A note on the parallel sum

Hansen, Frank

Published in:
Linear Algebra and Its Applications

DOI:
10.1016/j.laa.2021.11.013

Publication date:
2022

Document version
Publisher’s PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
https://doi.org/10.1016/j.laa.2021.11.013
A note on the parallel sum

Frank Hansen

Department of Mathematical Sciences, Copenhagen University, Denmark

Abstract

By using a variational principle we find a necessary and sufficient condition for an operator to majorise the parallel sum of two positive definite operators. This result is then used as a vehicle to create new operator inequalities involving the parallel sum.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Anderson and Duffin defined the parallel sum $A : B$ of two positive definite operators A and B by setting

$$A : B = \frac{1}{A^{-1} + B^{-1}},$$

and they proved [1, Lemma 18] that for any vector ξ the inner product

$$(A : B)\xi \mid \xi = \inf_{\eta} \{(A\eta \mid \eta) + (B(\xi - \eta) \mid \xi - \eta)\}. \tag{1}$$
We begin by giving an intuitive proof of the variational result in (1). The purpose of this note is then to establish that the operator inequality

\[A : B \leq H \]

is valid, if and only if there exists an operator \(C \) such that

\[H = C^*AC + (I - C^*)B(I - C). \]

This result then functions as a generator of operator inequalities involving the parallel sum. We refer to [3] for a recent paper on the parallel sum.

2. Preliminaries

We first establish the rule of differentiating an expectation value with respect to a vector,

\[d_x(Ax \mid x)\xi = 2\text{Re}(Ax \mid \xi). \]

Indeed,

\[
d_x(Ax \mid x)\xi = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left((A(x + \varepsilon\xi) \mid x + \varepsilon\xi) - (Ax \mid x) \right)
= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\varepsilon(Ax \mid \xi) + \varepsilon(A\xi \mid x) + \varepsilon^2(A\xi \mid \xi) \right) = 2\text{Re}(Ax \mid \xi).
\]

Let \(A, B \) be positive definite matrices and consider to a given vector \(x \) the vector function

\[f(\xi) = (A\xi \mid \xi) + (B(x - \xi) \mid x - \xi). \]

It is manifestly convex with derivative

\[
df(\xi)\eta = 2\text{Re}(A\xi \mid \eta) - 2\text{Re}(B(x - \xi) \mid \eta)
= 2\text{Re}(A\xi - B(x - \xi) \mid \eta).
\]

The derivative vanishes in all \(\eta \) if and only if

\[A\xi - B(x - \xi) = 0 \quad \text{or} \quad (A + B)\xi = Bx, \]

and this is equivalent to

\[\xi = (A + B)^{-1}Bx. \quad (2) \]

In addition,
\[x - \xi = x - (A + B)^{-1}Bx = (A + B)^{-1}(A + B)x - Bx = (A + B)^{-1}Ax. \]

We thus obtain that
\[(A\xi \mid \xi) = (A(A + B)^{-1}Bx \mid (A + B)^{-1}Bx) \]
and
\[(B(x - \xi) \mid x - \xi) = (B(A + B)^{-1}Ax \mid (A + B)^{-1}Ax). \]

Since \(f \) is convex the global minimum of \(f \) is obtained in \(\xi \) with minimum value
\[f(\xi) = (A\xi \mid \xi) + (B(x - \xi) \mid x - \xi). \]

Since
\[B(A + B)^{-1}A = (A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B, \]
we calculate the global minimum value to be
\[f(\xi) = ((A^{-1} + B^{-1})^{-1}x \mid (A + B)^{-1}Bx + (A + B)^{-1}Ax) = ((A^{-1} + B^{-1})^{-1}x \mid x) = ((A : B)x \mid x), \]
where \(A : B \) is the parallel sum of \(A \) and \(B \). It is also half of the harmonic mean. In conclusion, we recover (1) and obtain the inequality
\[((A : B)x \mid x) = f(\xi) \leq f(\eta) \]
for any other vector \(\eta \). For an arbitrary operator \(D \) we set \(\eta = D\xi \) and obtain
\[((A : B)x \mid x) \leq f(D\xi) = (AD\xi \mid D\xi) + (B(x - D\xi) \mid x - D\xi) = (AD(A + B)^{-1}Bx \mid D(A + B)^{-1}Bx) + (B(x - D(A + B)^{-1}Bx) \mid x - D(A + B)^{-1}Bx), \]
where we used (2). Putting \(C = D(A + B)^{-1}B \) this is equivalent to
\[((A : B)x \mid x) \leq (C^*ACx \mid x) + ((I - C^*)B(I - C)x \mid x). \]

We have thus proved the following result.
Theorem 2.1. Let A and B be positive definite operators. Then

$$A : B \leq C^* AC + (I - C^*)B(I - C)$$

for an arbitrary operator C.

