Trapping Majorana zero modes in vortices of magnetic texture crystals coupled to nodal superconductors

Steffensen, Daniel; Andersen, Brian M.; Kotetes, Panagiotis

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.104.174502

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Trapping Majorana zero modes in vortices of magnetic texture crystals coupled to nodal superconductors

Daniel Steffensen, Brian M. Andersen, and Panagiotis Kotetes

Niels Bohr Institute, University of Copenhagen, Jagtvej 128, DK-2200 Copenhagen, Denmark
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

DOI: 10.1103/PhysRevB.104.174502

I. INTRODUCTION

The experimental study of bound states in superconductors (SCs) has recently witnessed a reheated interest. This came after a series of pioneering theory proposals which designated a plethora of pathways to induce non-Abelian anyons in both intrinsic [1–6] and engineered [7–14] topological SCs. The so-called Majorana zero modes [15,16] (MZMs) are so far the most sought-after excitations of this genre, since they constitute the simplest type of non-Abelian anyons. MZMs are charge-neutral, spatially localized, pinned to zero energy, and enjoy a topological protection. In addition, they adhere to Ising exchange statistics, which open perspectives for fault-tolerant quantum computing [17–19]. The charge neutrality of MZMs brings SCs forward as ideal candidates to look for them, since their quasiparticle excitations arise from hybridized electrons and holes [20–28]. Experimental fingerprints that can be associated with MZMs have been already captured in a variety of experimental platforms, these including nanowire [29–37], topological insulator [38–41], magnetic adatom [42–49], and FeTeSe [50–54] systems.

It has been theoretically demonstrated that MZMs can be trapped at various types of 0D defects [1–7,55–60]. About three decades ago, it was theoretically shown by Read and Green [1], and by Volovik [2] in parallel, that a vortex induced in a chiral $\rho_+ + i \rho_-$ SC traps a single MZM. More recently, Fu and Kane [7] proposed that a single MZM appears in a vortex of a conventional SC in proximity to the helical surface states of a 3D time-reversal (TR) invariant topological insulator. However, the vortex defects involved, need not to be introduced in the superconducting order parameter. Indeed, MZMs are also accessible if vortex defects are introduced in the phase of another complex field or the angle of a two-component vector entering the Hamiltonian. For instance, MZMs have already been predicted to emerge in vortices of the complex order parameter of superfluid [55] and axion-string [61] condensates, as well as in the angle of a two-component spin-orbit coupling (SOC) vector field [62]. Notably, the scenario of a SOC vortex has been recently invoked as a possible mechanism to reconcile the experimental observations of a pair of MZMs in a platform of magnetic adatoms deposited on the surface of a conventional SC [48].

An additional crucial feature that a MZM platform is required to possess in order for its arising MZMs to be robust and long-lived, is to be characterized by a fully gapped bulk energy spectrum. In order to meet this stringent requirement, the vast majority of the abovementioned proposals have relied on the presence of a gapful pairing gap, i.e., of the $s$- and $p_\alpha + ip_\alpha$ types. Concomitantly, this constraint has also almost exclusively discouraged the pursuit of vortex MZMs in an equally abundant class of SCs, namely the nodal SCs [63]. Obviously, what hinders nodal SCs from joining the MZM pursuit at full speed, is that the following pressing question has remained so far unanswered, i.e., what is the suitable physical mechanism that gaps out the nodes of the nodal SC and simultaneously enables non trivial topological phases and vortex MZMs in particular.

In this paper, we show that MZMs become accessible in nodal SCs which are under the influence of magnetic texture crystals (MTCs). The MTC is exchange-coupled to the spin of the electrons of the nodal SC and can be either driven by an attractive interaction in the magnetic channel, or, imposed externally to the system. MTCs recently got in the spotlight of both theoretical [64–85] and experimental [27,36,44,47] studies. Here, we consider MTCs which consist of a superposition of magnetic helices and/or stripes. The nth helix/stripe repeats periodically in space according to a wave vector $Q_n$. 

*Email: kotetes@itp.ac.cn
FIG. 1. (a) Typical bulk energy spectrum for a nodal superconductor discussed here. The nodes come in pairs, and the \( n \)-th pair is dictated by opposite momenta \( \pm k_n \) and spin projections \( \uparrow, \downarrow \). Thus the nodes of a given pair carry the same helicity \( \xi = \pm 1 \) \((\mathcal{O}, \mathcal{O})\). The nodes are assumed to be subsequently gapped out by the presence of a magnetic helix/stripe structure with a wave vector \( \mathbf{Q}_n \), which may either appear spontaneously due to interactions or be externally imposed. (b) Sketch of a magnetic helix crystal with a spatial profile \( \mathbf{M} = \cos(\mathbf{Q} \cdot \mathbf{r} + \eta(r)) \mathbf{e}_z + \sin(\mathbf{Q} \cdot \mathbf{r} + \eta(r)) \mathbf{e}_x \). The wave vector is chosen as \( \mathbf{Q} = (2\pi/3, 0) \). The texture additionally contains a discrete shift defect with vorticity \( \upsilon_{\text{shift}} = \sum_n \Delta \eta / 2\pi = 1 \).

Each \( \mathbf{Q}_n \) needs to have a length comparable to \( 2|k_n| \), so that it couples and gaps out a pair of nodes of the underlying SC at momenta \( \pm k_n \). In Fig. 1, we depict a representative nodal bulk energy spectrum where our theory finds application, and we additionally sketch the spatial profile of a MTC containing a shift vortex defect.

Within our proposal, MZMs can be trapped in spin or shift vortices induced in the MTC. In fact, our topological analysis proves that MZMs appear in vortices of the MTC only when the underlying SC is nodal. Our theory applies to generic nodal SCs with spin-singlet, -triplet or -mixed pairing, thus covering a broad range of quantum materials and hybrid structures. Remarkably, for systems featuring a Rashba SOC, MZMs can be even trapped by inducing vortices in MTCs which are as mundane as magnetic stripes.

Our upcoming analysis provides a detailed study of the various topological scenarios that become possible in both 2D and 3D nodal SCs, for all the Majorana symmetry classes, i.e., BDI, D, and DIII. This is achieved by first constructing the topological invariant quantities which predict the emergence of Majorana quasiparticles in two fundamental situations, with these concerning systems belonging to class BDI in 2D and to class D in 3D. Notably, as we discuss here, nodal SCs coupled to MTCs which belong to class D harbor chiral vortex Majorana modes in 3D. Even more remarkably, we demonstrate that, despite the fact that MTCs break the standard TR symmetry \((\mathcal{T})\), symmetry class DIII SCs, and Majorana Kramers partner solutions are still accessible in both 2D and 3D when a generalized TR symmetry \(\Theta\) with \(\Theta^2 = -1\) appears \((\mathcal{O}, \mathcal{O})\). Such a symmetry emerges, for instance, when we consider two-band systems, with the electrons of the two bands feeling identical nonmagnetic terms, but opposite MTC terms.

