfor, der er indbygget i ét af de tre typer af slutprodukter, der er vurderet i denne vejledning: Struvit, slam eller ekstraheret fra slamaske. Antagelserne omkring den potentielle fosforforsubstitution er lavet ud fra den operationelle vejlednings hypotese omkring biotilgængeligheden af de forskellige fosforprodukter fra spildevandsrensningen, vist på Figur 16 og i Tabel 11.

De konkrete beregninger af substitutionspotentialet fra den gennemførte LCA ses i bilag 2.

Tabel 14 Bedømmelse af den potentielle fosfor substitution. Potentialet angivet som % af det fosfor, der er bundet i slutproduktet.

<table>
<thead>
<tr>
<th>Pkt.</th>
<th>Fosforprodukt fra spildevandsrensningen</th>
<th>Substitutionspotentiale for fosforproduktet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Struvit eller tilsvarende kemisk udfældning</td>
<td>100 %</td>
</tr>
<tr>
<td>2.</td>
<td>Spildevandsslam</td>
<td>30-100 %</td>
</tr>
<tr>
<td>3.</td>
<td>Vandopløseligt fosfor produceret fra slamaske</td>
<td>95 %</td>
</tr>
</tbody>
</table>

Til Tabel 14 skal bemærkes, at selvom struvit har et substitutionspotentiale på 100 % kan langtfra alt fosfor i spildevandet udtages som struvit. Med udgangspunkt i anlægstopologie: Type 2 og 3 kan ca. 30 % af fosforen i spildevandet udtages som struvit (vurderet i den sammenlignende LCA som anlægget T3b+s). Resten af spildevandets fosforindhold vil stadig befinde sig i slammet og skal således udnyttes ved tabellens pkt. 2 (spildevandsslam) eller pkt. 3 (slamaske).

Variationerne i fosfor substitutedenspotentialet for spildevandsslam i Tabel 14, tilbageføres til mængden af fosfor i spildevandet, der er fjernet ved brug af føldningshemikalier. Her gælder
antagelsen, at det jern- eller aluminium bundne fosfor ikke bidrager til den biotilgængelige pulje af fosfor i jorden.

For nærmere gennemgang af slutprodukter og teknologier til produktion af fosforprodukter fra spildevand, henvises til bilag 1 og Miljøstyrelsens udgivelse af 2013, "Innovationspartnerskab for anvendelse af fosfor fra spildevand og spildevandsslam fra spildevandsforsyninger".

10.2 Benchmarking af fosforudnyttelse fra spildevand

10.2.1 Udvikling af fosfor via direkte udsprængning af slam på landbrugsjord

Fosforudnyttelse via udsprængning af slam på landbrugsjord kan enten ske ved direkte udsprængning eller ved udsprængning efter bioforsyning, en mellembehandling i et tørringsanlæg, komposteringsanlæg eller slamineraliseringsanlæg. Kompostering har en reducerende effekt på slammets indhold af organiske miljøfremmede stoffer.

Substitutionspotentialet for fosfor i slammets kan variere mellem 30-100 % og afhænger af, hvor meget fosfor, der er fældet kemisk og hvor meget, der er biologisk bundet i slammets biomasse. Den laveste tilgængelighed af fosfor i spildevandsslammets på ca. 30 %, opnås fra en trins anlæg med rådnetank (Type 2), da det på dette anlæg er nødvendigt med en kemisk støttefældning for at opnå en acceptabel afløbskvalitet. Det højeste substitutionspotentiale opnås generelt, hvis det lykkedes at køre fosforfjernelsen uden brug af jern eller aluminium som fældningskemikalier.

10.2.1.2 Produktkvalitet

Slam kan som før nævnt anvendes på landbrugsjord, såfremt kvaliteten lever op til kravværdierne for tungmetaller og miljøfremmede stoffer som er nævnt i slambekendtgørelsen. Sammenlignet med mineralisk handelsgodning er tørstofkvaliteten af det danske spildevandsslam bedre, hvad angår indholdet af cadmium og nikkel; slammets indhold af kviksølv og bly er generelt højere, end hvad man finder i handelsgodning (jf. Figur 7), men slammet overholder de gældende kravværdier.

10.2.1.3 Øvrige parametre der ikke indgår i denne benchmarking

Eneste energikostninger forbundet med denne strategi for genanvendelse af spildevandsslam omfatter transport og håndtering af slammet.

10.2.2 Udvikling af fosfor via ekstrahering fra slamaske

Udviklingen af fosfor fra slamaske er her eksemplificeret ved NORD’s udviklingsprocesser, hvor der jf. "Innovationspartnerskab for anvendelse af fosfor fra spildevand og spildevandsslam fra spildevandsforsyninger" (MST, 2013), har været arbejdet med 3 forskellige processer til produktion af letoploseligt fosfor til brug i gødningsindustrien. NORD har i denne projekteriode stoppet alle udviklingsaktiviteter, men de fundne nøgletal gengives her for sammenligningens skyld. En del af de aktuelle udviklingsaktiviteter fra NORD forsættes i andet regi.

Under den kemiske ekstraktion af fosfor fra slamaske vil mellem 5-40 % af fosfor gå tabt – alt efter: kvaliteten af asken, ekstraktionsmiddel, reaktionstid og vask af restprodukt. De resterende 60-95 % af fosforen ender i fosforproduktet med en tilgængelighed, der er afhængig af, hvordan fosfor som udgangspunkt er bundet i spildevandsslammets og derfor er direkte korreleret til teknologien til
fosforfjernelse anvendt på renseanlæggene. Et stort indhold af jern og aluminiumbundet fosfor, specielt aluminium, kan medføre, at den vandopløselige del falder helt ned til 25%. Kvaliteten af fosfor i restproduktet efter ekstraheringen vil potentielt have en tilgængelighed, der kan sammenlignes med struvit. Den samlede genanvendelse af fosfor fra slamaenlæn, dels via letopløselig fosfor, dels som lettilgængeligt fosfor i restproduktet vurderes ikke at overstige 95%.

Det vælges derfor i denne vejledning at bedømme slamas teknologien til at have et maksimalt substitutionspotentiale på 95%, der er opnået med en nyudviklet proces af NORD.

10.2.2.1 Produktkvalitet
Fosforproduktet indeholder 100% vandopløseligt fosfor. Urenheder i form af jern, calcium, aluminium og tungmetaller vil blive fjernet under fosforekstraheringsprocesserne.

10.2.2.2 Øvrige parametre der ikke indgår i bedømmelsen
Processerne fra NORDs udviklingsarbejde til genvinding af fosfor fra slamaenlæn er i sig selv ikke energikrævende. Til gengæld kræves en form for inddampning eller tørring af fosforproduktet, som er energikrævende. Der foreligger ingen kendskab til det eksakte energiforbrug, men nettoenergiebehovet kan reduceres, hvis der forefindes en tilgængelig varmekilde. Dette kan eksempelvis være overskudsvarme fra slamtørring eller slamforbrænding.

10.2.3 Genanvendelse af fosfor via struvitudfældning i kombination med anden slutanvendelse af restslammet
Kvaliteten af fosfor genvundet som struvit internt på renseanlægget afhænger i høj grad af struvitproduktets renhed og ensartethed i forhold til form og størrelse. En høj grad af ensartethed samt en afpasset størrelse af struvit produktet i forhold til godningsformålet vil medføre et mindre spild under gødningen og derved sikre en høj grad af substituering af fosfor fra handelsgødning.

Det vælges i denne vejledning at bedømme fosfor, genvundet som struvit internt på renseanlægget, til at have et substitutionspotentiale på 100%. Eventuelt tab i forbindelse med dårlig udnyttelse efter udbringning på landbrugsjord er ikke medtaget i bedømmelsen. Teknologien begrenser sig som udgangspunkt til at kunne udvinde op til 30 % af råspildevandets fosforindhold, hvorfor den nødvendigvis skal kombineres med en metode til slutanvendelse af slam, der forøger indeholder størstedelen af spildevandets fosforindhold.

Strategien vurderes at være særdeles sårbar overfor brug af fældningskemikalier til fosforfjernelse fra spildevandet, da en sådan tilsetning vil reducere fosfortilgængeligheden – både for den interne fosforgenvinding, men også for den efterfølgende genanvendelse af det fosfor, der er bundet i restslammet.

Strategien er desuden følsom overfor spildevandets indhold af tungmetaller og miljøfremmede stoffer. I kraft af at en del af fosforet som en separat produkt, vil koncentrationen af de forureninger, der måles i forhold til slammets fosforindhold stige. Det kan således blive problematisk at overholde kravværdierne i slambevælkgendtgørelsen, hvis der ikke er fokus på kildekontrol, og der tildes uønskede stoffet til kloaksystemet, der forringer slammets kvalitet.
10.2.3.1 **Produktkvalitet**

Der kan være op til 100 % uorganisk struvit, der kan markedsføres og sælges som færdigt og veldefineret gødningsprodukt. Struvit indeholder 28 % P; 5 % N; 10 % Mg og 0 % K (5-28-0 + 10 % Mg). Indholdet af tungmetaller er lavt (jf. bilag 1). Miljøfremmede stoffer er ikke sporbare.

Frigivelsen af N og P fra struvit er langsom, og udnyttelsen af fosfor er vist at være højere end fra konventionel handelsgodning. Produktet kan bruges som kunstgødning og er velegnet til langsamt voksende afgroder og planter, der har brug for en kraftig rodvækst. Magnesiumindholdet i struvit medfører, at grønne planter bliver endnu grønere.

10.2.3.2 **Øvrige parametre der ikke indgår i bedømmelsen**

Fosforgenvinding fra rejektvand er tilknyttet et relativt lavt brutto energiforbrug på ca. 0,5-2,0 kWh/kg P (ved 28 % P i struvit). Energiforbruget vil dog netto være lavere, da processen reducerer energiforbruget til kvælstoffjernelse i renseanlæggenes biologiske behandlingsdel, idet der udfældes kvælstof fra rejektvandet ved struvitdannelsen.

Struvitudfældningsprocessen er herudover tilknyttet et lavt kemikalieforbrug i form af magnesium (der evt. kan substitueres af havvand) og et NaOH forbrug til en mindre pH justering fra pH 6,5-7,0 til et svagt basisk område.

10.2.4 **Samlet vurdering af metoder til udnyttelse af fosfor fra spildevandsslam**

Tilgængeligheden af fosfor i spildevandsslammet, der afhænger af de anvendte teknologier til fosforfjernelse på renseanlægget, har afgørende betydning for hvilken af teknologierne til genanvendelse af fosfor fra spildevand og spildevandsslam, der er den mest effektive i denne benchmarking.

Nedenstående ses den operationelle vejledningsressourceeffektive prioritering af udnyttelsen af fosfor. Tallene i parentes angiver den estimerede udnyttelse af fosfor i produkter eller blandingsprodukter indenfor et år.

Figur 31: Samlet vurdering af teknologivalg til genanvendelse af fosfor fra spildevand og spildevandsslam.
10.3 Økonomisk benchmarking af fosforudnyttelse fra spildevand og spildevandsslam

10.3.1 Sammenligning af den økonomiske værdi af fosfor

Eksempelvis kan 1 ton struvit i 2012 sælges for omkring 1.000-3.000 DKK/t, afhængig af kvaliteten. Struvit udvundet fra spildevand indeholder ca. 12-13 % fosfor, hvorfor den fosforspecifikke værdi i struvit i dag kan beregnes til 7-23 DKK/kg. 2012 prisen på marokkansk råfosfat med et fosforindhold på ca. 15-20 % ligger på ca. 1.077 DKK/t. Årsagen til at prisen på fosfor i råfosfat er lavere end f.eks. fosfor i struvit skyldes, at råfosfat – i modsætning til struvit - ikke er et færdigt forarbejdet produkt.

Den økonomiske værdi af fosfor i de tre fosforholdige slutprodukter fra spildevandssrensningen kan med basis i priser fra december 2012 og med prisen på marokkansk råfosfat estimeres til:

<table>
<thead>
<tr>
<th>Råfosfat (Marokko)</th>
<th>Produktværdi: 1.077 DKK/t produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fosforindhold: 15-20 % (pr. kg produkt)</td>
</tr>
<tr>
<td></td>
<td>Fosfor værdi: 5-7 DKK/kg P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fosfor i spildevandsslam på landbrugsjord</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktværdi: -250 DKK/t produkt</td>
</tr>
<tr>
<td>Fosforindhold: 0,7-0,9 % (pr. kg produkt ved 22 % TS)</td>
</tr>
<tr>
<td>Fosfor værdi: -27 (-35 DKK/kg P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fosfor i struvit fra spildevand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktværdi: 0-3.000 DKK/t produkt</td>
</tr>
<tr>
<td>Fosforindhold: 12-13 % (pr. kg produkt)</td>
</tr>
<tr>
<td>Fosfor værdi: 0 - 25 DKK/kg P</td>
</tr>
</tbody>
</table>

10.3.1.1. Fosfor udvundet fra slamaske fra spildevandsslam

Ukendt, men fosforværdien vurderes at ligge i minimum samme niveau eller højere end struvit prisen.

Markedsstruktureren for afsetning af spildevandsslam, et defineret affaldsprodukt, vurderes ikke at tale for, at vandselskaberne i fremtiden kan forvente en økonomisk gevinst ved afsetning af fosfor til landbrugsjord.
10.3.2 Anlæg- og driftsudgifter
Anlægs- og driftsudgifterne for strategierne til nyttiggørelse af fosfor er udelukkende vurderet i forhold til behandlingsprisen af slammet.

For landbrugsløsningen er det valgt at prissætte den billigste af løsningerne, dvs. direkte udringning på landbrugsjord.

For slamaskestrategien er de anlægs- og driftsudgifter, der er forbundet med ekstrahering af fosfor fra slamaske samt indtjeningssmuligheder på fosforproduktet ikke medtaget i vurderingen. Dette er naturligvis ikke fyldestgørende, men de økonomiske forhold i slamaskestrategien er stadig behæftet med stor usikkerhed, da processen er under udvikling og ikke afprøvet i fuldska.