We next investigate the range of the operator function

$$F(C) = C^* AC + (I - C^*)B(I - C)$$

to given positive definite operators A and B. We consider the operator equation $F(C) = H$ and rewrite the equation as

$$C^*(A + B)C + B - C^* B - BC = H.$$

By multiplying with $(A + B)^{-1/2}$ from the left and from the right the equation is equivalent to

$$(A + B)^{-1/2} C^*(A + B)C(A + B)^{-1/2} + (A + B)^{-1/2} B(A + B)^{-1/2} \\
- (A + B)^{-1/2} C^* B(A + B)^{-1/2} - (A + B)^{-1/2} BC(A + B)^{-1/2} \\
= (A + B)^{-1/2} H (A + B)^{-1/2}.$$

We now set

$$X = (A + B)^{1/2} C (A + B)^{-1/2} \quad \text{and} \quad Y = (A + B)^{-1/2} B (A + B)^{-1/2}$$

and rewrite the equation as

$$X^* X + Y - X^* Y - Y X = (A + B)^{-1/2} H (A + B)^{-1/2},$$

which again may be written as

$$(X - Y)^* (X - Y) - Y^2 + Y = (A + B)^{-1/2} H (A + B)^{-1/2}$$

or

$$(X - Y)^* (X - Y) = (A + B)^{-1/2} H (A + B)^{-1/2} + Y^2 - Y \\
= (A + B)^{-1/2} (H - B + B (A + B)^{-1} B) (A + B)^{-1/2} \\
= (A + B)^{-1/2} (H - B (A + B)^{-1} (A + B - B)) (A + B)^{-1/2} \\
= (A + B)^{-1/2} (H - (A : B)) (A + B)^{-1/2}.$$

The equation can thus be solved if and only if
$H \succeq A : B.$

Under this condition we may find positive definite solutions in X given by

$$X = Y + \left((A + B)^{-1/2} (H - (A : B)) (A + B)^{-1/2} \right)^{1/2},$$

and then obtain

$$C = (A + B)^{-1/2} X (A + B)^{1/2} = (A + B)^{-1/2} Y (A + B)^{1/2} + (A + B)^{-1/2} \left((A + B)^{-1/2} (H - (A : B)) (A + B)^{-1/2} \right)^{1/2} (A + B)^{1/2}
= (A + B)^{-1} B + \left((A + B)^{-1} (H - (A : B)) \right)^{1/2}.$$

Note that the operator appearing inside the square root in the last formula line may not be self-adjoint. It is however similar to a positive semi-definite operator and therefore has a unique square root with positive spectrum. We have obtained.

Theorem 2.2. Let A, B and H be positive definite operators. The operator equation

$$F(C) = C^* A C + (I - C^*) B (I - C) = H$$

has solutions in C if and only if $H \succeq A : B.$ One of the solutions is then given by

$$C = (A + B)^{-1} B + \left((A + B)^{-1} (H - (A : B)) \right)^{1/2}.$$

3. Generating operator inequalities

Theorem 2.1 may serve as a generator for operator inequalities by suitably choosing the operator C. For $C = \lambda I$, where $0 \leq \lambda \leq 1$, we obtain

$$A : B \leq \lambda^2 A + (1 - \lambda)^2 B.$$

By setting $\lambda = 0$, $\lambda = 1/2$ or $\lambda = 1$ we obtain the well-known inequalities

$$A : B \leq B, \quad A : B \leq \frac{A + B}{4}, \quad A : B \leq A.$$

Setting $C = (A + B)^{-1} B$ we obtain equality

$$A : B = F(C).$$

Indeed, we note that
\[I - C = I - (A + B)^{-1}B = (A + B)^{-1}(A + B - B) = (A + B)^{-1}A. \]

Therefore,

\[
F(C) = B(A + B)^{-1}A(A + B)^{-1}B + A(A + B)^{-1}B(A + B)^{-1}A \\
= B(A + B)^{-1}A(A + B)^{-1}B + A(A + B)^{-1}A(A + B)^{-1}B \\
= (B^{-1} + A^{-1})^{-1} = A : B.
\]

We next use Theorem 2.1 to obtain new operator inequalities.

Theorem 3.1. Let \(A, B\) be positive definite operators.