The remainder of this manuscript is organized as follows. Section II contains the details of our theoretical model and sets the stage for our upcoming analysis. Section III gives an account of the various types of topological phases and Majorana excitations which become accessible. In Sec. IV, we derive a low-energy model which describes the physics stemming from the nodes of the SC. Based on this low-energy mode, we proceed in Sec. V with the construction of the topological invariant for a class BDI system in 2D, which predicts the emergence of multiple vortex MZMs protected by chiral symmetry. Section VI presents a series of numerical investigations of BDI, D, and DIII models in 2D. In Sec. VII, we focus on 3D systems and, in particular, we construct the topological invariant for the class D case. Section VIII presents numerical results for the emergence of chiral vortex Majorana modes. Section IX gives an account of possible routes to experimentally realize our proposal, while Sec. X concludes this work with a summary and outlook.

II. MODEL HAMILTONIAN

To model the physical situations of interest in a general manner, we employ the Hamiltonian operator:

\[
\hat{H} = \frac{1}{2} \int dr \psi^\dagger(\mathbf{r}) \hat{H}(\mathbf{p}, \mathbf{r}) \psi(\mathbf{r}),
\]

which acts in the basis defined by the Nambu spinor:

\[
\psi^\dagger(\mathbf{r}) = (\psi_\uparrow^\dagger(\mathbf{r}), \psi_\downarrow^\dagger(\mathbf{r}), \psi_\uparrow(\mathbf{r}), -\psi_\downarrow(\mathbf{r})).
\]

Here, \(\psi_{\uparrow, \downarrow}(\mathbf{r})\) annihilates an electron at position \(\mathbf{r}\) with the spin projection indicated, while \(\mathbf{p} = -i\nabla\) with \(\hbar = 1\). In 3D coordinate space, we define \(\mathbf{r} = (x, y, z)\), \(\tan \phi = y/x\), \(\cos \theta = z/r\), \(r = \sqrt{x^2 + y^2}\) and \(\rho = \sqrt{x^2 + y^2 + z^2}\).

The matrix \(\hat{H}(\mathbf{p}, \mathbf{r})\) defines the Bogoliubov - de Gennes (BdG) Hamiltonian operator:

\[
\hat{H}(\mathbf{p}, \mathbf{r}) = \hat{H}_0(\mathbf{p}) + \sum_n \{2M_n \cos(\mathbf{Q}_n \cdot \mathbf{r} + \eta_n(\mathbf{r})) \hat{\mathbf{e}}_n \cdot \mathbf{\sigma} - 2M_n' \sin(\mathbf{Q}_n \cdot \mathbf{r} + \eta_n(\mathbf{r})) \hat{\mathbf{e}}_n \cdot \mathbf{\sigma} e^{-i \omega_n(\mathbf{r}) \mathbf{\sigma}}\}.
\]

and is represented using the \(\mathbf{\sigma}\) Pauli matrices defined in Nambu (spin) spaces, supplemented with the respective unit matrix \(\mathbf{1}_\sigma\) \((\mathbf{1}_n)\). For simplicity, we omit writing unit matrices throughout from now on. In the above, we consider that the two contributing magnetization terms always feature orthogonal orientations in spin space, i.e., their orientation vectors satisfy \(\hat{\mathbf{e}}_n \cdot \hat{\mathbf{e}}'_n = 0\) for all \(n\).

The nonmagnetic part of the BdG Hamiltonian takes the general form:

\[
\hat{H}_0(\mathbf{p}) = \tau_z [e_x(\mathbf{p}) + e_z(\mathbf{p}) \sigma_z] + \tau_x [\Delta_x(\mathbf{p}) + \Delta_x(\mathbf{p}) \sigma_x] + \tau_y [\Delta_y(\mathbf{p}) + \Delta_y(\mathbf{p}) \sigma_y],
\]

where the appearing terms satisfy the relations:

\[
\varepsilon_{\pm}(\mathbf{p}) = \pm \varepsilon_{\pm}(\mathbf{p}),
\]

\[
\Delta_{\pm}(\mathbf{p}) = \pm \Delta_{\pm}(\mathbf{p}),
\]

\[
\Delta_{\pm}(\mathbf{p}) = \pm \Delta_{\pm}(\mathbf{p}).
\]

The above properties imply that \(\hat{H}_0(\mathbf{p})\) is invariant under translations and \(z\)-axis spin rotations, associated with the phases \(\eta_n(\mathbf{r})\) and angles \(\omega_n(\mathbf{r})\), respectively. Vortices can be independently introduced in all \(\omega_n\) angles and \(\eta_n\) phases, at the same or different positions.

For a shift [spin] vortex defect with vorticity \(\upsilon_{\text{shift}} \leftrightarrow \upsilon_{\text{spin}}\) we set \(\eta(\mathbf{r}) = \upsilon_{\text{shift}}(\varphi) \omega(\varphi) = \upsilon_{\text{spin}} \varphi\). In Fig. 1(b), we depict the spatial profile of a magnetic helix crystal with a discrete shift vortex. A shift vortex defect in \(\eta(\mathbf{r})\) implies that this
phase shows discontinuous jumps by an integer multiple of $2\pi$ after traversing a closed path $C$ encircling the defect's core, which is identified with the region where the magnetic texture vanishes. A similar behavior emerges for $\omega(r)$ in the presence of a spin vortex. The above properties are reflected in the definitions of the shift $\nu_{\text{shift}}$ and spin $\nu_{\text{spin}}$ vorticities:

$$
\nu_{\text{shift}} = \oint_C \frac{d\eta}{2\pi} \in \mathbb{Z} \quad \text{and} \quad \nu_{\text{spin}} = \oint_C \frac{d\omega}{2\pi} \in \mathbb{Z}.
$$

(8)

III. ACCESSIBLE TOPOLOGICAL PHASES

To infer the emergence of Majorana quasiparticles in our model, we employ standard classification methods, cf Refs. [58,59]. The topological classification of the system in the presence of defects is carried out using the BdG Hamiltonian in combined momentum-coordinate space $\hat{H}(k, r)$, which is obtained by assuming that the defect builds up in a sufficiently smooth manner in space, so that the momentum $p \mapsto k$ and the position $r$ appearing in $\eta(r)$ and $\omega(r)$ commute. This approach suffices to predict the appearance of MZMs but generally fails to accurately describe the complete bound state spectrum that we observe in our numerics using abrupt defects.

The relevant Majorana symmetry class, i.e., BDI, D or DIII, is inferred in the presence of the defect-containing variables. The effective classification dimension $\delta$ is obtained by the spatial dimensionality of the system $d$, after subtracting the dimension of the surface that can enclose the defect, i.e., here $\delta = d - 1$ since a circle $S^1$ can enclose a vortex. To construct the topological invariants, we view $\phi$ as a synthetic momentum which extends the base space to $(k, \phi)$.

Based on the tenfold classification tables [87–89], we find the topologically-nontrivial scenarios $\{\text{BDI}, \text{D}, \text{DIII}\} \mapsto \{\mathbb{Z}, \mathbb{Z}_2, \mathbb{Z}_2\}$ in 2D, and $\{\text{BDI}, \text{DIII}\} \mapsto \{\mathbb{Z}, \mathbb{Z}_2\}$ in 3D. For the topological description of the cases of relevance in 2D (3D) coordinate space, it suffices to examine the structure of the class BDI (D) $\mathbb{Z}$ topological invariant, which is identified with the winding number $w_{3d}$ (2nd Chern number $C_2$). Here, we obtain general expressions for $w_{3d}$ and $C_2$, which become particularly transparent in the limit of a weak strength for the magnetization of the MTC.