Slamaskestrategien vurderes således med basis i behandlingsprisen ved slamforbrænding. Dette er en rimelig antagelse, idet teknologileverandørerne på dette område i første omgang arbejder på at opnå behandlingspriser for askeoplukning og fosforgenvinding tilsavende deponiprisen for asken. Denne omkostning indgår i dag i slamforbrændingsprisen med et væsentligt bidrag til totalomkostningerne ved slamforbrænding.

Kapitalomkostninger forbundet med de enkelte løsninger er beregnet som et annuитетslån over 25 år på basis af den samlede investering.

10.3.2.1 Landbrugsløsningen
Behandlingsprisen ved landbrugsløsningen kan opdeles i følgende hovedbestanddele:
- Anlæg af slamlager med minimum 9 mdr. slamproduktionskapacitet
- Direkte driftsudgifter til analyser og udringning af slam

Den samlede behandlingspris for landbrugsløsningen ligger på ca. 300 DKK/t og indeholder udgifter til afskrivning af slamlager (ca. 50 DKK/t) samt pris til afsætning og til transport (ca. 250 DKK). Dette svarer til en størrelsesorden på ca. 1.400 DKK/t TS.

10.3.2.2 Slamforbrænding
Behandlingsprisen ved slamforbrændingen kan opdeles i følgende hovedbestanddele:
- Anlæg af forbrændingsanlæg til spildevandsslam
- Direkte driftsudgifter inkl. askedeponi
- Indtægter fra salg af overskydende varme
- Afgifter ved salg af overskydende varme

Behandlingsprisen i normalområdet inkl. varmesalg og afgifter udgør ca. 2.100 DKK/t TS. Uden salg af varme ligger behandlingsprisen på ca. 2.300 DKK/t TS. Disse priser er forudsat det nuværende afgiftssystem på udtjættelse af varme fra forbrænding af slam.

10.3.2.3 Struvitproduktion med efterfølgende slutanvendelse af restslam
Anlægs- og driftsudgifterne samt de indtjeningssmuligheder, der er tilknyttet struvitteknologien er beskrevet i afsnit 9.4.2. Relateret til tørstofproduktion og afskrivning af anlægsinvestering over 25 år får en indtjening på 150-400 DKK/t TS.

Afhængig af valget af løsning for slutanvendelse af slam efter struvitproduktion fra rekrivkvandet fås følgende samlede "slambehandlingspris" for struvitproduktion og slutdisponering af slam opgjort pr. ton TS til slutanvendelse:

| Landbrugsløsningen inkl. struvitproduktion | ca. 1.000-1.250 DKK/t TS |
| Slamforbrænding inkl. struvitproduktion | ca. 1.700-2.150 DKK/t TS |
Med en simpel lineær regression af prisudviklingen på råfosfat over de sidste ca. 17 år kan udviklingen af de vejledende priser på råfosfat og fosfor estimeres til 13,7 %, se Figur 32.

Med denne prisudvikling er det principlielt muligt, at et salg af fosfor kan finansiere slamhåndteringen allerede om ca. 7-14 år – alt afhængig af struvitkvaliteten og markedsudviklingen for denne gødningstype.

Hvad angår en løsning med struvitproduktion i kombination med landbrugsløsningen skal vandselskaberne være opmærksomme på, at fosforindholdet i slammet bliver mindre, ca. 30 % mindre. Dette vil forringe slammens blandethed i forhold til de 4 tungmetaller (kviksølv, cadmium, nikkel og bly), der jf. Slambekendtgørelsen både relateres til slammets tørstof såvel som fosforindhold. Såfremt kravværdierne kan overholdes, vil det med et lavere fosforindhold i slammet være muligt at tilføre mere slam pr. ha og dermed være muligt at tilføre mere organisk stof, kvælstof og kalium (N og K) med slamudbringelsen, hvilket kan være fordelagtigt på nogle jorde.

10.3.3 Vurdering af strategiernes følsomhed overfor afsætning af slutprodukter
Vi har vurderet følsomheden for de forskellige løsninger til fosforfyrrigning i forhold til tidligere erfaringer fra markedet for afsætning af spildevandsslam.

Landbrugsorganisationerne varselede tilbage i 1990’erne boykot mod udbringning af kommunalt slam på landbrugsarealer, hvilket gav anledning til stor debat og illustrerede, hvor vigtig afsætning af spildevandsslammet er for vandselskarlernes forsyningssikkerhed i forhold til forsyningernes hovedopgave: Spildevandsrensningen.

For nogle år siden, blev der med meget kort varsel lukket for modtagelsen af spildevandsslam hos en væsentlig aftager af slam til fremstilling af sandblæsningsmiddel. Dette resulterede i et akut behov for oplagring af slam og deraf følgende markante prisstigninger på afsætning af slam i markedet.

Prisen for at udbringe slam på landbrugsjorden er siden 2009 og frem til i dag stort set halveret, hvor den i dag ligger helt ned til 200-300 DKK/t slam. Dette prisfald har været sammenfaldende med en omlægning af afgiften på forbrænding af spildevandsslam.
Vi har set, at Danmarks største mejeri stiller krav om, at der ikke må være anvendt slam til dyrkning af råvarer i forhold til deres produktion, hvilket begrænser anvendelsesmulighederne i nogle områder. Desuden må der i økologiske produkter ikke anvendes slam på marker til dyrkning af råvarer.

Landbrugslovgivning

Afsætning af fosfor via landbrugslovgivningen er tilknyttet den risiko, der er forbundet med afsætning af slammet til landbruget. I denne vejledning vurderes landbrugslovgivningen at være forbundet med en vis risiko samt en sandsynlighed, der er til stede for at indtræffe. Forholdene kan opgøres til:

- **Prisen på afsætningen til landbruget reguleres ikke af markedsværdien på fosfor, men på basis af spildevandsslammets status som affald.** Det er tredje part, i dette tilfælde landmanden og entreprenøren, der bestemmer bortskaffelsesprisen på slam, og denne pris fastsættes med udgangspunkt i, at spildevandsslam er et affaldsprodukt. I de seneste 3-4 år har denne pris varieret med næsten 100 %.

- **Image er altafærende for afsætning af produkter – også i forhold til slam.** Afsætningen af slam som produkt er meget følsomt overfor medieoverskrifter, der skaber utryghed omkring kvaliteten, og dette vil være fuldstændig uafhængigt af, hvor godt videnskaben kan dokumentere, at der ikke er en påviselig risiko ved genanvendelse af slam på marker. Løsningen sammenkobles periodevist mere med følelser end fakta. Dette sker, når anvendelsen af spildevandsslam sammenkobles med fødevarerproduktion i den offentlige debat.

- **Kredsløbstankegangen er væsentlig, og genbrug af ressourcer bør fremmes i videst muligt omfang, det er umuligt.** Men det er i dag en tendance i vores samfund, at der er øget omærksomhed på menneskers sundhed og trivsel, og der er stadig større forbrugerbevidsthed omkring hele produktionsforløbet af de fødevarer, vi indtager. Tusindvis af de stoffer vi omgiver os med i vores hverdag ender i vores spildevand, og vi kender derfor ikke de fuldstændige ingredienser i det "produkt", vi vil afsætte til landmanden. Det gør slammet følsomt som "produkt", og derfor er det vigtigt, ved valg af strategi for slamhåndtering og slutdisponering, at forholde sig til det marked og de markedskræfter, der opererer på det givne tidspunkt.

Struvitproduktion

Struvitproduktion isoleret som teknologi

En strategi med egenproduktion og salg af struvit i de danske vandselskaber vurderes som enkeltstående løsning at være sikker. Usikkerheden i, hvorvidt den producerede fosfor kan afses og til hvilken pris er naturligvis til stede, men efterspørgslen på fosfor vurderes at være stigende og sandsynligheden for at produktet ikke kan afses, vurderes som lav, så længe kvaliteten mht. tungmetallindholdet er god.

Struvitproduktion og slutdisponering af remslam

En struvitudfældningsløsning forudsætter, at der kombineres med; Enten en landbrugs- eller forbrændingsløsning.

Ved kombination af struvit og landbrugslovgivningen vil slamkvaliteten i forhold til de fosforrelaterede tungmetaller blive forringet. Dette kan betyde, at slammet ikke længere kan overholde de
fosforrelaterede krav til landbrugsjord og dermed betyde, at restslammet ikke kan afsættes til landbrugsjorden

Ved forbrændingsløsningen vil risikoen være tilsvarende de risici der er forbundet med slamaske løsningen, der beskrives i det følgende.

Fosforekstraktion fra slamaske

10.4 Anbefaling af strategi for nyttiggørelse af fosfor

Et for vandselskabet væsentligt spørgsmål ved valg af en fosforstrategi på de enkelte renseanlæg er, om fosforntyttiggørelsen skal være en del af et fremtidigt værdiskabende forretningsområde for vandselskabet. Valget er vigtigt og kan få afgørende betydning for vandselskabets fremtidige renseanlægsstruktur- og driftsform, samt fremtidig strategi for slamhåndtering. Hvorvidt det er en fordel for det enkelte vandselskab – på egen hånd eller i fællesskab med andre vandselskaber – at producere og sælge fosfat vil for nogle være et økonomisk betinget valg, hvor det for andre vandselskaber er den miljømæssige profil og ønsket om bæredygtighed, der er udslagsgivende. Hvad enten motivet er det ene eller det andet, så vil der fælles for motiverne være de samme to følgende spørgsmål, der gør sig gældende for det endelige valg:

1. Hvor begrænset en ressource er fosfor?
2. Er mængden af fosfor i vandselskabets spildevand stor nok til overhovedet at være relevant?

I Figur 33 er vist eksempler på hvilke afledte forhold, der kan opstilles på baggrund af de to spørgsmål og som vandselskaberne kan vælge at tage stilling til, før der iværksættes fosforrelaterede initiativer. De viste eksempler er generelle, og det kan ikke udelades, at der kan være specifikke forhold i det enkelte vandselskab, der ikke fremgår af figuren.
Figur 33 Forskellige forhold der kan være afgørende for valget af fosforstrategi.
11. Sammenfatning

Denne rapport tager udgangspunkt i ønsket om at opnå den bedst mulige udnyttelse af spildevandets fosforindhold. Rapportens formål er at give vandselskaberne et grundlag til at kunne inddrage fosforudnyttelse fra spildevand i deres planlægning af fremtidig strategi og derved kunne efterspørgte de teknologier til fosforfjernelse fra spildevand og nyttiggørelse af fosfor fra spildevandsslamm, der så vidt muligt både tilgodeser ønsket om en bæredygtig udnyttelse af fosfor og er en økonomisk bæredygtig investering.

Vejledningen er således lavet for at belyse kompleksiteten i de forhold, der giver et væsentligt bidrag til, hvad der for det enkelte vandselskab giver den forretnings- og miljømæssige mest effektive udnyttelse af fosfor fra spildevandsbehandlingen.

I vejledningen præsenteres kort det danske landbrugs fosforbehov og de primære kilder til fosfor, der dækker det nuværende forbrug. Det danske landbrug har et fosforforbrug på ca. 53.000 ton pr. år, hvoraf ca. 15 – 20.000 ton er importeret handelsgødning. Spildevandsslamm indeholder i størrelsesorden ca. 5.000 ton fosfor pr. år, hvoraf ca. halvdelen udnyttes på landbrugsjord.

Gødningsværdien af fosfor fra spildevandsslament diskuteres ud fra overvejelser omkring biotilgængeligheden af fosfor, der er bundet i slammet, samt landbrugsjordens varierende indhold af fosfor, der regionalt hæver jordens fosfortal til uønskede høje værdier, med øget risiko for udvaskning af fosfor til vandmiljøet.

Det konstateres, at gødningsværdien af fosfor fra slam i høj grad er afhængig af bl.a. jordtype, øvrigt forbrug af gødning samt afgredetførning og derfor er meget vanskeligt at beskrive modelmæssigt. Det konstateres yderligere, at der er undersøgelser, der viser, at slam fra renseanlæg, hvor der er anvendt bio-P som fosforfjernelsesteknologi fremfor kemisk fældning med jern eller aluminium, giver et mere biotilgængeligt fosforprodukt som gødningsmiddel. Rapporten diskuterer ud fra overvejelser omkring biotilgængeligheden af fosfor, at det kan være tvivlsomt, om fosfor, der er kemisk bundet med de traditionelle fældningsmidler, kan indgå i jordens aktive fosforpulje indenfor en kortere tidshorisont, hvilket kan være medvirkende årsag til, at fosfor fra spildevandsslamm generelt betragtes som affald.

Problemstillingen er selvsagt mere kompleks end dette, da spildevandsslamm, foruden de positive egenskaber, også indeholder tungmetaller og andre mikroforureninger, der grundlæggende er uønskede i jorden. De gældende grænseværdier er fastsat ud fra sundhedsmæssige og miljømæssige vurderinger.

I rapporten er jordens akkumulering af cadmium modelleret for at belyse problemstillingen med løbende tilførsel af tungmetaller, der gradvis vil forringe jordkvaliteten. Denne problemstillere er yderligere relevant i forhold til brugen af handelsgødning, der også indeholder cadmium. Med et øget pres på fosforminerne, kan det konstateres, at cadmiumindholdet i råfosfat er stigende, hvilket kan forringe kvaliteten af handelsgødningssfosfor og dermed forstærke jordens akkumulering af dette tungmetal. Denne problemstillere gør det væsentligt relevant at iværksætte teknologier, der kan reducere akkumuleringen af eksempelvis cadmium i jorden. Jordmodellen i rapporten viser, at struvet udfald fra spildevandet kan være et attraktivt alternativt gødningsprodukt, idet dette kan leveres med et meget lavt indhold af tungmetaller. Rapporten påpeger problemstillingen med denne løsning, da fosforudtaget med
Bæredygtig udnyttelse af fosfor fra spildevand

denne teknologi, foruden struvitproduktet, stadig giver restslam, der indeholder ca. 2/3 af spildevandets fosformængde og en væsentlig mængde af tungmetaller og miljøfremmede stoffer. For at sikre fuld udnyttelse af fosfor, skal dette restslam principielt udnyttes på landbrugsjorden, såfremt det forsøg kan overholde slambekendtgørelsens krav, hvilket kan blive en udfordring i forhold til kravene til de fosforrelaterede tungmetaller, der bliver sværere at overholde, når slammets fosforindhold sænkes. Denne kombinationsløsning vil uanset resultere i den samme tilførsel af tungmetaller og øvrige miljøfremmede stoffer som ved direkte landbrugsanvendelse, men med et samlet mere biotilgængelig fosforprodukt.