(i) Let \(P\) be an orthogonal projection. We obtain the inequality

\[
A : B \leq PAP + (I - P)B(I - P).
\]

Setting \(A = B\) it reduces to the familiar inequality

\[
\frac{1}{2}A \leq PAP + (I - P)A(I - P).
\]

(ii) The inequality

\[
A : B \leq (A + B)^{-1}(BAB + ABA)(A + B)^{-1}
\]

is valid, and it is strict, since for \(A = B\) it reduces to \(\frac{1}{2}A \leq \frac{1}{2}A\).

(iii) Let \(p\) be a real number. We obtain the inequality

\[
\]

and it reduces to equality for \(p = 1\). The inequality is strict for arbitrary \(p\), since for \(A = B\) it reduces to \(\frac{1}{2}A \leq \frac{1}{2}A\).

Proof. By setting \(C = P\) and applying Theorem 2.1 we obtain (i). By setting \(C = B(A + B)^{-1}\) we obtain \(I - C = A(A + B)^{-1}\) and thus

\[
C^*AC + (I - C)^*B(I - C) = (A + B)^{-1}BAB(A + B)^{-1} + (A + B)^{-1}ABA(A + B)^{-1}
\]

from which (ii) follows. Finally, we set \(C = (A^p + B^p)^{-1}B^p\) and since \(I - C = (A^p + B^p)^{-1}A^p\) and \(A^p(A^p + B^p)^{-1}B^p = B^p(A^p + B^p)^{-1}A^p\) we obtain
\[C^*AC + (I - C)^*B(I - C) \]
\[= (A^p : B^p)(A^{2p-1} : B^{2p-1})^{-1}(A^p : B^p) \]
as desired. This proves \((iii)\). \(\square\)

By multiplying \((iii)\) in Theorem 3.1 by 2 we obtain the inequality between harmonic means

\[H_2(A, B) \leq H_2(A^p, B^p)H_2(A^{2p-1}, B^{2p-1})^{-1}H_2(A^p, B^p) \] \(\text{(3)}\)

for positive definite operators \(A\) and \(B\) and arbitrary \(p \in \mathbb{R}\). If we in particular put \(p = 1/2\) we obtain

\[H_2(A, B) \leq H_2(A^{1/2}, B^{1/2})^2. \] \(\text{(4)}\)

This is an improvement of the inequality

\[H_2(A, B)^{1/2} \leq H_2(A^{1/2}, B^{1/2}) \]

which is plain. Indeed, for \(0 \leq p \leq 1\), we obtain by operator concavity of the function \(t \to t^p\) the inequality

\[H_2(A, B)^p = \left(\frac{2}{A^{-1} + B^{-1}}\right)^p = \left(\frac{A^{-1} + B^{-1}}{2}\right)^{-p} \]
\[\leq \frac{2}{A^{-p} + B^{-p}} = H_2(A^p, B^p). \] \(\text{(5)}\)

The reverse inequality is obtained for \(-1 \leq p \leq 0\) and \(1 \leq p \leq 2\) by operator convexity. It is interesting to note that the inequality

\[H_2(A, B) \leq H_2(A^p, B^p)^{1/p} \] \(\text{(6)}\)

is false for \(p = 1/4\) with counter examples in two-by-two matrices. We conjecture that \((6)\) is false for \(0 < p < 1/2\) and true for \(1/2 \leq p \leq 1\).
3.1. The power means

Bhagwat and Subramanian [2, Section 4] introduced for $p > 0$ the power mean

$$M_p(A, B) = \left(\frac{A^p + B^p}{2} \right)^{1/p}$$

(7)

of positive definite operators A and B. If $p \geq 1$ then the function $t \to t^{1/p}$ is operator concave and thus

$$M_p(A, B) \geq \frac{A + B}{2} \geq 2(A : B) > A : B.$$

The parallel sum is thus majorized by the power mean. However, this result can in general not be extended to $0 < p < 1$.

Example 3.2. Consider the two-by-two matrices

$$A = \begin{pmatrix} 0.14623 & -0.07525 \\ -0.07525 & 0.03873 \end{pmatrix}, \quad B = \begin{pmatrix} 0.733 & -0.43 \\ -0.43 & 0.2525 \end{pmatrix}.$$

A has approximately eigenvalues $\{0.184955, 5.00338 \cdot 10^{-6}\}$ and B has approximately eigenvalues $\{0.985315, 0.00018522\}$, so they are positive definite. Setting $p = 1/2$ the smallest eigenvalue of

$$\left(\frac{A^{1/2} + B^{1/2}}{2} \right)^2 - (A : B)$$

is approximately $-1.57101 \cdot 10^{-6}$.

Declaration of competing interest

There is no competing interest.

References