IV. LOW-ENERGY MODEL HAMILTONIAN - DERIVATION

Similar to Ref. [60], which discusses MZMs trapped in superconducting vortices, also here, the outcome of the various topological invariants is tied to the local, instead of the global, $K$-space topology of $\hat{H}_0(k)$. Therefore, to facilitate the calculation of the various topological invariants, we rely on low-energy models obtained after expanding the original Hamiltonian about pairs of nodes with momenta $\pm k_n$.

To simplify our upcoming analysis, we momentarily drop the terms $\Delta_{\phi,p}(\hat{p})$ from the Hamiltonian in Eq. (4), and restore them for the discussion of 3D models in Sec. VIII. Under the above simplification, the various pairs of nodes are determined by $\hat{H}_0(k) = 0$, which boils down to satisfying the condition:

$$
\varepsilon_s(k_n)\pm \sigma_z \varepsilon_t(k_n) = \Delta_s(k_n)\pm \sigma_z \Delta_t(k_n) = 0.
$$

(9)

Since $\{\varepsilon_s(-k), \Delta_s(-k)\} = \{-\varepsilon_t(k), \Delta_t(k)\}$ we find that nodes at opposite momenta $\pm k_n$ carry opposite spins $\sigma_z = \pm 1$, i.e., possess the same helicity. See Fig. 1(a).

We now expand the Hamiltonian about the $n$th pair of nodes by setting $k \approx \pm k_n + q$ with $|q| \ll |k_n|$. By introducing the $\rho$ Pauli matrices in $\{k_n, -k_n\}$ nodes space, the defect-free Hamiltonian in the vicinity of $\pm k_n$ reads

$$
\hat{H}^{(n)}(q, \phi = 0) = M_\rho \rho + \hat{\sigma}_z \rho \phi \hat{\sigma}_z + \rho \tau_z \rho \phi \tau_z \rho \phi \tau_z \rho \hat{\sigma}_z
$$

(10)

where we used the shorthand expressions for $f = \varepsilon, \Delta$:

$$
\hat{f}^{(n)}(q) \equiv \rho \hat{f}(k_n) \quad \text{and} \quad \hat{f}^{(n)}(q, \phi = 0) = \nabla_k \hat{f}^{(n)}(k_n)\big|_{k = k_n}.
$$

(11)

The nonmagnetic part of Eq. (10), that we denote $\hat{\rho}^{(n)}(q)$, is invariant under arbitrary $\phi$-dependent shifts and spin rotations generated by the operators $\hat{L}^{(n)}_{\text{shift}} = \rho \tau_z$ and $\hat{L}^{(n)}_{\text{spin}} = \sigma_z$. Thus the defects are added as follows:

$$
\hat{H}^{(n)}(q, \phi) = e^{-i\phi} \hat{\rho}^{(n)}(\phi = 0) e^{i\phi} \hat{\rho}^{(n)}(\phi = 0)/2,
$$

(12)

where we introduced

$$
\hat{L}^{(n)} = \nu_{\text{shift}} \hat{L}^{(n)}_{\text{shift}} + \nu_{\text{spin}} \hat{L}^{(n)}_{\text{spin}}
$$

(13)

For $M_\rho = M_\rho' = 0$, one defines the four states $|\rho, \sigma_z = \pm 1\rangle$ in $\rho \otimes \sigma$ space. Two of these give rise to the pair of nodes at $\pm k_n$, while the remaining two lie energetically away from zero. These two pairs of states can be distinguished by their helicity eigenvalue $\zeta = \rho_z \sigma_z = \pm 1$. Hence, to obtain a Hamiltonian describing only the states related to the nodes, we project Eq. (10) onto a given helicity subspace which fulfills:

$$
\varepsilon_s^{(n)} + \zeta \varepsilon_t^{(n)} = \Delta_s^{(n)} + \zeta \Delta_t^{(n)} = 0,
$$

and end up with the following effective Hamiltonian for the $n$th pair of nodes

$$
\hat{H}^{(n)}(q, \phi = 0) = \lambda \cdot q \cdot \left[\nu_{\varepsilon_s}^{(n)} \varepsilon_s^{(n)} + \nu_{\varepsilon_t}^{(n)} \varepsilon_t^{(n)}\right] + M^{(n)} \cdot \lambda,
$$

(14)

where we introduced the velocities

$$
\nu_{\varepsilon_s}^{(n)} = \varepsilon_s^{(n)} + \nu_{\varepsilon_t}^{(n)} = \varepsilon_t^{(n)} + \nu_{\varepsilon_s}^{(n)}
$$

(15)

along with the parameters

$$
M^{(n)} = \left[\hat{\epsilon}_n \cdot M_n + \zeta \hat{\epsilon}_n' \cdot M_n'\right].
$$

(16)

which quantify the influence of the MTC on the given pair of nodes. The unit $\hat{\varepsilon}_n$ and Pauli $\lambda$ matrices act in a given helicity subspace. The choice of basis for both $\zeta = \pm 1$ is such, that the spin Pauli matrix $\sigma_z$ coincides with $\lambda_z$. Note that the terms $\hat{\varepsilon}_n \cdot \hat{\varepsilon}_n'$ and $\hat{\varepsilon}_n' \cdot \hat{\varepsilon}_n$ drop out after the projection. Projecting the operator generating the vortices yields

$$
\hat{L}^{(n)} = \left[\nu_{\text{shift}}^{(n)} + \nu_{\text{spin}}^{(n)}\right] \lambda_z.
$$

(17)

Notably, the emergence of MZMs is guaranteed by the structure of Eqs. (14) and (17), which allow mapping our model to the Jackiw-Rossi model [90]. The latter is known to support zero-energy solutions in vortices, and also lies at the core of the Fu-Kane MZM proposal [7,91].
V. LOW-ENERGY MODEL HAMILTONIAN - BDI CLASS TOPOLOGICAL INVARIANT IN 2D

In this paragraph, we prove in a detailed fashion that MZMs become accessible in the model of Eq. (14). The Hamiltonian in Eq. (14) possesses a chiral symmetry effected by the operator \( \Pi = \lambda_z \tau_y \). As a result of it, the Hamiltonian resides in class BDI and is classified by the winding number \([88] w_3^{(n)} \in \mathbb{Z} \) defined in \((q_x, q_y, \phi)\) space. This invariant is calculated using the upper off-diagonal block \( \hat{h}_z^{(n)}(q, \phi) \), in a basis where the latter is block-off-diagonal. The winding number is defined as

\[
w_3 = \int_0^{2\pi} \frac{d\phi}{2\pi} \int \frac{dq}{2\pi} \text{Tr} \left[ \hat{h}_z^{(-1)}(q, \phi) [\partial_{q_x} \hat{h}_z(q, \phi)] \right],
\]

where we momentarily drop the \((n)\) index for simplicity. Using the relation \( \hat{h}_z \hat{h}_z = 1 \Rightarrow \partial \hat{h}_z = -\hat{h}_z (\partial \hat{h}_z) \hat{h}_z^{-1} \) and the cyclic property of the trace, we find the equivalent expression:

\[
w_3 = \int_0^{2\pi} \frac{d\phi}{2\pi} \int \frac{dq}{2\pi} \text{Tr} \left[ [\partial_{q_y} \hat{h}_z(q, \phi)] \hat{h}_z^{(-1)}(q, \phi) [\partial_{q_y} \hat{h}_z(q, \phi)] \right].
\]