Generelt konkluderer rapporten, at det er mest fordelagtigt at slammets fosforindhold er så højt som muligt, hvis det skal udnyttes på landbrugsjorden, da der herved doseres mindst muligt slam pr. ha og tilførslen af tungmetaller og miljøfremmede stoffer dermed reduceres. Tekno logien til udfældning af struvit fra spildevandet betragtes derfor som en mulighed for at udfase brugen af jern og aluminium for at øge biotilgængeligheden af fosfor i blandingsproduktet fra spildevandsrensningen. Såfremt struvitproduktet skal udnyttes som separat fosforgødningsmiddel, skal der være skarpt fokus på, hvorledes kvaliteten af restslammet påvirker akkumuleringen af ønskede stoffer i jorden.

Alternativet til udnyttelse af restslammet på landbrugsjorden er slamforbrænding i kombination med fosforgødningsvinding fra aksen. Denne genvindningsteknologi er endnu ikke komмерcielt tilgængelig og der peges derfor på muligheden for at oprette kontrolleret lagring af forbrændingsaske fra spildevandsslamm, så denne ressource ikke tabes, indtil en bæredygtig teknologi er til stede.

Generelt anbefales det, at innovation og teknologiudvikling indenfor området understøttes, så der kan træffes valg, der giver en samlet bæredygtig løsning.

Rapporten peger på, at fosforholdigt slam kan være en god gødningsform i de regioner, hvor fosfortallene er lavere, end hvad der er ønsket i forhold til at opretholde høj dyrkningseffektivitet, da der med slammel kan tilføres både biotilgængeligt organisk bundet fosfor, der kan udnyttes af planterne i løbet af vækstsesonen samt hårdt kemisk bundet fosfor, der kan medvirke til at opbygge jordens fosforpulje. Da dette ikke er det generelle behov i Danmark og flere andre dele af Europa, efterspørres teknologier, der kan levere spildevandets fosforindhold på en lettere håndtering og lagerstabil form, hvilket kan være den beskrevne teknologi til struvitudfældning, med de udfordringer som dette valg medfører.

11.1 En sammenlignende LCA for udnyttelse af fosfor fra spildevand

For at belyse problemstillingen med en forskellig biotilgængelighed af de forskellige fosforprodukter, der produceres fra spildevandet, er der lavet en sammenlignende LCA, der alene fokuserer på at belyse konsekvenserne af forskellige valg af teknologier til at fjerne fosfor fra spildevandet på renseanlægget. Der opstilles til denne analyse en hypotese for gødningsværdien af de forskellige former for fosfor, der produceres fra spildevandet, og som oftest vil findes i en varierende blanding i spildevandsslamm – afhængig af de teknologivalg, der er gjort på renseanlægget.

For alle scenarier tages der udgangspunkt i, at alle slutproducenter skal anvendes på landbrugsjorden. Hypotesen for biotilgængeligheden af fosfor tager udgangspunkt i, at fosforprodukterne skal kunne udnyttes indenfor et år efter udbringning på landbrugsjorden. Det antages her, at organisk bundet fosfor og fosfor bundet i struvit bidrager til jordens tilgængelige fosforpulje, mens fosfor bundet til jern eller aluminium bidrager til jordens pulje af hårdt bundet og svært tilgængeligt fosfor. I analysen er der anvendt en tidshorisont på 1 år for at afspejle landmandens gødningsplan og det er
således betragtningen, at slammets andel af hårdt bundet fosfor ikke substituerer brug af handelsgødningsfosfor.

Den sammenlignede LCA viser, at differentieringen af biotilgængeligheden og dermed udnyttelsen af fosfor har betydning for omfanget af miljøpåvirkninger i alle kategorier og dermed for miljøvurderingen af de forskellige teknologier til fosforfjernelse fra spildevandet. Dette understøtter behovet for at undersøge fosforomsætningen fra slam i jorden yderligere for at kunne vurdere den reelle udnyttelse og værdien af det fosfor, der er bundet i slammet.

Den sammenlignede LCA er lavet for tre standard typer af renseanlæg:
- Type 1: Mindre 1-trins renseanlæg uden rådnetank
- Type 2: Mellemstort 1-trins renseanlæg med rådnetank
- Type 3: Mellemstort 2-trins renseanlæg med rådnetank

Analysen viser, at fosforfjernelse med fuld Bio-P på de mindre 1-trins renseanlæg uden rådnetank (Type 1) giver det bedste resultat for denne anlægstype, da der på disse anlæg kan opnås den ønskede afløbskvalitet uden brug af kemisk støttefældning. Der opnås dermed et fuldt tilgængeligt fosforprodukt fra anlæggets slamproduktion. Dette giver den mindste miljøpåvirkning for denne anlægstype.

Type 2 anlæggene, der er mellemstore 1-trins anlæg med rådnetank, opnår tilsvarende type 1 anlæggene den bedste løsning ved valg af bio-P processen. For denne anlægstype vil det være nødvendigt med en kemisk støttefældning med eksempelvis jern for at sikre den ønskede afløbskvalitet, da der frigives fosfor til en intern belastning via udrådningsprocessen.

For type 3 anlæggene, der er mellemstore 2-trins anlæg med rådnetank, opnås den bedste miljøvurdering med en teknologiskombination, der er bio-P fjernelse støttet af struvituddannelse, da man herved undgår hårdt bundet P i slammet. Det er en ekstra proces, der koster noget at implementere, og resultatet betinger, at slutproduktet struvit i praksis bliver godkendt og anvendt som gødning.

Sammenlignes anlægstyperne på tværs, giver teknologiscenarioet for 2-trins anlæg med rådnetank, der fjerner fosfor med en kombination af bio-P og struvituddannelse, højst miljømæssig bæredygtighed for alle påvirkningskategorier. Dette skyldes, at der med disse teknologier opnås: Maksimal energiproduktion, lavest mulige energi- og kemikalieforsyning samt slutprodukter med umiddelbart biotilgængeligt fosfor, vurderet ud fra vejledningens betragtninger om biotilgængeligheden af de forskellige former for fosfor.

Resultaterne viser, at biotilgængeligheden af fosfor i slutslammet har afgørende betydning for substitutionen af mineralsk gødningstoproduktion og de dertil hørende procesemissioner. Baseret på antagelsen om de estimerede biotilgængelighedsprocenter, som følge af fosfors binding i slammet, betyder dette, at Bio-P teknologien sammenlagt er en miljøvenlig og ressourceeffektiv teknologi med signifikant bedre performance end tilsvarende anlæg med kemisk fosforfældning.

11.2 Operationel benchmarking af teknologier
I vejledningen belyses tekniske og økonomiske muligheder ved de forskellige teknologier til at fjerne fosfor fra spildevandet og teknologier til at udnytte det fosfor, der er fjernet fra spildevandet.

Begge forhold er i sidste del af vejledningen, der betegnes den operationelle del, vurderet miljømæssigt og økonomisk:
- Miljømæssig benchmarking

Vægtningen mellem fosfortab og fosfortilgængelighed er medtaget i en SPRi værdi (Sustainable Phosphorus Removal index); en ny parameter, der introduceres i denne vejledning, med det formål at give en nem og retvisende benchmarking af bæredygtigheden. Bæredygtighed skal denne sammenhæng forstås som ressourceeffektiv genanvendelse af fosfor indenfor en kort tidshorisont.

- **Økonomisk benchmarking**
 Den økonomiske bæredygtighed afhænger af det nødvendige omfang af anlægsinvesteringer, de deraf direkte eller indirekte afledte meromkostninger/besparelser på driftsbudgettet samt de driftsmæssige risici, der er tilknyttet teknologivalget.

Vejledningens operative del kan kort opsummeres til følgende anbefalinger:

11.2.1 **Miljømæssig benchmarking af teknologier til fosforfjernelse fra spildevand**
Den miljømæssige benchmarking understøtter resultatet af LCA'en; At en udførsel af brug af fældnings kemikalier vil være den mest miljørigtige løsning til fosforfjernelse fra spildevand. Den operationelle analyse via SPRi værdien peger på, at denne konklusion gælder, så længe fosforkoncentrationen i udløbet fra renseanlægget kan holdes under ca. 1 mg/l. Såfremt den biologiske fosforfjernelse ikke kan sikre den ønskede udløbskvalitet, vurderes det, at en løsning med kemisk støttefældning er mest optimal.

Alt efter teknologivalg på renseanlægget vurderes SPRi at kunne variere fra ca. 50 til ca. 90 %. Den mindst ressourceeffektive bedømmelse fås for et 1 trins anlæg (anlægtype: Type 1) med ren kemisk fældning uden nogen styring af doseringen af fældnings kemikalier. For anlægtype: Type 1 vil den mest miljørigtige strategi kunne opnås med 100 % Bio-P, avanceret onlinestyring og tertiær rensning af suspendert stof. For anlægtype: Type 2 og 3 kan det blive nødvendigt at supplere med en fosforgenvinding fra rejektvandet via struvitproduktion for at opretholde 100 % Bio-P.

11.2.2 **Økonomisk benchmarking af teknologier til fosforfjernelse fra spildevand**
For renseanlæg belastet med mere end 5.000 PE, vil investeringer i Bio-P teknologien typisk være økonomisk attraktive. Jo tættere anlægsbelastningen er på de 5.000 PE, des mere usikre bliver de økonomiske besparelser. Tilbagebetalingsperioden på investeringen afhænger i særlig høj grad af eksisterende muligheder på renseanlægget og hvilke Bio-P teknologier, der vælges.

En investering i tertiær rensning af suspenderet stof vurderes ikke at være en økonomisk bæredygtig investering, da de besparelser, der opnås på grønne afgifter, ikke udgør en del af vandselskabets driftsbudget og det ekstra rensetrin for spildevandet, giver således ikke nogen økonomisk gevinst for selskabet. Den forbedrede rensning vil dog afspejle i en mindre spildevandsafgift for forbrugereren.

En investering i fosforgenvinding fra rejektvand i form af struvitproduktion kan generelt anbefales undersøgt for de større renseanlæg, hvor slammet behandles i rådnetanke. Rentabiliteten afhænger af møngden af opløst fosfor i rejektvandet, samt de besparelser, der kan opnås i driften af renseanlægget. Økonomisk betragtet er det med denne teknologi, at vandselskaberne kan få størst økonomisk gavn af en stigende markedspris på råfosfat, men det kræver løbende fokus på kvaliteten...
af slamproduktionen mht. de fosforrelaterede tungmetaller samt opmærksomhed omkring den øvrige slamhåndtering.

11.2.3 Miljømæssig benchmarking af metoder til nyttiggørelse af fosfor fra spildevandsslam

De strategier til fosfor-nyttiggørelse fra spildevandsslammet, der er vurderet i vejledningen, er følgende:

- Spildevandsslam på landbrugsjord (m/u intern struvit genvinding)
- Slamforbrænding med efterfølgende ekstraktion af fosfor fra slamasken (m/u intern struvit genvinding)

Det mest optimale valg af nyttiggørelse af fosfor fra spildevandsslam afhænger af tilgængeligheden af fosfor i spildevandsslammet; tilgængeligheden af fosfor i spildevandsslam afgør af de anvendte teknologier til fosforfjernelse på renseanlægget.

Hvis det lykkes for renseanlæggene at udfase brugen af fældningskemikalierne totalt, vil en landbrugslosning eller en kombination af struvitgenvinding på renseanlægget og landbrug, være de mest miljørigtige strategivalg, da produktet fra spildevandsrensningen kun vil indeholde tilgængeligt fosfor, der kan udnyttes over en vækstseson.

Hvis renseanlæggene har behov for støttefældning, f.eks. for at begræne fosfortabet til recipienten eller pga. skærpede udlederkrav til fosfor (< 1,5 mg/l), vil landbrugslosningen – alt afhængig af den anvendte mængde af fældningskemikalier - blive mindre og mindre miljømæssig attraktiv set i forhold til potentialet for fosfor-nyttiggørelsen fra slamaske, der fremadrettet forventes som en valgbar løsning.

11.2.4 Økonomisk benchmarking af metoder til nyttiggørelse af fosfor fra spildevandsslam

Økonomien er undersøgt ved anvendelse af de identificerede miljømæssig bæredygtige strategier, dels i forhold til slamproduktionen og dels i forhold til den specifikke værdi af de tilgængelige fosfor som kan nyttiggøres.

Anlægs- og driftsudgifterne er lavest ved anvendelse af landbrugslosningen i kombination med struvitgenvinding af struvit. Driftsmæssigt dyrest er forbrændingslosningerne. De økonomiske risici forbundet med landbrugslosningerne er derimod højst, hvor en landbrugslosning kombineret med struvitgenvinding vurderes at være forbundet med de højeste risici, da forbrug til bliver afhængig af struvitkvaliteten, så de fosforrelaterede krav i slambekendtgørelsen ikke overholdes og muliggører udnyttelse af restslammet på landbrugsjord. Dette kan være problematisk for de anlæg, der ikke kan overholde de tørstofrelaterede krav som udgangspunkt og som derfor måles på de fosforrelaterede kravværdier.