Since the following relation also holds

\[
\hat{h}_z(q, \phi) = e^{i\phi \hat{L}/2} \hat{h}_z(q, \phi = 0) e^{-i\phi \hat{L}/2},
\]

the winding number obtains the simplified form:

\[
w_3 = \int \frac{dq}{2\pi i} \text{Tr} \left\{ \frac{\hat{L}}{2} [\partial_{q_y} \hat{h}_z(q, \phi = 0)] [\partial_{q_y} \hat{h}_z^{(-1)}(q, \phi = 0)] - q_x \leftrightarrow q_y \right\},
\]

where we introduced the shorthand notation:

\[
\mathcal{O}_{q_y, q_z} = [\partial_{q_y} \hat{h}_z(q, \phi = 0)] [\partial_{q_y} \hat{h}_z^{(-1)}(q, \phi = 0)],
\]

for the differential operator defining vorticity in \( q \) space.

The above expression is nonzero even in the limit of a vanishing strength for the MTC, in which case, \( \hat{h}(q, \phi = 0) \rightarrow \hat{h}_0(q) \). When \([\hat{L}, \hat{h}_0(q)] = 0\), we evaluate the trace by introducing the eigenstates of \( \hat{L} \), in which basis, \( \hat{h}_0(q) \) is block diagonal. Hence, by further making use of

\[
\hat{h}_z^{(n)}(q, \phi) = e^{i\phi \hat{L}/2} \hat{h}_z^{(n)}(q, \phi = 0) e^{-i\phi \hat{L}/2}
\]

and taking into account that the upper off-diagonal block \( \hat{h}_{0z}(q) \) of \( \hat{h}_{0z}(q) \) commutes with \( \hat{L} \), we obtain

\[
w_3^{(n)} = \sum_{\lambda = \pm 1} \frac{q_y}{2} \mathcal{O}_{q_y, q_z} \text{Tr} \left[ \hat{h}_z^{(n)}(q, \phi = 0) \right],
\]

where we employed the eigenstates \( |\lambda\rangle \) of \( \hat{L} \), which here coincide with the eigenstates of \( \lambda_z = \pm 1 \). In addition, we accordingly restricted the trace \( \text{Tr} \) to a trace tr over the remaining degrees of freedom. By now making use of the identity \( \text{tr} \ln [\hat{h}_{0z, \lambda}(q)] = \ln \det [\hat{h}_{0z, \lambda}(q)] \), we write

\[
\det [\hat{h}_{0z, \lambda}(q)] = \det [\hat{h}_{0z, \lambda}(q)] e^{-i\lambda \mathcal{O}_{q_y, q_z}}.
\]

(24)

The above implies that Eq. (23) is nonzero only when the arguments \( \mathcal{O}_{q_y, q_z}(q) \) contain \( q \)-space vortex defects, i.e., only when the underlying SC contains point nodes.

The node with helicity \( \xi \) and \( z \)-axis spin projection \( \sigma_z = \pm 1 \), carries vorticity \( \mathcal{O}_{\xi, \lambda = \pm 1}^{(n)}(q) \), which is defined through the relation

\[
\mathcal{O}_{\xi, \lambda}(q) = 2\pi \mathcal{O}_{\xi, \lambda}^{(n)}(q) = 2 \pi \mathcal{O}_{\xi, \lambda}^{(n)}(q)
\]

and leads to the expression:

\[
w_3^{(n)} = \sum_{\lambda = \pm 1} \frac{q_y}{2} \mathcal{O}_{q_y, q_z} \ln [\hat{h}_z^{(n)}(q, \phi = 0)],
\]

(26)

To evaluate the above, it is required to determine the vorticities of the nodes. For this purpose, we consider the unitary transformation \((\Pi + t_y)/\sqrt{2}\) onto the projected Hamiltonians, and obtain the upper off-diagonal blocks:

\[
\hat{h}_z^{(n)}(q, \phi = 0) = [\hat{M}^{(n)} \times \hat{z}] \lambda - q \cdot [\hat{v}_\lambda^{(n)} + i\hat{v}_{\lambda}^{(n)}].
\]

(27)

We use the eigenstates of \( \lambda, \lambda \rightarrow \lambda, \lambda \pm 1 \) and diagonalize \( \hat{h}_{0z, \lambda}(q) \) as \( \hat{h}_{0z, \lambda}(q) = -q \cdot [\lambda \hat{v}_\lambda^{(n)} + \lambda \hat{v}_{\lambda}^{(n)}] \). Therefore, as long as \( v_{\lambda, \lambda}^{(n)} \neq 0 \), the vorticities of the nodes at \( q = 0 \) are opposite and of a single unit, hence, they satisfy \( \mathcal{O}_{\xi, \lambda}^{(n)} = -\mathcal{O}_{\xi, \lambda}^{(n)} \) and \( |\mathcal{O}_{\xi, \lambda}^{(n)}| = 1 \).

Under the above conditions, we obtain our main result:

\[
w_3^{(n)} = \text{sgn} [\mathcal{O}_{\xi, \lambda = \pm 1}] \left( q_y \mathcal{O}_{q_y, q_z} \right),
\]

(28)

which implies that both spin and shift vortex defects can independently induce a \( \mathbb{Z} \) number of MZMs. Notably, the number of MZMs arising due to the simultaneous emergence of shift and spin vortices at the same position in coordinate space, are obtained by adding (for \( \xi = 1 \)) or subtracting (for \( \xi = -1 \)) the number of MZMs that would independently arise for each different type of defect.

VI. NUMERICAL CALCULATIONS IN 2D

In this section, we numerically verify our above predictions for a variety of models in symmetry classes BDI, D, and DIII. Our starting point for all these investigations is the lattice model defined by the following functions:

\[
e_{\lambda}(k) = -2\tau (\cos k_x + \cos k_y) - \mu, \quad \epsilon_{\lambda}(k) = \alpha \sin k_x, \quad \Delta_{\lambda}(k) = \Delta \text{ and } \Delta_{\lambda}(k) = \Delta \text{.}
\]

(29)

In the absence of magnetism and for a suitable window of parameters, this model supports a nodal energy spectrum of the form depicted in Fig. 1(a). For our upcoming numerical simulations we consider a \( 40 \times 40 \) square lattice with the lattice constant set to unity. Moreover, all the energy scales are expressed in units of \( \tau \), which from now on is set to unity.