Udgifterne ved de forskellige strategier til fosfor-nyttiggørelse kan opsummeres til:

<table>
<thead>
<tr>
<th>Strategi</th>
<th>Udgifter (DKK/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landbrugsjord</td>
<td>1.400 DKK/t</td>
</tr>
<tr>
<td>Forbrænding og genvinding fra slamaske</td>
<td>2.300 DKK/t (forudsat salg af varme)</td>
</tr>
<tr>
<td>Struvitgenvinding + landbrugsjord</td>
<td>1.000-1.250 DKK/t TS</td>
</tr>
<tr>
<td>Struvitgenvinding + forbrænding/slamaske</td>
<td>1.700-2.150 DKK/t TS</td>
</tr>
</tbody>
</table>

Udgifterne er vurderet i forhold til behandlingsprisen af slammet; landbrugslosningen prissættes billigst ved antagelse om direkte udbringning på landbrugsjord; slamaskestrategien prissættes, pga. manglende kendskab til økonomien i processen for fosforekstraktion fra slamaske, med basis i behandlingsprisen ved landbrugsforbrænding. Sidstnævnte antagelse er vurderet som rimelig, idet teknologileverandørerne på dette område i første omgang arbejder på at opnå behandlingspriser for

Den højeste værdi af fosfor opnås med struvit og slamaske teknologierne.

Fosforprisen for fosfor i spildevandsslam, anvendt direkte på landbrugsjord, skiller sig markant ud med en negativ værdi, da landmanden kompenseres for at modtage slam, og selve værdien af fosfor dermed ikke fremstår positiv.

Den specifikke fosforværdi for de forskellige produkter er i vejledningen opgjort til:

- Råfosfat (Marokko): 5-7 DKK/kg P
- Fosfor i spildevandsslam på landbrugsjord: -27 - (-35) DKK/kg P
- Fosfor i struvit fra spildevand: 0 - 25 DKK/kg P

Hvis den nuværende markedsværdi af fosfor i råfosfat på 5-7 DKK/kg P (der er lav i forhold til værdien af fosfor i struvit) skulle afspejles i prisen på slam, burde den nuværende betaling på 250 DKK/t slam ændres til en indtjening på 30 - 60 DKK/t slam. Dette forventes ikke at være aktuelt, da slammet foruden fosfor, også medfører landmanden nogle dyrkningsmæssige begrænsninger samt en tilledning af mikroforureninger som eksempelvis organiske miljøfremmede stoffer.

Hvis de danske vandselskaber vil have del i den (forventelige) fremtidige stigning på markedsprisen af råfosfat, vil landbrugsloveningen derfor ikke være det umiddelbare valg.

Den operative del af vejledningen viser, at det er muligt for de danske vandselskaber at vælge teknologier til fosforfjernelse mhp. at opnå god miljømæssig bæredygtighed samtidig med, at der kan opnås økonomiske fordele i form af reducerede driftsudgifter. Det kan kræve langsigtede investeringer for at forbedre udnyttelsen af fosforressourcen fra spildevandet, men det vil med stor sandsynlighed være med til at skabe stigende merværdi for vandselskaberne og det danske samfund.
Nyere analyser viser, at fosforressourcen ikke ophører indenfor en overskuelig tidshorisont – men den er ikke ubegrænset og kvaliteten af det råfosfat, der bliver bruddt i minerne, bliver gradvis ringere med et øget pres på denne ressource. I tillegg kommer, at råfosfat udvindes i lande og egne, hvor urolige samfundsforhold kan medføre ustabile leverancer og påvirke prisen på handelsgodning i opadgående retning. Dette taler for en videreudvikling af teknologier til genanvendelse af de fosforkilder, vi har idag, så prisen på disse produkter nærmer sig handelsgødningsprisen og vi i stigende omfang vil kunne medvirke til at lukke dette ressourcetilsynsløb.

I Danmark og flere andre steder i Europa findes en ujævne fordeling af fosfor akkumuleret i jorden. Dette er primært betinget af en varierende produktion af husdyrgødning, der bidrager til en væsentlig tilførsel af fosfor til jorden i nogle områder. Denne problemstilling understøtter behovet for at kunne genvinde fosfor fra spildevand i en håndterbar og lagerstabil form, der heretter kan transporteres og udnyttes i de områder, hvor der er behov for fosfortilførsel. Sådanne teknologier vil samtidig kunne reducere fosfortilførslen i de områder, hvor jordens fosfordel er så høje, at det medfører risiko for udvaskning til vandmiljøet. Rapporten belyser de valgmuligheder de danske vandselskaber har for at bidrage til en bæredygtig genanvendelse af fosfor fra spildevand og de udfordringer som de forskellige strategier medfører.

I rapporten belyses det, at renseanlæggenes valg af teknologier til at fjerne fosfor fra spildevand har betydning for biotilgængeligheden af det fosforprodukt, der dannes fra spildevandsrensningen. Der er til rapportens analyse opstillet en hypotese for tilgængeligheden af fosfor som følge af teknologivalget. Biotilgængeligheden vurderes indenfor 1 år for at kunne afspejle landmandens gødningstidspunkt og dermed kunne repræsentere værdien af fosfor for modtageren. Til rapportens hypotese vurderes det, at organismisk bundet fosfor og fosfor bundet i struvit bidrager til jordens pulje af tilløgnelige fosfor, mens fosfor bundet til jern eller aluminium bidrager til jordens pulje af svær tilgængeligt fosfor.

Der er gjennemført en sammenlignende LCA for at kunne vurdere miljøpåvirkningerne som følge af teknologivalg til fosforfjernelse, baseret på den opstillede hypotese for biotilgængeligheden. Denne LCA viser, at der er afgørende forskel på miljøpåvirkningerne for de forskellige teknologivalg, når biotilgængeligheden i slutproduktet nuanceres. Det er vigtigt at understrege, at slutproduktet slam altid indeholder biologisk bundet fosfor, der er umiddelbart biotilgængeligt, uanset om der doseres et kemisk fældningsmiddel til fosforfjernelse, og der dermed altid opnås en positiv nytteværdi af en varierede del af fosforressourcen i slammet. Slam er således at betragte som et blandingsprodukt, når det vurderes som fosforgødning.

Via modellering af cadmiumakkumuleringen i jorden, som følge af tilførsel af fosfor fra spildevandsslam, ses det, at der på lang sigt kan opstå ønskede høje koncentrationer af cadmium i jorden, hvis vi benytter gødning med spildevandsslam. Men det er også vist, at der ved brug af handelsgødning alene også akkumuleres cadmium i jorden, en problemstilling som kan forværres med et stigende pres på råfødfatressourcen, da cadmiumindholdet i råføsat stiger.

En forringet kvalitet af handelsgodning kan medvirke til udvikling og anvendelse af teknologier, der genvinder og recirkulerer fosfor uden at recirkulere tungmetallerne. Hertil kan en proces som struvitudfældning fra spildevandet være en god løsning, idet det har vist sig muligt at levere et gødningsprodukt med et markant lavere indhold af tungmetaller.

Der er lavet tekniske og økonomiske vurderinger af de undersøgte teknologier til at fjerne fosfor fra spildevandet med fokus på at vælge teknologier, der giver et slutprodukt med størst mulig biotilgængelighed indenfor en kort tidshorisont.

Der er til denne vejledning defineret et indeks, kaldet SPRi (Sustainable Phosphorus Removal index), med det formål at give et operationelt værktøj til vandselskaberne til at kunne vurdere forskellige teknologier i forhold til hinanden ud fra en afvejning af udløbskvaliteten mht. fosfor og ressourceeffektiv genanvendelse af fosfor i slutprodukterne, indenfor en kort tidshorisont.

Helt overordnet kan det konkluderes, at de teknologivalg, der udfaser brugen af jern og aluminium på renseanlæggen, giver en høj SPRi værdi og bliver derfor vurderet som bedst i denne vejledning, hvor biotilgængeligheden af fosforproduktet fra renseanlægget er i fokus. Det er således anbefaling, at vandselskaberne arbejder med implementering af bio-P processen til fosforfjernelse, hvilket er en udvikling, der allerede er udbredt på mange anlæg i Danmark. Denne konklusion gælder, så længe teknologivalget giver den ønskede kvalitet i det renseade spildevand mht. fosfor. Den gennemførte SPRi analyse peger på, at teknologivalget til fosforfjernelse bør give en udløbskvalitet < 1 mg total-P/l. Udfasningen af kemikalieforbruget må således ikke resultere i en forringet udløbskvalitet.

Rentabiliteten for investering i en effektiv teknologi til fosforfjernelse på renseanlægget, der målrettes mod en høj biotilgængelighed i slutproduktet, afhænger i særdeleshed af renseanlæggets belastningsgrundlag – både i forhold til mængder samt i forhold til spildevandssammensætning. Der er i den gennemførte analyse alene vurderet på normalt husholdningsspildevand. Der er taget udgangspunkt i det nuværende (2012) fosforindhold i spildevandet (se nærmere uddybning i den følgende Perspektivering).

For renseanlæg belastet med mere end 5.000 PE, vil investeringer i teknologier til biologisk fosforfjernelse typisk være driftsøkonomisk attraktive. Jo tættere anlægsbelastningen er på de 5.000 PE, des mere usikkert bliver de driftsøkonomiske besparelser. Fordelagtigheden ved investeringen afhænger i særdeleshed af de eksisterende fysiske muligheder på renseanlægget og hvilke teknologier, der vælges.

Fosforgenvinding kan være en rentabel, men langsigtedt investering på de renseanlæg, hvor der er meget fosfor i rejetvandet (100-300 mg P/l), og hvor der anvendes delvis Bio-P fjernelse suppleret med kemisk støttefældning. En stor del af driftsbesparelserne, der skal forretn investeringen, skal hentes på de afledte udgifter, der er omfattet af genvindingsprocessens potentielle til at øge Bio-P
andelen, dvs. kemikalieinkøb og mindre slamproduktion. Jo mere slampputationen koster, des større besparelser kan der opnås.

En finansiering af anlægsinvesteringerne i denne genvindingsteknologi udelukkende baseret på en indtjening ved salg af fosforslutproduktet (struvit), vil på nuværende tidspunkt, med de nuværende markedspriser på fosfor, ikke i sig selv give en attraktiv tilbagebetalingstid. Vandselskaberne anbefales at få lavet en vurdering af fosforpotentialet og de relaterede økonomiske aspekter indelholdt heri, da de afledte positive effekter med teknologien kan være medvirkende til at opnå en rentabel investering for denne løsning, der herved kan medvirke til at videreudvikle løsninger, der giver et håndterbart og lagerstabil gødningsprodukt med en kvalitet, der gør det muligt at gode jorden uden at tilføre de uønskede tungmetaller.

Såfremt denne teknologi implementeres, er det som nævnt nødvendigt at tage stilling til håndteringen af slamproduktionen med det mindre fosforindhold. I rapporten ses det, at en slamhåndteringsstrategi, hvor slammet udnyttes på landbrugsjord, er den billigste løsning for vandselskaberne og det herved sikres, at slammets positive ressourcer udnyttes. Såfremt slamkvaliteten ikke tillader dette, kan en forbrændingsløsning være alternativet. Med en stigende pris på fosfor og det internationale fokus på udvikling af teknologier til at genvinde fosfor fra forbrændingsasken vil det forventes, at driftsøkonomien for denne løsning vil blive forbedret i kraft af muligheden for at sælge genvundet fosfor af høj kvalitet. Indtil denne mulighed er kommercielt tilgængelig, viser rapportens analyse, at det kan forbedre driftsøkonomien ved kombinere en struvit udfældningsteknologi med forbrændingsløsningen. Efter forbrændingen bør asken deponeres særskilt til oparbejdning, når teknologierne er modne til dette.
13. Perspektivering

Indsatsen for at sikre en bæredygtig udnyttelse af ressourcerne indebærer ikke alene genvinding og udnyttelse af fosfor, men også en målrettet indsats mod tab af fosfor til spildevandssystemet. I dag indeholder 60-70% af tekstilvaskemidlerne og 100% af maskinopvaskemidlerne stadig fosfater. Såfremt det antages, at der i danske husholdninger forbruges 51,751 tons vaskemidler/år, estimeres det, at reduktionen i fosforbelastningen til renseanlæg kan blive op til 46% - en reduktion, der svarer til 2.450 tons fosfor pr. år. Fosfor indløbskoncentrationsniveauet til renseanlæg ville dermed i gennemsnit blive reduceret fra 8,9 mg P/l til 4,8 mg P/l som følge af en fuld fosfor substitution i husholdningsvaskemidlerne.

Det er derfor vigtigt, at vandselskaberne gennemfører en følsomhedsanalyse i forhold til faldende fosformængder i spildevandet, inden der foretages langsigtede investeringer, der i særlighed er følsomme overfor mængden af fosforprodukt til evt. videre salg.

Den mængde fosfor fra spildevandet, der potentielt kan indgå i fosforkredslobet, bestemmes, foruden af den faktisk tillægde mængde, også af renseanlæggets rensegrad, idet fosforindholdet i det rensete spildevand vil aldrig kunne indgå i den danske produktions fosforkredslob og nytteværdien dermed tabes.

Rensegraden for de danske anlæg bestemmes overvejende af udledekravet til fosfor, der generelt ligger på 1,5 mg P/l og nogle steder er skærpet ned til ca. 0,5 mg/l. På mange anlæg renses spildevandet ofte til fosforniveauer under kravværdien, idet den samlede udledning af fosfor er afgiftsbelagt. Denne praksis vurderes at være under revision, idet spildevandsafgifterne afregnes direkte til forbrugerne 1:1, mens driftsudgifter indgår i vandselskabets prisloftsberegning. Der er således ikke et økonomisk incitament til at bruge ressourcer på forbedret fosforrensning, når den deraf følgende sparede spildevandsafgift ikke kan tages til indtægt i vandselskabets budget. Såfremt værdien af genvundet fosfor fra spildevandet bliver tilstrækkelig stor, er det sandsynligt, at vandselskaberne på den baggrund vil hæve rensegraderne for at tilbageholde mest muligt fosfor til gavn for både vandmiljøet og ressourceudnyttelsen.
Bæredygtig udnyttelse af fosfor fra spildevand
14. Referencer

DEFRA - Büker P, Ashmore M, Smart J, Assessing the benefits of reductions in metal emissions to the atmosphere, A framework for the economic valuation of long-term benefits of the control of metal emissions based on scenario analyses - Final project report. DEFRA - Department for Environment, Food and Rural Affairs, project AQP013, January 2011, UK.