A. Symmetry class BDI models

We begin with the study of MZMs in a BDI class model in 2D. We consider that the two pairs of nodes emerging in
shift vortex defects appearing at the same location in real coordinate space \( r \). According to Eq. (28), the final outcome for the winding number \( w_{3,2} \) for the pair of nodes experiencing the combined vortex defects is given by adding or subtracting the independent contributions of each vortex to the winding number. Whether these add up or subtract solely depends on which helicity eigenvalue \( \zeta = \pm 1 \) for \( \zeta = -1 \) characterizes the nodes of interest. Specifically, for the model of Eq. (29) and the parameter values employed, we conclude that \( \zeta = -1 \). This is directly inferable from the energy spectra shown in Figs. 2(d) and 2(e) for \( \{ \nu_{\text{shift}}, \nu_{\text{spin}} \} = \{ 1, -1 \} \), where we find that only the latter composite vortex configuration leads to MZMs. In fact, one obtains a total of four MZMs, with two of these being located at the center of the defect, and two more near the edge. This becomes further transparent from Fig. 2(f) where we depict the spatial weights of the MZM eigenvectors. We observe once again that the four MZMs appearing in Fig. 2(e) are weakly coupled due to finite-size effects.

The two MZMs comprising the MZM pair appearing at the core of the composite spin-shift vortex with \( \{ \nu_{\text{shift}}, \nu_{\text{spin}} \} = \{ 1, -1 \} \) do not couple to each other by virtue of the chiral symmetry which dictates the system. Notably, multiple uncoupled MZMs trapped at the core of the vortex are also expected to appear for a single shift/spin vortex when this carries a higher value of vorticity. To further verify this prediction, we study various cases numerically, by implementing the same lattice Hamiltonian defined by Eq. (29). In Figs. 3(a) and 3(c), we confirm that \( \nu_{\text{shift}} = 2 \) results into two pairs of MZMs, with two at the center of the defect, and their two partners on the edge. Additionally, we confirm that spin defects also lead to MZMs. See Fig. 3(d) with three pairs of MZMs now appearing at the vortex core for \( \nu_{\text{spin}} = 3 \).

### B. Class D models in 2D

The result of Eq. (28) obtained earlier is valid only as long as the full Hamiltonian resides in class BDI. In fact, it is straightforward to verify that the full Hamiltonian possesses a chiral symmetry effected by \( \tau_x, \sigma_z \). Only when \( \nu_{\text{shift}} \) and \( \nu_{\text{spin}} \) lie in the same spin plane for all \( n \). When at least one \( \nu_{\text{shift}}(k) \) or \( \Delta_{r}(k) \) is present, this is identified with the \( xy \) spin plane. As long as the above condition is met, Eq. (28) remains valid.

For a full Hamiltonian belonging to class D instead, solely the parity of the winding number \( (-1)^{\nu_{\text{shift}}(n)} \in \mathbb{Z}_2 \) is well defined, and allows for only up to a single MZM to be trapped at the core of a vortex defect.

The above conclusions further imply that particular caution needs to be paid on the possible node degeneracies which can trivialize the \( \mathbb{Z}_2 \) invariant. This takes place, for instance, when only \( \nu_{\text{shift}}(k) \) or \( \Delta_r(k) \) enter \( \hat{H}_{\text{dir}}(k) \). In this case, both helicities contribute, i.e., \( w^{(n)} = \sum_{r=1}^{3} w_r^{(n)} \). This case is trivial in class D, since we find \( |w^{(n)}| = 2|w_{\text{spin}}^{(n)}| \), while in class BDI it predicts spin-degenerate MZM pairs only for spin vortices, as a consequence of the spin-singlet character of the pairing. Analogous results with \( |w^{(n)}| = 2|w_{\text{shift}}^{(n)}| \) are obtained when only \( \nu_{\text{shift}}(k) \) and \( \Delta_r(k) \) are considered.

We now proceed with scenarios where a symmetry class transition BDI \( \rightarrow \) D takes place by explicitly breaking the
chiral symmetry of Eq. (3), which is affected by $\tau, \sigma_z$. In the simplest case, this can be achieved by either applying a magnetic field in the $z$ direction, or, by considering spin-orientation vectors $e_\sigma$ and $e'_\sigma$ which lie in different spin planes. By virtue of the symmetry class reduction, it is only the parity $(-1)^{w_{3\eta}}$ which can protect MZMs.

This is confirmed in Fig. 3(b) where we display the energy spectrum for $\nu_{\text{shift}} = 2$ in the presence of a magnetic field in the $z$ direction, here denoted $B_z$, which enters in the Hamiltonian of Eq. (3) through the term $B \cdot \sigma_z$. For this case $(-1)^{w_{3\eta}} = 1$, ultimately resulting into the hybridization of the MZMs, thus lifting them away from zero energy. In stark contrast, if we have an odd number of MZMs, i.e., $(-1)^{w_{3\eta}} = -1$, a single pair of MZM persists in the presence of a magnetic field in $z$ direction, as seen in Figs. 3(e) and 3(f). We wish to clarify that despite the fact that in Fig. 3(e) we find four in-gap states, only a single pair corresponds to topologically protected MZMs, with only one of these MZMs having its wave-function weight localized at the defect, as one confirms from Fig. 3(f).

**C. Class DIII Models in 2D**

Despite the fact that MTCs break the standard time reversal ($T$) symmetry, Majorana Kramers pairs are still accessible when a generalized TR symmetry $\Theta$ with $\Theta^2 = -1$ appears instead [68]. In this event, the Hamiltonian is of the DIII type and is classified by a $Z_2$ topological invariant which now predicts the emergence of a single Majorana Kramers pair in a shift/spin vortex.

Such a symmetry emerges in the previously examined models when we consider, for instance, two bands labeled by $a$ and $b$. After introducing the $\kappa$ Pauli matrices in band space, the MTC terms contributing to the BdG Hamiltonian get promoted to matrices in band space, allowing for intra- and interband magnetic scattering terms proportional to $\kappa_x$, $\kappa_z$, and $\kappa_y$, respectively. In the remainder, we consider solely intraband magnetic scattering, with the magnetic texture term being proportional to $\kappa_z$. Hence, the two bands feel opposite contributions from the MTCs.

After considering that the two bands are dictated by identical nonmagnetic terms given by Eq. (4), we end up with the following Hamiltonian for a two-band system:

$$\hat{H}'(p, r) = \hat{H}_0(p) + \sum_n \{2M_n \cos(Q_n \cdot r + \eta_n(r)) \hat{e}_n$$

$$- 2M_n' \sin(Q_n \cdot r + \eta_n(r)) \hat{e}_n' \cdot \kappa_z \sigma_z e^{-i\omega_n(r)\eta_n(r)} \}.$$

Since the above bands are completely decoupled, they yield pairs of Majorana solutions in the defect’s core. Specifically, we find that the pair of MZMs is protected by the time-reversal symmetry $\Theta = \kappa_z T$. Notably, the above Hamiltonian possesses an additional U(1) symmetry with generator $\kappa_z$, which enlists the present system in class BDI $\oplus$ BDI, instead of DIII. Hence, in order to obtain true Majorana Kramers pairs protected by $\Theta$ it is required to include band mixing terms which are simultaneously invariant under the action of $\Theta$.