Nielsen, O.-K., Mikkelsen, M., Hoffmann, L., Gyldenkærne, S., Winther, M., Nielsen, M., Fauser, P., Thomsen, M., Plejdrup, M., Albrektsen, R., Hjelgaard, K., Bruun, H., Johannsen, V., Nord-Larsen,
Bæredygtig udnyttelse af fosfor fra spildevand

Schwerter, R.C. & Grant, R. 2003: Undersøgelse af miljøfremmede stoffer i gylle. Danmarks Miljøundersøgelser. 62 s.- Faglig rapport fra DMU nr. 430

Sckerl S. A., Historisk stor andel af spildevandsslam til jordbrug, Teknik og Miljø Februar 2012

Rubæk G.H., Aarhus universitet, Præsentation ved IDAmiljø temadag om ”Fosfor – gevinding af en knap ressource” d. 31. januar 2013. Titel på indlæg: ”Hvordan kan gylle/landbruget bidrage til et mere lukker fosforkredsløb?”

[Nieminen, 2010]: “Phosphorus recovery and recycling from municipal wastewater sludge”; Aalto University 2010; Finland
[Sartorius, 2011]: “Phosphorus recovery from wastewater – state of the art and future potential”; International Conference: Nutrient recovery and management 2011 – inside and outside the Fence”; Miami, Florida, USA

(MST, 2013)
http://www2.mst.dk/Udgiv/publikationer/2013/01/978-87-92903-82-2.pdf

(MST, 2012)

Thomsen et al, 2012 – DANVA årskonferenceoplæg 2012

(www.danva.dk)
http://www.danva.dk/Medlemmer/Spildevand/Slam.aspx; 23-01-2014

Bilag 1: Teknologier for fosforudnyttelse fra spildevand

I bilaget beskrives teknologier, hvor fosfor ekstraheres fra spildevandsslammet.

Der findes flere metoder til gevinding af fosfor fra spildevandet, der i det følgende er inddelt efter fosforkildens placering på renseanlægget, da dette definerer fællestrækkene mellem teknologierne:

- Teknologier der genvinder fosfor fra asken (ca. 90 % gevinding)
- Teknologier der genvinder fosfor fra en koncentreret væskestrom som rejektvandet (ca. 50 % gevinding)
- Teknologier der genvinder fosfor direkte fra udrådnet slam (ca. 50 % gevinding)

Fælles for alle metoder er, at deres effektivitet forbedres væsentligt ved mindst muligt forbrug af fældningskemikalier.

Der kan opnås yderligere information om teknologierne i Miljøstyrelsens udgivelse af 2012, "Innovationspartnerskab for anvendelse af fosfor fra spildevand og spildevandsslam fra spildevandsforsyninger".

I dette bilag er der primært taget udgangspunkt i følgende kilder.

[Nieminen, 2010]: “Phosphorus recovery and recycling from municipal wastewater sludge”; Aalto University 2010; Finland

[Sartorius, 2011]: “Phosphorus recovery from wastewater – state of the art and future potential”; International Conference: Nutrient recovery and management 2011 – inside and outside the Fence”; Miami, Florida, USA

Teknologier der genvinder fosfor fra asken

Når fosfor genfindes fra forbrændingsasken er der to overordnede principper:

- Ved termisk-kemisk behandling af asken
- Ved kemisk oplosning af asken

Det er vigtigt for begge typer af processer, at asken stammer fra slamforbrændingsanlæg og ikke anlæg, hvor slammet blandes med andre affaldstyper eller eksempelvis kul.

Termiske processer til askeoplukning

Der kan nævnes følgende overordnede termiske processer:

ASH DEC

Asken blandes med et kloridholdigt kemikalie (CaCl2, KCl, MgCl2) og ledes til en roterende ovn. Her frigives tungmetaller, der fjernes med røggassen via binding til klorid. Røggassen renes
herefter for tungmetaller. Det resterende aske produkt blandes med et fyldningsmateriale for at give slutproduktet de ønskede egenskaber. Slutproduktet markedsføres med navnet PhosKraft® og har licens som gødningsprodukt i Østrig og Tyskland.

Økonomisk evaluering af ASH DEC er, at salgsprisen på det opnåede gødningsprodukt kan sammenlignes med kommercielle gødningsprodukter, men produktionsomkostningerne er stadig større end priserne på råfosfat. Det resterende aske produkt blandes med et fyldningsmateriale for at give slutproduktet de ønskede egenskaber. Slutproduktet markedsføres med navnet PhosKraft® og har licens som gødningsprodukt i Østrig og Tyskland.

Økonomisk evaluering af ASH DEC er, at salgsprisen på det opnåede gødningsprodukt kan sammenlignes med kommercielle gødningsprodukter, men produktionsomkostningerne er stadig større end priserne på råfosfat. Det resterende aske produkt blandes med et fyldningsmateriale for at give slutproduktet de ønskede egenskaber. Slutproduktet markedsføres med navnet PhosKraft® og har licens som gødningsprodukt i Østrig og Tyskland.

Mehre

Thermophos

Kemiske processer til askeoplukning

Asken kan oplukkes kemisk ved opløsning i både syre og base. Generelt er der størst effektivitet ved oplukning med syre. Der kan nævnes følgende overordnede processer ud af et større antal:

SEPHOS

Med denne proces opløses asken i svovlsyre ved pH <1,5, hvorved metallerne opløses. Uopløste partikler fjernes, hvorefter pH hæves så fosfor udfældes med aluminium. Dette udfældningsprodukt kan ikke anvendes til gødning og skal derfor forarbejdes videre.

PASH

Easy mining

Dette er en proces hvor asken opløses i svovlsyre og fosfor efterfølgende udfældes med ammoniak til mono-ammonium-fosfat (MAP) eller di-ammonium-fosfat (DAP). Produktet betegnes CleanMAP®, det er vandopløselig og kan anvendes som gødning. MAP betegnelsen her skal ikke forveksles med magnesium-ammonium-fosfat, der også kaldes struvit og ofte forkortes MAP. Der er ikke fundet nogle økonomiske oplysninger vedr. denne proces.

Nord (tidligere KømmuneKemi)

Kommune Kemi i Nyborg arbejder på at udvikle en kemisk proces til oplukning af asken og genvinding af fosfor. Udviklingsarbejdet har primært været fokuseret på kød- og bennelsaske, hvor produktionen forventes at starte i 2013. Der arbejdes sideløbende på at lave en rentabel proces til
Bæredygtig udnyttelse af fosfor fra spildevand

fosforvinding fra asken. Ligesom med de andre processer er det fordelagtigt at undgå brugen af fældningskemikalier for at gøre fosforen nemmere tilgængeligt. Der findes endnu ikke nogle økonomiske nøgletal for processen.

Teknologier der genvinder fosfor fra en koncentreret væskestrom som rejektvandet

Den pt. mest omtalte metode til genvinding af fosfor fra spildevandet er ved kemisk udfældning af fosfor i en væskestrom med høj koncentration af ortho-P (PO43-). Der er generelt to steder på et renseanlæg, hvor dette kan opnås:

I rejektvandet fra rådnetanken, hvis anlægget ikke anvender kraftig kemisk fældning

I væskedelen af den anaerobe Bio-P reaktor, hvor slamm er i fuld suspension.

Det ses igen, at det er afgørende at undgå brugen af fældningskemikalier. Dette kan i forbindelse med slamforbrænding godt være målsetningen ved at bruge disse udfældningsteknologier. Hvis det er muligt at rene spildevandet tilstrækkeligt ved en kombination af Bio-P og produktion af et udfældningsprodukt, kan dette gøre asken efter forbrænding mere velegnet til fosforvunding, idet fosforen herved ikke vil findes hårdt bundet til jern eller aluminium.

Der findes følgende førende teknologier til denne type genanvendelse:

CRYSTALACTOR

Udfældningsproduktet er krystaller, der kan bruges som langsamt virkende gødning eller forarbejdes videre, eksempelvis med Thermphos.

OSTARA PEARL

Denne proces udfælder fosfor som struvit (magnesium-ammonium-fosfat) i en fluid bed reaktor. Produktet er tørrede krystaller, der har licens som godkendt gødning under navnet Crystal Green®. Det er opgivet at gødningsværdien frigives over 6 – 9 måneder. Processen er velegnet, hvis PO4 koncentrationen er over 60 mg/l og koncentrationen af NH4 er høj. Processen er således målrettet mod rejektvandet efter udrådning på anlæg med bio-P fjernelse. Der genvindes typisk 85 % af fosfor i rejektet og 10-15 % ammonium i rejektet.

Herunder ses kvaliteten af produktet Crystal Green.

```
P 18.3 %
Ca 6451 mg/kg
K 5.7 mg/kg
Mn 72.2 mg/kg
Fe 367 mg/kg
Tot Sulphur 263 mg/kg
Mg 91.365 mg/kg
K 0.07 %
ph 9.9
Co 3.7 mg/kg
Zn 8 mg/kg
Cd <0.1 mg/kg
Hg <0.1 mg/kg
Pb 0.5 mg/kg
Chromium 1.7 mg/kg
Ni 0.5 mg/kg
Molybdenum 1.4 mg/kg
Se 105 ug/kg
As 0.9 mg/kg
TKN 5.75 %
```

Figur 34 Undersøgelse af produktkvalitet af Crystal Green®, udført af Thames Water.
PHOSTRIP
Denne proces tager væskefaktionen fra det anaerobe bio-P slam og fælder PO₄ med calcium til calciumfosfat, der kan anvendes som langtidsvirknende gødning. Processen fungerer ved PO₄ koncentrationer >50-100 mg/l.

Teknologier der genvinder fosfor direkte fra udrådnet slam
De metoder der genvinder fosfor direkte fra slammet benytter principielt samme udfældningsprocesser som teknologier der udfælder fra en koncentreret væskestrøm.

Her nævnes den førende proces pt.:

AIRPREX

Det udrådende slam ledes til en "air-lift" reaktor, hvor der indblæses luft for CO₂ stripping. Dette hæver pH og der doseres MgCl₂, hvorefter struvitudfældningen forløber. Dette produkt er ikke krystaller, som de fornævnte metoder, og ledes derfor til en sandvasker, hvorfra det vaskede struvit kan udtages. Produktet fra denne proces imødekommer kravene til tysk gødning.

Som en sidegevinst til denne proces er der registreret forbedrede slamafvandingsegenskaber, når fosfor fjernes fra slam-matrixen inden slutafvanding. På det tyske referenceanlæg blev det vurderet, at slamafvandingen gik fra 23% TS til 27 %TS som følge af processen.
Bilag 2: Datagrunnlag for sammenlignende LCA

Som bekrevet i rapporten er der taget udgangspunkt i 3 typer af renseanlæg, der repræsenterer den ophøjning, der findes på størstedelen af de danske renseanlæg. Dette er følgende:

- **Type 1:** 1 trins anlæg uden rådnetank
- **Type 2:** 1 trins anlæg med rådnetank
- **Type 3:** 2 trins anlæg med rådnetank

Anlæggene er beskrevet og skitseret herefter.

14.1 **Type 1: Mindre dansk renseanlæg (20.000 PE)**

Type 1 repræsenterer de mindre danske renseanlæg, der er opbygget som et 1 trins anlæg uden rådnetank. Denne anlægstype er i rapportens beregninger defineret med en forureningsbelastning på 20.000 PE, sammensat som normalt husspildevand. Anlæggets principielle opbygning er skitseret på Figur 35.

De vigtigste karakteristika for anlægsopbygningen er, at der ikke findes nogen forklaringstank eller rådnetank på anlægget.

Anlægstypen findes både med kemisk fosforfjernelse og biologisk fosforfjernelse. Dette er benævnt hhv. Type 1k og Type 1b.

![Figur 35 Skitse af Type 1: Mindre danske renseanlæg, defineret med en belastning på 20.000 PE.](image)

14.2 **Type 2: Mellemstort dansk renseanlæg med rådnetank (100.000 PE)**

Type 2 repræsenterer et større dansk renseanlæg, der tilsvarende type 1 er opbygget som et 1 trins anlæg, men suppløret med en rådnetank. Denne anlægstype er i rapportens beregninger defineret med en forureningsbelastning på 100.000 PE, sammensat som normalt husspildevand. Anlæggets principielle opbygning er skitseret på Figur 36.

Anlægstypen findes både med kemisk fosforfjernelse og biologisk fosforfjernelse. Dette er benævnt hhv. Type 2k og Type 2b.
14.3 **Type 3: Mellemstort dansk renseanlæg med forklaring og rådnetank (100.000 PE)**

Renseanlægget type 3 repræsenterer anlæg, der er opbygget som et 2 trins anlæg, dvs. med forklaringstank for aktiv slåm anlægget. Denne anlægstype er tilsvarende type 2 suppleret med en rådnetank, til biogasproduktion fra primær slåm og biologisk overskudslåm. Type 3 er i rapportens beregninger defineret med en forureningsbelastning på 100.000 PE, sammensat som normalt husspildevand. Anlæggets principielle opbygning er skitseret på Figur 37.

Figur 37 Principiel opbygning af Type 3. Mellemstort dansk renseanlæg med forklaring og rådnetank. Anlægget er i vejledningen defineret med en belastning på 100.000 PE

14.4 **Standard husholdningsspildevand**

For at kunne lave generelle betragtninger vedr. miljøeffekter og driftskønomy forbundet med de forskellige teknologier, er der taget udgangspunkt i de tre renseanlægstyper. For at gøre vurderingerne uafhængige af det enkelte kloakoplands spildevandsbelastning, er det valgt at forudsætte, at anlæggene alene er belastet med husholdningsspildevand, altså uden industriel påvirkning.

Standard husholdningsspildevand er sammensat som vist i Tabel 15. I tabellen er der desuden vist middelværdier af de målte tilløbskoncentrationer på de danske renseanlæg, der har indrapporteret til vandkvalitetsparametertabellen. Middelværdierne er beregnet for anlæg indenfor hver af de tre overordnede typeanlæg som er defineret ovenfor.
Bæredygtig udnyttelse af fosfor fra spildevand

Tabel 15: Standard sammensætning af husholdningsspildevand.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard husholdningsspildevand</th>
<th>Middelværdier fra vandkvalitetsparameter-databasen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daglig mængde pr. PE</td>
<td>Koncentration</td>
</tr>
<tr>
<td>Vandmængde</td>
<td>300 liter/PE</td>
<td>200 mg/l</td>
</tr>
<tr>
<td>BOD</td>
<td>60 g/PE</td>
<td>150 mg/l</td>
</tr>
<tr>
<td>COD</td>
<td>130 g/PE</td>
<td>433 mg/l</td>
</tr>
<tr>
<td>Total-N</td>
<td>12 g/PE</td>
<td>37 mg/l</td>
</tr>
<tr>
<td>Total-P</td>
<td>2.4 g/PE</td>
<td>7 mg/l</td>
</tr>
<tr>
<td>SS</td>
<td>72 g/PE</td>
<td>259 mg/l</td>
</tr>
</tbody>
</table>

Ved kontrol af de mængder, der forudsættes tilledt renseanlægget pr. PE ses det, at middelværdierne fra vandkvalitetsparameterdatabasen ligger på tilsvarende niveau som de generelle erfaringstal. Det ses også, at spildevandet for de større anlæg (T3) i gennemsnit har lidt højere koncentrationer end for mindre anlæg. Dette viser, at de større anlæg i højere grad modtager spildevand fra industrier end på de mindre anlæg. Ved at anvende standard sammensat husholdningsproduktion fjernes de forøgede muligheder/udfordringer, der kommer på et renseanlæg ved modtagelse af industriellspildevand. Resultaterne bliver herved nemmere at overføre til forsyningselskabernes konkrete renseanlæg.

14.5 Procestekniske vurderinger for renseanlæg

Med baggrund i anlægsopbygningerne som vist på Figur 35 - Figur 37, med en belastning der beregnes ud fra Tabel 15, er der gennemført procestekniske beregninger for at danne beregningsgrundlag for en sammenlignede LCA til vurdering af forskellige teknologier til udnyttelse af fosfor fra spildevand. For alle beregninger er der forudsat samme udløbskvalitet for det rensede spildevand og de procestekniske vurderinger er lavet med udgangspunkt i at opnå denne rensning. De anvendte udløbskonzentrationer for det rensede vand ses i Tabel 16.

Tabel 16: Forudsat kvalitet af det rensede spildevand, der indgår i de procestekniske vurderinger.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Koncentration i udløbsvand</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>10 mg/l</td>
</tr>
<tr>
<td>COD</td>
<td>35 mg/l</td>
</tr>
<tr>
<td>Total-N</td>
<td>4 mg/l</td>
</tr>
<tr>
<td>Total-P</td>
<td>0,7 mg/l</td>
</tr>
<tr>
<td>SS</td>
<td>10 mg/l</td>
</tr>
</tbody>
</table>

Resultaterne præsenteres i Tabel 19 og i det følgende afsnit gennemgås et eksempel på beregningsmetodikken.
14.5.1 Eksempel: Renseanlæg Type 1: 20.000 PE

Til de procestekniske vurderinger med en belastning på 20.000 PE er der beregnet følgende belastningsgrundlag, samt udledt stofmængde efter gennemførte rensning:

Tabel 17: Eksempel på belastningsopgørelse samt udledt stofmængde for et Type 1 anlæg med 20.000 PE belastning.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Belastning af renseanlæg</th>
<th>Udledt stofmængde efter rensning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vandmængde</td>
<td>6.000 m³/d</td>
<td>6.000 m³/d</td>
</tr>
<tr>
<td>BOD</td>
<td>1.200 kg/d</td>
<td>60 kg/d</td>
</tr>
<tr>
<td>COD</td>
<td>2.600 kg/d</td>
<td>210 kg/d</td>
</tr>
<tr>
<td>Total-N</td>
<td>240 kg/d</td>
<td>24 kg/d</td>
</tr>
<tr>
<td>Total-P</td>
<td>48 kg/d</td>
<td>4,2 kg/d</td>
</tr>
<tr>
<td>SS</td>
<td>1.440 kg/d</td>
<td>60 kg/d</td>
</tr>
</tbody>
</table>

Fra dette grundlag er der gennemført procestekniske beregninger til fastlæggelse af forbrugsstoffer, energiforbrug samt produktionen af overskudsslam. Beregningerne er gennemført under antagelse af, at anlægget drives med hhv. kemisk fældning af fosfor (Type 1k) og med biologisk fosforfjernelse, i dette tilfælde uden kemisk støttedosering, da dette er muligt med Type 1 anlægsopbygningen (Type 1b).
Resultaterne er vist i Tabel 18.

Tabel 18: Eksempel på beregning af input-output data til sammenlignende LCA analyse.

<table>
<thead>
<tr>
<th>Input værdier</th>
<th>Output værdier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiforbrug til beluftning¹</td>
<td>Oversukudsslam⁶</td>
</tr>
<tr>
<td>1.199 kWh/d</td>
<td>484 ton TS/år</td>
</tr>
<tr>
<td>Energiforbrug til samlet anlæg²</td>
<td>N bundet i oversukudsslam⁷</td>
</tr>
<tr>
<td>767.709 kWh/år</td>
<td>23.5 ton N/år</td>
</tr>
<tr>
<td>Specifikt energiforbrug</td>
<td>P bundet i oversukudsslam</td>
</tr>
<tr>
<td>38.4 kWh/PE</td>
<td>16 ton P/år</td>
</tr>
<tr>
<td>Forbrug af FeCl₃³</td>
<td>Andel af P biologisk bundet⁸</td>
</tr>
<tr>
<td>298 ton JKL/år</td>
<td>37 %</td>
</tr>
<tr>
<td>Forbrug af polymer⁵</td>
<td>Andel af P kemisk bundet</td>
</tr>
<tr>
<td>9.7 ton rå-polymer/år</td>
<td>63 %</td>
</tr>
</tbody>
</table>

¹ Iltbehov beregnet ved Krügers dimensioneringsprogram RENS, kan kontrolleres ved (Winther et al. 2009, s. 236). Forudsat overfladebeluftning med optimal neddykning --> 1,8 kg O₂/kWh se evt. (Danva rapport: "Energiberegneren" s. 24)
² Forudsat gennemsnitlig fordeling af energiforbrug som på anlæg uden forrensning (www. Energibesparelser-vand.dk). Se figur herunder:

![Fordeling af energiforbrug på anlæg uden forrensning](image)

³ Forbrug regnet ud fra et molforhold på 1,1 mellem metal og fosfor
⁴ Forudsat brugen af jernklorid med 11,5% Fe indhold
⁵ Antaget forbrug til afvanding 10 kg aktiv polymer/ton TS. 50 % aktiv polymer i rå-polymeren.
⁶ Beregnet med Krügers dimensioneringsprogram RENS. Udbyttefaktor mv. kan bl.a. kontrolleres ved (Winther et al. 2009, s. 232)
⁷ Forudsat 6 % N bundet i slam
⁸ Forudsat 1,5% P bundet i den biologiske slamproduktion
Tabel 19: Input-output strømme for syy undersøgte fosforfjernelses og genanvendelsesteknologiscenarier.

<table>
<thead>
<tr>
<th>Mod eller uden forklaringstank</th>
<th>1-trin</th>
<th>2-trin</th>
<th>3-trin</th>
<th>4-trin</th>
<th>5-trin</th>
<th>6-trin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anlægtype</td>
<td>T1k</td>
<td>T1b</td>
<td>T2k</td>
<td>T1k</td>
<td>T1b</td>
<td>T3b</td>
</tr>
<tr>
<td>Pforbrugsstof</td>
<td>Bio P</td>
<td>Bio P</td>
<td>Bio P</td>
<td>Bio P</td>
<td>Bio P</td>
<td>Bio P</td>
</tr>
<tr>
<td>Emissioner til vand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissioner til jord fra spredning af slam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bilag 3: Eksempler på anvendelse af SPRi i praksis

SPRi er forkortelsen for Sustainable Phosphorus Removal index og angives i enheden %.

SPRi angiver, hvor stor en andel af den tilledte fosformængde, der fjernes med processer på renseanlægget, der sikrer, at fosfor på et senere tidspunkt potentielt kan substituere et kommersielt fosforprodukt. Jo tættere indekset er på 100 % jo bedre er bæredygtigheden i relation til fosfor.

SPRi værdien beregnes efter følgende beregningsformel:

\[
SPRi = \left(P_{\text{ind}} \times \frac{1}{\text{år}} - 3 \times P_{\text{ud}} \times \frac{1}{\text{år}} - P_{\text{kem}} \times \frac{1}{\text{år}} \right) / P_{\text{ind}} \times 100
\]

\(P_{\text{ind}} \) angiver den daglige mængde fosfor, der i gns. ledes til renseanlægget
\(P_{\text{ud}} \) angiver den daglige mængde fosfor, der i gns. udledes fra renseanlægget
\(P_{\text{kem}} \) angiver den daglige mængde fosfor, i gns. bindes til slammet via jern og/eller aluminiumsprodukter

Til beregning af værdien af \(P_{\text{ind}} \) og \(P_{\text{ud}} \) i beregningen af SPRi værdien (Formel /1/) kan vandselskaberne anvende de indløbs- og udløbsprøver, der udtages i henhold til kravet om egenkontrol i Spildevandsbekendtgørelsen (BEK nr. 1448 af 11/12/2007). Det anbefales, at anvende en dataserie fra minimum ét års prøvetagning og analyser.

Beregningen af værdien \(P_{\text{kem}} \) er den sværere parameter at estimere, da den kemiske fosforandel i slammet er afhængig af spildevandssammensætningen og fosformængden i udløbet. Forstnævnte forhold kræver, at der opstilles en komplet massebalance af renseanlægget, hvis estimeringen skal være præcis. Dette anbefales på såg at blive gjort for hvert af renseanlæggene i de danske vandselskaber.

Til overslagsberegningerne af SPRi værdien, kan vandselskaberne anvende en grov estimering af \(P_{\text{kem}} \) værdien (mængden af fosfor bundet kemisk i spildevandsslammet) ved at tage udgangspunkt i vejledningens repræsentative anlæg: Type 1, 2 og 3. \(P_{\text{kem}} \) værdien for disse anlæg fremgår nedenstående.

Ingen Bio-P
Type 1 (1 trins u. rådnetank) \(P_{\text{kem}} \) ca. 60 % af \(P_{\text{ind}} \)
Type 2 (1 trins m. rådnetank) \(P_{\text{kem}} \) ca. 65 % af \(P_{\text{ind}} \)
Type 3 (2 trins m. rådnetank) \(P_{\text{kem}} \) ca. 55 % af \(P_{\text{ind}} \)

Delvis Bio-P med kemisk støttefældning
Type 1 (1 trins u. rådnetank) \(P_{\text{kem}} \) ca. 25 % af \(P_{\text{ind}} \)
Type 2 (1 trins m. rådnetank) \(P_{\text{kem}} \) ca. 35 % af \(P_{\text{ind}} \)
Type 3 (2 trins m. rådnetank) \(P_{\text{kem}} \) ca. 25 % af \(P_{\text{ind}} \)
Maksimal Bio-P proces

<table>
<thead>
<tr>
<th>Type</th>
<th>(P_{\text{kem}}) ca. o % af (P_{\text{ind}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 (1 trins u. rådnetank)</td>
<td>(P_{\text{kem}}) ca. 0 % af (P_{\text{ind}})</td>
</tr>
<tr>
<td>Type 2 (1 trins m. rådnetank)</td>
<td>(P_{\text{kem}}) ca. 30 % af (P_{\text{ind}})</td>
</tr>
<tr>
<td>Type 3 (2 trins m. rådnetank)</td>
<td>(P_{\text{kem}}) ca. 20 % af (P_{\text{ind}})</td>
</tr>
</tbody>
</table>

Årsagen til at en maksimal ydelse af Bio-P processen ikke er tilstrækkelig til at reducere den kemisk bundne P til 0 % i anlægsterne: Type 2 og 3 skyldes, at den type anlæg har en høj egenbelastning af fosfor via rejektvandet fra slutafvandingen af det udrådnede slam. Der findes nogle begrænsninger i spildevandets sammensætning, der medfører, at Bio-P processen begrænses til et niveau, der ikke ligger meget højere end den fosfor, der er i spildevandet.

For at opnå en fuldstændig Bio-P proces i anlægsterne: Type 2 og 3 kræves enten en dosering af en ekstern kulstofkilde eller alternativt en supplerende fjernelse af fosfor fra rejektvandsstrømmen, hvilket er muligt med struvitudfældende processer.

Eksempel på beregning af SPRi

Der ønskes et groft estimat for bæredygtigheden af den eksisterende fosforfjernelse på X-købing Renseanlæg før og efter en implementering af Bio-P. Driftspasseren af renseanlægget har vurderet, at udløbskoncentration af fosfor ved etablering af 100 % Bio-P vil stige fra de nuværende 0,4 mg P/l til ca. 1,2 mg P/l. Anlægget har et udlederkrav på 1,5 mg P/l.