In order to numerically study class DIII models in 2D, we consider the lattice extension of the two-band Hamiltonian in Eq. (30), in the additional presence of the weak band mixing term $\delta \tau_x \kappa_z$ which preserves $\Theta$. We focus on the two-band extension of the 2D BDI model in Eq. (29) where, here, we set $\varepsilon^R_1(k) = \varepsilon^L_1(k) = \alpha \sin k_y$, $\Delta^{\tau}_2(k) = \Delta^{\tau}_2(k) = 0$ and $\Delta^{\tau}_3(k) = \Delta^{\tau}_3(k) = d \sin k_z$. Our numerics confirm the emergence of a MZM Kramers pair when considering a single shift/spin vortex defect, as seen in Fig. 4(a) where we observe four MZMs. The spatially resolved MZM wave-function weights in Fig. 4(c) show that one MZM Kramers pair is localized at the defect and another at the outer edge of the system.

Similarly to the BDI models in 2D, we can also here reduce the symmetry of the system by adding a homogeneous external magnetic field. In Fig. 4(b), we indeed see that the MZM Kramers pair is lifted away from zero energy by adding a magnetic field in the $z$ direction, which forces the TR-invariant system to undergo a symmetry-class transition to class D. The latter supports a $Z_2$ invariant and cannot sustain the MZM Kramers pair.
that finite-size effects, and inter MZM coupling result into weights at

\[ \hat{F}_{nm} = \partial_{p_n} \hat{\Delta}_m - \partial_{p_m} \hat{\Delta}_n - i[\hat{\Delta}_n, \hat{\Delta}_m], \]

which is defined in terms of the Berry vector potential:

\[ A_\alpha^\beta(p) = i(\Phi_\alpha(p) | \partial_{p_\beta} \Phi_\beta(p)), \]

which is a matrix in the occupied eigenstates |\Phi_\alpha(p)⟩ sub-

The second Chern number can be equivalently expressed

as a surface integral over the Chern-Simons 3 form. Here, we

choose a surface \( S = S^2 \times T^1 \) which contains a \( S^2 \) sphere in

the \( q \) space. We thus find

\[ C_2 = -\iiint_S \frac{d^3p}{8\pi^2} \epsilon_{n\alpha\beta} \text{Tr}\left( \hat{\Delta}_n \partial_{p_\alpha} \hat{\Delta}_\beta - \frac{2}{3} \hat{\Delta}_n \hat{\Delta}_m \hat{\Delta}_m \right), \]

with \( n, m, \ell = 1, 2, 3 \). When the following holds:

\[ \hat{\mathcal{H}}(q, \phi) = e^{i\phi L/2} \hat{\mathcal{H}}(q, \phi = 0) e^{-i\phi L/2}, \]

we find the relation: \( |\Phi(q, \phi)⟩ = e^{i\phi L/2} |\Phi(q, \phi = 0)⟩ \), which implies \( \hat{A}_\phi(q, \phi) = \hat{A}_\phi(q, \phi = 0) \) and

\[ A_\phi^\beta(q, \phi) = -\frac{1}{2} \langle \Phi_\alpha(q, \phi = 0) | \hat{\mathcal{L}} | \Phi_\beta(q, \phi = 0) \rangle. \]

The above lead to the simplified expression:

\[ C_2 = \iiint_{S^2} \frac{d^2q}{2\pi} \text{Tr}\left[ \frac{\hat{\mathcal{L}}}{2} \Omega(q, \phi = 0) \right], \]

where we introduced the matrix Berry curvature \( \hat{\Omega}(q, \phi = 0) \).

The second Chern number is here generally nonzero also for a

vanishing MTC strength. Under the assumption \( |\hat{\mathcal{L}}, \hat{\mathcal{H}}_0(q)⟩ = 0 \), we evaluate the trace by introducing the eigenstates of \( \hat{\mathcal{L}} \),

i.e., \( \hat{\mathcal{L}} |\lambda⟩ = \nu_{\text{defect}} |\lambda⟩ \), in which basis, \( \hat{\mathcal{H}}_0(q) \) and the respective Berry curvature matrix \( \hat{\Omega}_0(q) \) of the nonmagnetic system are block diagonal. Thus we conclude with the expression

\[ C_2 = \nu_{\text{defect}} \sum_\lambda \frac{1}{2} \iiint_{S^2} \frac{d^2q}{2\pi} \text{Tr}[\hat{\Omega}_0(q)], \]

with the trace acting in a given \( \lambda \) block. Under the assumption

that the SCs under examination possess a zero first Chern number, the second Chern number above becomes nonzero only in the presence of monopoles in the Berry curvature of the SC. These monopoles correspond to \( q \)-space nodes in 3D space, which carry a topological charge defined through \( \text{tr}[\hat{\Omega}_0(q)] = Q_0(q/2|q|) \).

For a \( 2 \times 2 \lambda \) block, these monopoles define Weyl points, which carry a topological charge given by

\[ \Omega_0,\lambda(q) = Q_0,\frac{q}{2|q|}. \]

From the above relation, we obtain the conclusive expression for the invariant, which takes the following form:

\[ C_{2z}^{(n)} = \sum_{\xi,\lambda = \pm} \frac{\xi \nu_{\text{shift}} + \nu_{\text{spin}}}{2} \lambda Q^{(n)}_{\xi,\lambda}, \]

with \( Q^{(n)}_{\xi,\lambda} \) defining the monopole charge for the nodes of the \( n \)th pair with helicity \( \xi \) and \( z \)-axis spin projection \( \lambda = \pm 1 \).
The spectrum is obtained with periodic (open) boundary conditions in the $z$ ($x$ and $y$) direction, and clearly displays chiral Majorana modes. The spatially-resolved weight of the two chiral branches are displayed in (b) and (c), and reveals a single Majorana mode at the vortex defect’s core, and its counterpart located at the edge of the system. Note that the nonzero wave-function weight at the defect in (c), is a consequence of inter-Majorana mode coupling and finite-size effects. The figures were obtained with the parameters: $\Delta = 1$, $\mu = -2\sqrt{2}$, $\alpha = 2(\sqrt{2} - 1)$, $\Lambda = 8$ and $(M_{1,z}, M'_{1,z}) = \{0.5, 0.1\}$, all in units of $\tau$.

VIII. NUMERICAL CALCULATIONS FOR A D CLASS 3D MODEL

The topological invariant $C_2$ obtained in the previous paragraph predicts the number of chiral Majorana modes emerging in the core of a vortex line. We first pursue gaining insight regarding the emergence of such dispersive chiral vortex Majorana modes using the following simple continuum model:

$$\hat{H}_0(k) = -k^2c + \alpha(k_x \tau_x + k_y \tau_y - k_z \tau_z)\sigma_z,$$

which constitutes an anisotropic $p$-wave SC variant of the model in Eq. (29). The combination of spatial anisotropy and SOC yields two helical branches and two pair of nodes at $k_y = 0$ and $k_z = \pm \delta_0$. Here, the inner helical branch at $k_y = 0$ can be gapped out by a Zeeman field which is oriented orthogonally to the SOC vector [10,11]. The two nodes of the outer helical branch can get gapped out by a magnetic stripe $M(r) = M \cos(2\alpha y) \hat{x}$. In analogy to Eq. (28), here we find that a number of

$$|C_2| = |u_{\text{shift}} + u_{\text{spin}}|$$

chiral Majorana modes emerge in a vortex line extending along the $z$ axis.