Anlægsfakta:
- 1 trins aktivt slam anlæg
- Gns. organisk belastning på 30.000 PE
- Gns. spildevandsmængde: 10.000 m³/d
- Gns. fosfor koncentration: 7,0 mg P/l

SPRi ved de eksisterende forhold

\[
P_{\text{ud}} = 7,0 \times 10.000/1.000 = 70 \text{ kg P/d}
\]
\[
P_{\text{ind}} = 0,4 \times 10.000/1.000 = 4,0 \text{ kg P/d (0,4 mg P/l)}
\]
\[
P_{\text{kem}} = 70 \times 62 \% = 43 \text{ kg P/d}
\]
\[
\text{Estimering af SPRi} \quad (70 - 3 \times 4,0 - 43)/70 \times 100 \% = \text{SPRi} = 21 \% \text{ ved ren kemisk fældning af P}
\]

SPRi med delvis Bio-P og støttefældning

\[
P_{\text{ud}} = 7,0 \times 10.000/1.000 = 70 \text{ kg P/d}
\]
\[
P_{\text{ind}} = 0,4 \times 10.000/1.000 = 4,0 \text{ kg P/d (0,4 mg P/l)}
\]
\[
P_{\text{kem}} = 70 \times 25 \% = 17,5 \text{ kg P/d}
\]
\[
\text{Estimering af SPRi} \quad (70 - 3 \times 4,0 - 17,5)/70 \times 100 \% = \text{SPRi} = 58 \% \text{ ved Bio-P og støttefældning}
\]

SPRi med 100 % Bio-P

\[
P_{\text{ud}} = 7,0 \times 10.000/1.000 = 70 \text{ kg P/d}
\]
\[
P_{\text{ind}} = 1,2 \times 10.000/1.000 = 12,0 \text{ kg P/d (1,2 mg P/l)}
\]
\[
P_{\text{kem}} = 70 \times 0 \% = 0,0 \text{ kg P/d}
\]
\[
\text{Estimering af SPRi} \quad (70 - 3 \times 12 - 0)/70 \times 100 \% = \text{SPRi} = 49 \% \text{ ved Bio-P og støttefældning}
\]

Driftspasseren kan konkludere, at hvis hans antagelse om at fosforkoncentration i udløbet vil stige til 1,2 mg P/l ved en drift med 100 % Bio-P, så vil en løsning med delvis Bio-P og kemisk støttefældning være den mest bæredygtige strategi til fosforfjernelse.

Driftspasseren er dog ikke helt sikker på sin antagelse, og ønsker at kende grænsen for, hvor højt et fosfortab via udløbet der miljømæssigt kan tolereres ved etablering af 100 % Bio-P. Han opstiller derfor følgende ligning:

\[
(70 - P_{\text{ud}} \times 3 - 0)/70 < 58 \% \Rightarrow P_{\text{ud}} < (70 - 70 \times 58 \%)/3
\]
\[
\Rightarrow P_{\text{ud}} < 9,8 \text{ kg P/d}
\]
Bæredygtig udnyttelse af fosfor fra spildevand

Med en gns. spildevandsmængde i udløbet på ca. 10.000 m3/d fås en maksimal tilladelig fosforkoncentration i udløbet på ca. 1,00 mg P/l. Hvis en drift med 100 % Bio-P medfører en fosforkoncentration i udløbet på under 1,00 mg P/l, vil det være den mest miljømæssige bæredygtige løsning.

I det følgende presenteres beregningerne af SPRi til grundlag for vejledningens vurderinger.

14.5.2 **Renseanlæg uden bæredygtige teknologier**

Renseanlæg uden installerede bæredygtige teknologier anvender typisk en kemisk dosering med et molforhold på ca. 1,0-1,5 (målt i forhold til fosfor i tilløbet). Anlægstopkanten er typisk kendtegnet ved at have et lavt fosfortab til recipienten og en lav tilgængelighed af fosfor slammet.

Renseanlæg obygget som 1 trins anlæg uden rådnetank (Type 1) anvender teknologi 2 og 3 til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægser ligger på 8-20 %, afhængig af fosfortabet til recipienten (0,5-1,0 mg P/l).

Renseanlæg obygget som 1 trins anlæg med rådnetank (Type 2) anvender teknologi 2 og 3 til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægser ligger på 5-17 %, afhængig af fosfortabet til recipienten (0,5-1,0 mg P/l).

Renseanlæg obygget som 2 trins anlæg med rådnetank (Type 3) anvender teknologi 1, 2 og 3 til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægser ligger på 13-25 %, afhængig af fosfortabet til recipienten (0,5-1,0 mg P/l).

14.5.3 **Renseanlæg med delvis Bio-P og kemisk støttedæmpning**

Renseanlæg med delvis Bio-P og kemisk støttedæmpning anvender typisk en kemisk dosering med et molforhold på ca. 0,5 (målt i forhold til fosfor i tilløbet). Anlægstopkanten er typisk kendtegnet ved at have et lavt fosfortab til recipienten og en høj tilgængelighed af fosfor slammet.

Renseanlæg obygget som 1 trins anlæg uden rådnetank (Type 1) anvender teknologi 2, 3 og 4 til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægser ligger på 42-61 %, afhængig af fosfortabet til recipienten (0,5-1,0 mg P/l).

Renseanlæg obygget som 1 trins anlæg med rådnetank (Type 2) anvender teknologi 2, 3 og 4 til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægser ligger på 29-48 %, afhængig af fosfortabet til recipienten (0,5-1,0 mg P/l).

Renseanlæg obygget som 2 trins anlæg med rådnetank (Type 3) anvender teknologi 1, 2, 3 og 4 til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægser ligger på 43-63 %, afhængig af fosfortabet til recipienten (0,5-1,0 mg P/l).

14.5.4 **Renseanlæg med maksimal Bio-P andel**

Renseanlæg, hvor det forsøges at køre anlægget med maksimal andel af Bio-P og minimal andel af kemisk støttedæmpning, anvender typisk en kemisk dosering med et molforhold på ca. 0,0-0,5 (målt i forhold til fosfor i tilløbet). Anlægstopkanten er typisk kendtegnet ved at have et højere fosfortab til recipienten og en høj tilgængelighed af fosfor slammet.

Renseanlæg obygget som 1 trins anlæg uden rådnetank (Type 1) har potentielt mulighed for at køre med 100 % Bio-P og anvender således kun bæredygtige teknologier, teknologi 2 og 4, til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægser ligger på 44-81 %, afhængig af fosfortabet til recipienten, der vil være lidt højere med ren Bio-P (0,5-1,5 mg P/l).
Renseanlæg opbygget som 1 trins anlæg med rådnetank (Type 2) kan kun yderst sjældent køre en 100 % ren Bio-P proces, da bioforsørsningsprocessen i rådnetanken frigiver en stor andel af fosforen indbygget i slammet. Denne ekstra fosforfraktion ledes tilbage til renseanlæggets indløb og skal fjernes igen. Derfor anvendes teknologi 2, 3 og 4 til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægstyper ligger på 45-50 %, afhængig af fosfortabet til recipienten (0,5-1,0 mg P/l).

Renseanlæg opbygget som 2 trins anlæg med rådnetank (Type 3) har samme udfordring som WWTP type 2 og anvender således både teknologi 1, 2, 3 og 4 til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægstyper ligger på 60-65 %, afhængig af fosfortabet til recipienten (0,5-1,0 mg P/l).

14.5.5 Intern fosforgenvinding

Intern fosforgenvinding foregår ved primært i form struvitudfældning fra et procesområde på renseanlæggets, hvor fosforkoncentrationen er høj (100-300 mg P/l). Typisk vil man kunne finde disse koncentrationer i rejektvandet fra renseanlæg med god Bio-P funktion og slamudrådning.

Teknologien er således velegnet til renseanlæg med rådnetank (Type 2 og 3) der har etableret Bio-P. Mindre 1 trins renseanlæg uden rådnetanke (Type 1) vil være mindre egnede.

For anlæg med rådnetank (Type 2 og 3) vil en genvindning give mulighed for at køre med ren Bio-P, da egenbelastningen af fosfor som regel minimeres tilstrækkeligt til at Bio-P processen ikke begrænses i omfanget. Derfor vil der være muligt at basere fosforfjernelse på udelukkende bæredygtige metoder, teknologi 1, 2, 4 og 6) til fosforfjernelse (afsnit 9.1). SPRi hos disse anlægstyper ligger på 43-85 %, afhængig af fosfortabet til recipienten (0,5-1,5 mg P/l).

14.5.6 Tertiar rensning af suspenderet stof

En tertiar rensning af suspenderet stof i udløbet fra renseanlæggene vil reducere fosfortabet, men har ingen indflydelse på fosfortilgængeligheden i slammet, hvorfor teknologien skiller sig ud fra de øvrige.

Suspenderet stof indeholder 3-4 % fosfor og udgør derfor en væsentlig del af fosforfraktionen i udløbet fra et renseanlæg. Derfor vil en tertiar rensning af suspenderet stof altid kunne anbefales.

I Figur 38 er effekten af en forbedret tertiar fjernelse af suspenderet stof på henholdsvis SPRi og fosforfjernelsen afbildet. Det er således muligt at øge SPRi værdien med 35 %, hvis udløbskoncentrationen reduceres fra f.eks. 30 til 5 mg SS/l.
Figur 38 Effekten af en forbedret tertiär fjernelse af suspenderet stof på henholdsvis SPRi og fosforfjernelsen

Med installation af en tertiær rensning af suspenderet stof i udløbet fra renseanlægget fra 15 til 5 mg SS/l vil øge fosforfjernelsen med 5 % og give med vægtningen af fosfortabet på en faktor 3 i beregningen af SPRi følgende miljömæssige forbedringer på 15-20 %.
Bilag 4: Diverse økonomiske vurderinger af fosforfjernelse fra spildevand

De fosforrelaterede udgifter på et almindeligt dansk renseanlæg
Nedenstående gives et eksempel på de fosforrelaterede driftsudgifter for et 1 trins renseanlæg uden rådnetank (Type 1).

Typisk ligger driftsudgifterne for et dansk renseanlæg med krav om fjernelse af organisk stof, kvælstof og fosfor (MBNKD) og, i området 80-150 DKK/PE/år. De større renseanlæg ligger typisk i den lavere ende af skalaen. Af disse driftsudgifter vil en fraktion være tilknyttet behovet for fosforfjernelse.

Disse fosforrelaterede driftsudgifter kan opgøres til følgende poster:

- Indkøb af fældningskemikalier
- El- og polymerforbrug til for- og slutafvanding af kemisk slam
- Håndtering og slutdisponering af kemisk slam

I Tabel 20 gives et skøn på størrelsesorden af de fosforrelaterede driftsudgifter for et almindeligt 1 trins renseanlæg (Type 1) der drives med 100 % Bio-P og uden Bio-P. Det antages at anlægget er belastet med 20.000 PE og har samlede driftsudgifter på ca. 140 DKK/PE/år, dvs. DKK 2,8 mio./år.
Beregningerne i Tabel 20 er baseret på følgende enhedspriser:

- Fældningskemikalier: 800 DKK/t (JKL)
- El: 0,90 DKK/kWh
- Slamdisponering: 250 DKK/t (22 % TS)

Tabel 20 Vejledende fosforrelaterede driftsudgifter 1.000 DKK (groft estimat), WWTP type 1

<table>
<thead>
<tr>
<th>Post</th>
<th>WWTP type 1 – 20.000 PE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 % Bio-P</td>
</tr>
<tr>
<td>Indkøb af fældningskemikalier</td>
<td>312</td>
</tr>
<tr>
<td>Elforsbrug til for- og slutafvanding</td>
<td>1</td>
</tr>
<tr>
<td>af Bio-P eller kemisk slam</td>
<td></td>
</tr>
<tr>
<td>Polymerforsbrug til slutafvanding af</td>
<td>223</td>
</tr>
<tr>
<td>Bio-P eller kemisk slam</td>
<td></td>
</tr>
<tr>
<td>Slutdisponering af Bio-P eller kemisk</td>
<td>147</td>
</tr>
<tr>
<td>slam</td>
<td></td>
</tr>
<tr>
<td>Total, 1.000 DKK/år (ekskl. moms)</td>
<td>536</td>
</tr>
<tr>
<td>Total, DKK/PE/år (ekskl. moms)</td>
<td>26,8</td>
</tr>
<tr>
<td>Fosforrelaterede udgifter i % af</td>
<td>19 %</td>
</tr>
<tr>
<td>samlede driftsudgifter</td>
<td></td>
</tr>
</tbody>
</table>

Økonomisk bedømmelse af onlinestyring af kemikaliedosering

I dette afsnit beskrives økonomien i at etablere en onlinestyring af den kemiske fosforfældning på renseanlæg uden Bio-P teknologien installeret. Der tages udgangspunkt i anlægstyperne WWTP 1-3, uden Bio-P.

Anlægsøkonomi

Alle danske renseanlæg med fosforkrav har installeret et kemisk doseringsanlæg til kemisk fældning af fosfor. Sådan vil det også være fremover, hvorfor denne anlægsinvestering ikke behøves at blive bedømt. En miljømæssig optimering af teknologien kræver at den kemiske dosering minimeres til et absolut minimum med en så minimal forøgelse af fosfortabet til recipienten som muligt. Dette kræver en investering i en næringssaltsbaseret onlinestyring og onlinemåler til fosfat.

Nedenstående ses et eksempel på et groft prisestimat på anlægsinvesteringer for et typisk mindre og større renseanlæg. Investeringerne kan variere alt efter forholdene på anlæggene; specielt vil antallet af doseringssteder og antallet af proceslinier i den biologiske behandlingsdel have betydning for investeringsbehovet.

<table>
<thead>
<tr>
<th>Implementering af onlinestyring af kemisk dosering på basis af fosgormængden i spildevandet</th>
<th>20.000 PE (Type 1)</th>
<th>100.000 PE (Type 2 -3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKK</td>
<td>100.000</td>
<td>300.000</td>
</tr>
<tr>
<td>Montering af fosfat onlinemåler</td>
<td>DKK</td>
<td>170.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>340.000</td>
</tr>
<tr>
<td>I alt ekskl. Moms</td>
<td>DKK</td>
<td>270.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640.000</td>
</tr>
</tbody>
</table>

Driftøkonomi

I denne opgørelse af driftsøkonomien forbundet med den kemiske fosforfjernelse medtages kun driftsudgifterne til:

- Indkøb af fældningskemikalier
- Slutanbringelse af spildevandsslam
- Drift og vedligeholdelse af fosformåler

Mængden af kemisk slam afhænger af den mængde fældningskemikalier, der doseres pr. kg fosfor, der skal fjernes, det såkaldte molforhold for doseringen. I renseanlæg med ren kemisk fosforfældning tilsettes typisk fældningskemikalier i et molforhold på mellem 1,0-1,5 mol aktivt metal/mol fosfor i indløbet til renseanlægget.

Det forudsættes i beregningerne af driftsøkonomien at anlæg uden onlinestyring af den kemiske dosering anvender et molforhold på 1,5 mol aktivt metal pr. mol fosfor i indløbet og anlæg med onlinestyring af den kemiske dosering anvender et molforhold på 1,3. Herudover er følgende enhedspriser forudsat:

- Fældningskemikalier: 800 DKK/t produkt
- Slampriseringspris: 250 DKK/t slam

Nedenstående fremgår et groft estimat af de driftsudgifter der vil være forbundet med en drift med ren kemisk fældning, henholdsvis med eller uden onlinestyring baseret på fosformålerne.

20.000 PE anlæg, 1 trins, uden Bio-P, uden rådnetank (Type 1)

<table>
<thead>
<tr>
<th></th>
<th>Uden onlinestyring</th>
<th>Med onlinestyring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indkøb af fældningskemikalier</td>
<td>DKK/år</td>
<td>312.000</td>
</tr>
<tr>
<td>Slutanbringelse af slam (22 % TS)</td>
<td>DKK/år</td>
<td>148.000</td>
</tr>
<tr>
<td>D&V fosformåler(e)</td>
<td>DKK/år</td>
<td>0</td>
</tr>
<tr>
<td>I alt ekskl. moms</td>
<td>DKK/år</td>
<td>460.000</td>
</tr>
</tbody>
</table>

100.000 PE anlæg, 1 trins, uden Bio-P, med rådnetank (Type 2)

<table>
<thead>
<tr>
<th></th>
<th>Uden onlinestyring</th>
<th>Med onlinestyring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indkøb af fældningskemikalier</td>
<td>DKK/år</td>
<td>1.948.000</td>
</tr>
<tr>
<td>Slutanbringelse af slam (25 % TS)</td>
<td>DKK/år</td>
<td>648.000</td>
</tr>
<tr>
<td>D&V fosformåler(e)</td>
<td>DKK/år</td>
<td>0</td>
</tr>
<tr>
<td>I alt ekskl. moms</td>
<td>DKK/år</td>
<td>2.596.000</td>
</tr>
</tbody>
</table>

100.000 PE anlæg, 2 trins, uden Bio-P, med rådnetank (Type 3)

<table>
<thead>
<tr>
<th></th>
<th>Uden onlinestyring</th>
<th>Med onlinestyring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indkøb af fældningskemikalier</td>
<td>DKK/år</td>
<td>1.558.000</td>
</tr>
<tr>
<td>Slutanbringelse af slam (28 % TS)</td>
<td>DKK/år</td>
<td>578.000</td>
</tr>
<tr>
<td>D&V fosformåler(e)</td>
<td>DKK/år</td>
<td>0</td>
</tr>
<tr>
<td>I alt ekskl. moms</td>
<td>DKK/år</td>
<td>2.136.000</td>
</tr>
</tbody>
</table>

Sikkerhed og risici

Ved at etablere en onlinestyring af kemikaliedoseringen reduceres kemikaliepuljen i det aktive slam, metalbufferen, til et minimum. Renseanlæggets evne til at håndtere større kortvarige udsving af fosforbelastningen er således reduceret. Effekten vil være størst på de mindre renseanlæg, hvor der er større variation af spildevandsmængderne.

De kortvarige udsving i fosforbelastningen af renseanlægget vil sandsynligvis øge udløbskoncentrationen af fosfor, dog tilsvarende kortvarigt. Stigningen af fosfor i udløbet vurderes...
dog på årsbasis at være marginalt ganske lille, måske i worst case op til 3-5 % større. For de tre repræsentative anlægstyper vil det svare til en stigning i grønne afgifter på ca.:

20.000 PE (WWTP type 1): 3.-6.000 DKK/år mere i grønne afgifter til fosfor
100.000 PE (WWTP type 2-3): 15-30.000 DKK/år mere i grønne afgifter til fosfor

, baseret på en fosforafgift på 110 DKK/kg Total-P.

Der kan således være en lille risiko for at de fosforrelaterede grønne afgifter er lidt højere.

Der burde ikke foreligge en risiko for at udlederkravet til fosfor på årsbasis overskrides, da onlinestyringen forudsettes at blive etableret med en sikker tilbagefaldsstyring.

Sammenfatning

En investering i en onlinestyring af kemikaliedoseringen på anlæg der ikke har Bio-P teknologien installeret kan måske overraskende nok godt betale sig for større renseanlæg, hvor tilbagebetalingstiden vil kunne holdes på omkring 2-3 år.

For de mindre renseanlæg omkring 20.000 PE og derunder uden Bio-P teknologien installeret anbefales der at lave en specifik økonomisk beregning før der investeres i en onlinestyring.

Tiltaget vurderes ikke at være forbundet med nævneværdige økonomiske risici.

Generelt kan siges at besparelsespotentialet er meget følsom overfor prisen på slutdisponering af slam. Jo højere slampris des højere driftsbesparelser. Eksemplerne tager alle udgangspunkt i disponeringspris på 250 DKK/t, hvilket er i den lave ende.

Økonomisk bedømmelse af Bio-P processen

Den avancerede biologiske fosforfjernelse ligger højest i den miljømæssige bedømmelse af teknologier til fjernelse af fosfor fra spildevand. Derfor er det også er stor betydning, hvorvidt teknologien kan etableres økonomisk bæredygtigt på de danske renseanlæg.

I dette afsnit beskrives økonomien i at etablere helt eller delvist Bio-P på de valgte repræsentative anlægstyper Type 1, 2 og 3.

Anlægsøkonomi

Bio-P teknologien kræver, at der i den eksisterende biologiske behandlingsdel til fjernelse af kvælstof, fosfor og organisk stof introduceres et anaerobt procesvolumen, dvs. et volumen, hvor der hverken forefindes ilt (O₂) eller nitrat (NO₃-N).

For at etablere Bio-P kræves en investering i minimum følgende:
- Separat anaerob procestank eller software med Bio-P dedikeret avanceret onlinestyring
- Fosformåler
- Generel avanceret onlinestyring

I Tabel 21 gives grove estimator på størrelsesorden af de anlægsinvesteringer, der vil være forbundet med etablering af Bio-P på vejledingens repræsentative anlægstyper, Type 1, 2 og 3, dvs. henholdsvis 20.000 PE og 100.000 PE store renseanlæg.

Opgørelserne er kun vejledende, da der kan være specifikke forhold på de enkelte anlæg, der kan reducere eller øge anlægsinvesteringerne væsentligt. Desuden antages, at renseanlæggene i forvejen
er i besiddelse af nødvendigt udstyr til kemisk fosforfjernelse i form af kemikalieltank og kemikalipumpe med flowmåler til registrering af pumpet kemikaliemængde.

Tabel 21 Vejledende anlægsinvesteringer i mio. DKK for etablering af Bio-P (groft estimat)

<table>
<thead>
<tr>
<th>Post</th>
<th>20.000 PE</th>
<th>100.000 PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-P reaktor</td>
<td>0,2</td>
<td>0,6,8</td>
</tr>
<tr>
<td>Fosformåler</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>Avanceret onlinestyring</td>
<td>0,1-0,8</td>
<td>0,3-1,1</td>
</tr>
<tr>
<td>Total, mio. DKK (ekskl. moms)</td>
<td>1,0-2,5</td>
<td>1,5-7,5</td>
</tr>
</tbody>
</table>

Driftsøkonomi

Driftsoekonomien for etablering af Bio-P teknologien kan beregnes som summen af følgende driftsparametre:

- Indkøb af fældningskemikalier
- Slutanbringelse af spildevandsslam
- Drift og vedligeholdelse af fosformåler

Det forudsættes i beregningerne af driftsøkonomien at anlæg med Bio-P og støttefældning anvender et molförhold på 0,5 mol aktivt metal pr. mol fosfor i indløbet og anlæg med 100 % Bio-P anvender et molförhold på 0,0 (nul).

Af hensyn til den økonomiske beregning inkluderer den kemiske slamproduktion bidraget fra den biologiske slamproduktion fra Bio-p processen på ca. 3,14 \(g \) SS pr. \(g \) P fjernet. Bio-P slammet kan dog hvad angår fosfortilgængeligheden på ingen måder betegnes som kemisk, da fosforen i Bio-P slammet ikke er bundet særligt hårdt. For Bio-P slam der tilledes en rådnetank anvendes samme tørstofreduction som almindeligt biologisk slam, dvs. 25 % reduktion.

Følgende enhedspriser forudsættes:

- Fældningskemikalier: 800 DKK/t produkt
- Slamondisponeringspris: 250 DKK/t slam

Nedenstående fremgår et groft estimat af de driftsudgifter der vil være forbundet ved at gå fra en drift med ren kemisk fældning og uden onlinestyring - med eller uden onlinestyring baseret på fosformåler.

20.000 PE anlæg, 1 trins, uden rådnetank (anlægstype Type 1)

<table>
<thead>
<tr>
<th></th>
<th>Uden Bio-P</th>
<th>Delvist Bio-P</th>
<th>100 % Bio-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indkøb af fældningskemikalier</td>
<td>DKK/år</td>
<td>312.000</td>
<td>103.000</td>
</tr>
<tr>
<td>Slutanbringelse af slam (22 % TS)</td>
<td>DKK/år</td>
<td>147.000</td>
<td>49.000</td>
</tr>
<tr>
<td>D&V fosformåler(e)</td>
<td>DKK/år</td>
<td>0</td>
<td>75.000</td>
</tr>
<tr>
<td>I alt ekskl. moms</td>
<td>DKK/år</td>
<td>459.000</td>
<td>227.000</td>
</tr>
</tbody>
</table>

Bæredygtig udnyttelse af fosfor fra spildevand
Bære
dygtig udnyttelse af fosfor fra spildevand

100.000 PE anlæg, 1 trins, med rådnetank (Type 2)

<table>
<thead>
<tr>
<th></th>
<th>Uden Bio-P</th>
<th>Delvist Bio-P</th>
<th>100 % Bio-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indkøb af fældningskemikalier</td>
<td>DKK/år</td>
<td>1.558.000</td>
<td>519.000</td>
</tr>
<tr>
<td>Slutanbringelse af slam (25 % TS)</td>
<td>DKK/år</td>
<td>648.000</td>
<td>286.000</td>
</tr>
<tr>
<td>D&V fosformåler(e)</td>
<td>DKK/år</td>
<td>0</td>
<td>130.000</td>
</tr>
<tr>
<td>I alt ekskl. moms</td>
<td>DKK/år</td>
<td>2.206.000</td>
<td>935.000</td>
</tr>
</tbody>
</table>

100.000 PE anlæg, 2 trins, med rådnetank (Type 3)

<table>
<thead>
<tr>
<th></th>
<th>Uden Bio-P</th>
<th>Delvist Bio-P</th>
<th>100 % Bio-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indkøb af fældningskemikalier</td>
<td>DKK/år</td>
<td>1.558.000</td>
<td>519.000</td>
</tr>
<tr>
<td>Slutanbringelse af slam (28 % TS)</td>
<td>DKK/år</td>
<td>578.000</td>
<td>268.000</td>
</tr>
<tr>
<td>D&V fosformåler(e)</td>
<td>DKK/år</td>
<td>0</td>
<td>130.000</td>
</tr>
<tr>
<td>I alt ekskl. moms</td>
<td>DKK/år</td>
<td>2.136.000</td>
<td>917.000</td>
</tr>
</tbody>
</table>

Sikkerhed og risici

Ved at etablering af avanceret biologisk fosforfjernelse (helt eller delvist) vil der være en risiko for at fosforkoncentrationen i worst case på årsbasis ligger i samme niveau som udlederkravet, hvilket kan være helt op til 1,5 mg P/l. Der skal som minimum forventes en udledning af fosfor der er 3-5 % større.

Hvis det forudsættes at anlæggene uden Bio-P har et fosforniveau i udløbet på 0,5 mg P/l, der som minimum vil stige med 5 % og samtidig antager en worst case udledning på 1,5 mg P/l som et årgennemsnit fås følgende risiko:

20.000 PE (Type 1): 10.000-400.000 DKK/år mere i grønne afgifter til fosfor
100.000 PE (Type 2 og 3): 30.000-1.200.000 DKK/år mere i grønne afgifter til fosfor

, baseret på en fosforafgift på 110 DKK/kg Total-P.
Bilag 5: Forudsætninger for den samfundsøkonomiske beregning

Beskrivelse af den velfærdsøkonomiske beregningsmetode.

De velfærdsøkonomiske priser er beregningspriser hvor faktorpriserne er omregnet til markedspriser. I den budgetøkonomiske beregning er priserne for produktionsfaktorer; råvarer, energi, vedligeholdelse, opgjort i faktorpriser og afspejler ikke markedsprisen, da markedsprisen også omfatter en række afgifter, som skal lægges oven i producenternes priser. Markedspriserne er derfor forskellige fra faktorpriserne.

Bæredygtig udnyttelse af fosfor fra spildevand
Bæredygtig udnyttelse af fosfor fra spildevand

I rapporten belyses det, at renseanlæggenes valg af teknologier til fjernelse af fosfor fra spildevand har betydning for biotilgængeligheden af det fosforprodukt, der dannes fra spildevandsrensningen. Der er gennemført en sammenlignende LCA-analyse for at kunne vurdere miljøpåvirkningerne som følge af teknologivalg til fosforfjernelse.

Via modellering af cadmiumakkumulering i jorden, som følge af tilførsel af fosfor fra spildevandsslam, ses, at der på sigt kan opstå uønskede høje koncentrationer af cadmium i jorden. Men det er også vist, at der ved brug af handelsgødning alene også akkumuleres cadmium i jorden. En forringet kvalitet af handelsgødning kan medvirke til udvikling og anvendelse af teknologier, der genvinder og recirkulerer fosfor uden at recirkulere tungmetallerne.

Der er udført tekniske og økonomiske vurderinger af de undersøgte teknologier til fjernelse af fosfor fra spildevandet med fokus på at vælge teknologier, der giver et slutprodukt med størst mulig biotilgængelighed indenfor en kort tidshorisont.

Der er til vejledningen defineret et indeks, kaldet "Substainable Phosphorus Removal Index", der har til formål at give vandselskaberne et operationelt værktøj til at kunne vurdere de forskellige teknologier i forhold til hinanden.