We now provide a numerical investigation of the above class D model in 3D, after considering a proper lattice extension. For this purpose, we consider that the bare Hamiltonian of Eq. (4) is given by

$$\hat{H}_{0}^{3D}(k) = \tau_z[\varepsilon_y(k) + \varepsilon_x(k)\sigma_z] + [\Delta_p(k)\tau_x + \Delta'_p(k)\tau_y]\sigma_z,$$

and consists of the anisotropic 3D dispersion

$$\varepsilon_x(k) = -2\alpha(\cos k_x + \cos k_y) - \Lambda(1 - \cos k_z)/2 - \mu$$

in the additional presence of the anisotropic SOC term $\varepsilon_x(k) = \alpha \sin k_x$, and the chiral $p$-wave pairing which is defined in terms of the components:

$$\Delta_p(k) = \Delta \sin k_x \quad \text{and} \quad \Delta'_p(k) = -\Delta \sin k_z.$$

We consider the limit $\Lambda \gg \tau$, in which, the pairs of nodes in the nonmagnetic phase are located only in the $k_z = 0$ plane. After including the magnetic terms of the Hamiltonian and considering a vortex line which extends uniformly along the $z$ axis, we observe that $k_z$ is a good quantum number since $\tan \phi = y/x$. In fact, for small $k_z$, we can linearize the above Hamiltonian and see that for $k_z = 0$ it possesses a chiral symmetry with $\Pi = \tau_z\sigma_z$ similar to the model of Eq. (29). The preservation of $\Pi$ gives rise to a pair of zero energy states.

Away from $k_z = 0$ the chiral symmetry is broken, lifting the states away from zero energy, ultimately resulting into dispersive chiral Majorana modes, as seen Fig. 5(a). Here, a single mode is dispersing along the vortex core while the other one resides on the outer edge of the system, see Figs. 5(b) and 5(c), respectively.

IX. EXPERIMENTAL IMPLEMENTATION

We now proceed with the discussion of potential candidate systems and mechanisms that may allow observing our theoretical predictions in realistic systems. As mentioned above, nodal superconducting materials are abundant in nature [63], e.g., unconventional spin-singlet (-triplet) $d$-wave ($p$-wave) SCs [92], noncentrosymmetric [93–96] SCs, and certain Fe-based SCs which can also exhibit nodal pairing [97,98]. Below, we discuss three distinct pathways involving MTCs, which lead to a fully gapped bulk energy spectrum and open perspectives for vortex MZMs.

A. MTCs engineered by nanomagnets

The first possibility is to actually impose the desired MTC externally with the help of tunable magnets. Such a direction has recently picked up substantial theoretical [64,66,78,81,82,84,85] and experimental [36,99] attention in the field of engineered topological superconductivity. Furthermore, in a different context, recent experiments [100] have found evidence for colossal magnetic anisotropy for CoFe$_2$C magnets with a characteristic dimension of the order of few nanometers. Since the wave vectors controlling the spatial periodicity of the MTC are required to roughly match those connecting pairs of nodes, it may be currently challenging for these state-of-the art nanomagnetic technologies to be applicable in most of the above listed SCs. This is because most
of these are metals and thus the arising nodes are expected to be connected by wave vectors with a length which relates to the Fermi wave number. Hence, we conclude that the present route for engineering vortex MZMs, by means of imposing MTCs induced by magnets, appears more relevant for very low-density and bad-metal SCs, with Fermi wave numbers in the few nanometer regime.

B. Spontaneously induced MTCs

Another possibility is the interaction-driven MTCs, which can become stabilized in the presence of attractive interactions in the magnetic channel, in order to minimize the free energy of the system. In analogy to 1D spin-density waves [101], which are promoted by the perfect nesting of the two points comprising the Fermi surface, here we expect a MTC to spontaneously appear and gap out the nodes. This is under the condition that other competing instabilities are subdominant to the MTC. The tendency of the system towards the spontaneous development of a magnetic helix crystal which gaps out a single pair of nodes can be here inferred by evaluating the respective spin susceptibility. In fact, the latter can be calculated using the low-energy model of Eq. (14).

For this purpose, we restrict to the nth pair of nodes and consider a magnetic helix crystal with projected components $M_n = (M^{(n)}_0, M^{(n)}_z, 0)$. Moreover, we assume that the magnetic helix crystal is governed by a periodicity given by a wave vector which is equal to the wave vector $2k_\nu$, connecting the nodes of the pair of interest. We note that, when the wave vector of the magnetic helix matches the one connecting the nodes, a gap opens on these with an infinitesimally weak strength of $|M_n|$. Nonetheless, a full gap is accessible also for detuned wave vectors, but in that event, a threshold strength of $|M_n|$ has to be reached. In the following, we restrict to the ideal scenario of perfectly matched wave vectors, since this is the configuration that yields the highest susceptibility and thus minimizes the free energy of the system.

In the upcoming analysis, we suppress the (n) index from the various variables to simplify the notation. Since in the absence of magnetism the Hamiltonian in Eq. (14) is dictated by an emergent U(1) symmetry generated by $\lambda_z$, we can evaluate the desired susceptibility by considering that only one of the components of the magnetic helix texture, either $M_0$ or $M_z$, is nonzero. Under the above conditions, straightforward calculations in the zero temperature limit yield the susceptibility expression:

$$\chi = \int \frac{dq}{(2\pi)^2} \frac{1}{\sqrt{[q \cdot v_n]^2 + [q \cdot v_{\Delta,\ell}]^2}}. \quad (45)$$

By transferring to polar coordinates $q = q(\cos \gamma, \sin \gamma)$, and after introducing a cutoff wave number $q_\ell$, we end up with the expression

$$\chi = \int_0^{2\pi} d\gamma \frac{v_\ell}{2\pi \sqrt{1 + \cos \gamma_0 \cos(2\gamma) + \delta \sin \gamma_0 \sin(2\gamma)}}, \quad (46)$$

where we introduced the density of states $v_\ell = q_\ell/(2\pi \bar{v})$ which depends on the cutoff $q_\ell$ and the average velocity defined as $\bar{v} = \sqrt{([v_{\Delta,\ell}]^2 + [v_{\Delta,\ell}]^2)/2}$. The final outcome for $\chi$ is decided by the precise values of the parameter $\delta = (|v_{\Delta,\ell}|^2 - |v_{\Delta,\ell}|^2)/(|v_{\Delta,\ell}|^2 + |v_{\Delta,\ell}|^2)$ which encodes the velocity mismatch, and the relative angle $\gamma_0 = \gamma_{\ell} - \gamma_{\ell}$, which is defined in terms of the orientation angles $\gamma_{\ell,\Delta}$ given by $v_n = |v_{\Delta,\ell}|(\cos \gamma_{\ell}, \sin \gamma_{\ell})$ and $v_{\Delta,\ell} = |v_{\Delta,\ell}|(\cos \gamma_{\Delta}, \sin \gamma_{\Delta})$. We note that the final form of Eq. (46) was obtained after the redefinition $\gamma \mapsto \gamma + (\gamma_{\ell} + \gamma_{\ell})/2$, which does not influence the result.

From Eq. (46), we infer that in contrast to 1D spin-density waves, here, the 2D dimensionality does not generally allow for a logarithmically divergent susceptibility. In fact, for velocity vectors oriented at right angles ($\gamma_0 = \pi/2$) which additionally feature equal lengths ($\delta = 0$), the susceptibility reaches its minimum value $\chi_0 = v_\ell$. Away from this highly symmetric configuration, the ratio $\chi/\chi_0$ increases monotonically. Notably, the susceptibility becomes maximized as the system tends to the extreme anisotropic cases with $\gamma_0/\pi \to \mathbb{Z}$ for arbitrary $\delta$, or, $|\delta| \to 1$ for arbitrary $\gamma_0$. Thus the appearance of a MTC generally requires a threshold strength for the interaction which drives magnetism. Noteworthy, this critical strength depends strongly on the cutoff $q_\ell$, since $\chi$ scales linearly with $q_\ell$. Finally, this threshold interaction strength becomes reduced by enhancing the anisotropy of the energy dispersion in the vicinity of the nodes.

Out of the various candidates mentioned earlier, Fe-SCs can support nodal phases, exhibit single- and double-Q magnetic stripe order [102–112], and can harbor the microscopic coexistence of magnetism and superconductivity [102,113–118]. Moreover, recent theoretical studies [119] predict single- and double-Q MTCs in doped 122 and 1111 compounds. While the theoretical investigation and experimental support regarding the microscopic coexistence of nodal Fe-SCs and MTCs is still lacking, these systems appear as potential candidates to observe the phenomenology discussed in this section.

C. MTCs induced by localized magnetic moments

The last possible physical realization of our theory relies on nodal SCs coupled with lattices of localized magnetic moments. Here, the MTC required for gapping out the nodes of the SC is considered to result from the magnetization of the localized moments. This third mechanism that we propose for engineering MZMs bears similarities to the ones proposed [67,69–75,79,80,120–123] for MZM platforms relying on magnetic chains [42–49]. However, here, the dimension of the lattice of the magnetic impurities needs to coincide with the dimension of the lattice defined by the nodal SC, akin to the picture that holds for Kondo lattice systems [124], which are typical scenarios for rare-earth [65] and heavy-fermion SCs [63,92]. Moreover, we remind the reader that within our proposal MZMs are trapped by vortices of the MTCs instead of termination edges or domain walls. Interestingly, employing MTC vortices for trapping MZMs appears particularly attractive in the case of hybrid systems involving magnetic adatoms, since MTC vortices can be in principle tailored using spin-polarized scanning tunneling microscopy [45,47–49]. The latter technique, further allows for the spin-sensitive detection of the vortex MZMs [123].
In a similar fashion to proposals for self-organized MZM platforms using magnetic adatom chains [70–72], also here, we expect for the magnetization of the magnetic moment lattice to exhibit a spatial profile which reflects the structure of the nodes of the host SC. This profile is determined by the spin susceptibility \( \chi_{\alpha \beta}^{m} \) which couples the magnetic moments through the Ruderman-Kittel-Kasuya-Yosida (RKKY) type of energy term:

\[
E_{\text{RKKY}} = -\frac{J^2}{2} \sum_{n,m} \sum_{\alpha, \beta} S_{n}^{\alpha} \chi_{\alpha \beta}(\mathbf{R}_{n} - \mathbf{R}_{m}) S_{m}^{\beta},
\]

(47)

where the indices \( n,m \) label the impurity lattices sites \( \mathbf{R}_{n,m} \), while \( \alpha, \beta = x, y, z \) label the spin components of the moments. \( J \) denotes the strength of the magnetic exchange coupling between the moment and the electron spin. For a homogeneous nodal SC of a spatial dimension \( d \), the spin susceptibility depends only on the difference \( \mathbf{R} = \mathbf{R}_{n} - \mathbf{R}_{m} \) of the position vectors of the coupled magnetic moments and is defined by the expression

\[
\chi_{\alpha \beta}(\mathbf{R}) = -\frac{1}{2} \int \frac{d\mathbf{r}}{2\pi} \text{Tr} \left[ \sigma_{\alpha} \hat{G}_{0}(\mathbf{0}, \mathbf{R}) \sigma_{\beta} \hat{G}_{0}(\mathbf{0}, -\mathbf{R}) \right],
\]

(48)

where we introduced the bare matrix Green function

\[
\hat{G}_{0}(\mathbf{0}, \mathbf{R}) = \int \frac{dk}{(2\pi)^{d}} e^{i \mathbf{k} \cdot \mathbf{R}} \hat{G}_{0}(\mathbf{0}, \mathbf{k}),
\]

(49)

with its momentum space counterpart being defined through:

\[
\hat{G}_{0}^{-1}(\mathbf{k}) = i e - \hat{H}_{0}(\mathbf{k}),
\]

where \( \hat{H}_{0}(\mathbf{k}) \) is given by Eq. (4). We introduced a factor of \( 1/2 \) in Eq. (48) to prevent the double counting of the electronic degrees of freedom since we use the four-component basis of Eq. (2).

To further elaborate on this aspect, we explore a concrete example for a nodal SC with two pairs of nodes. Specifically, we consider the \( d = 2 \) model with \( \nu_{\Delta} > 0 \):

\[
\hat{H}_{0}(\mathbf{p}) = \tau_{z} \left( \frac{\hbar^{2} p_{z}^{2}}{2m} - \alpha p_{y} \sigma_{z} - \mu \right) + \nu_{\Delta} \hat{p}_{x} \tau_{x} \sigma_{x},
\]

(50)

which is obtained by means of dimensional reduction of the 3D model described in Eq. (41) to the 2D \((x, y)\) plane, and harbors two pairs of nodal points located along the \( k_{x} = 0 \) high-symmetry line. The above model constitutes a paradigmatic model for the entire category of systems discussed here, since all nodes are situated along the same axis, thus allowing the generalization of some of our results to nodal SCs harboring multiple pair of nodes, with the various pairs of nodes been situated on lines with generally nonparallel orientation.

Before carrying out the calculation of the spin susceptibility, it is convenient to gauge away the SOC term by performing a spatially dependent unitary transformation:

\[
\hat{H}_{0}(\mathbf{p}) = \mathcal{O}(y) \left( \frac{\hbar^{2} p_{y}^{2}}{2m} - \tau_{z} + \nu_{\Delta} \hat{p}_{y} \tau_{x} \sigma_{x} \right) \mathcal{O}(y)^{\dagger},
\]

(51)

with \( k_{x}^{2}/(2m) = \mu + m\sigma^{2}/2 \) and the kinetic energy term \( \varepsilon(k_{y}) = (k_{y}^{2} - k_{F}^{2})(2m) \). Moreover, the unitary transformation matrix reads as \( \mathcal{O}(y) = \text{Exp}(i\alpha y \sigma_{y}) \). Within this framework, the bare Green function in coordinate space becomes \( \hat{G}_{0}(\mathbf{0}, \mathbf{R}) = \mathcal{O}(y) \hat{G}_{0}^{\alpha\alpha}(\mathbf{0}, \mathbf{R}) \mathcal{O}(y)^{\dagger} \), where we introduced \( \mathbf{R} = (X, Y) \), and the Green function for \( \alpha = 0 \):

\[
\hat{G}_{\alpha = 0}^{\alpha\alpha}(\varepsilon, \mathbf{R}) = \int \frac{dk_{y}}{(2\pi)^{2}} \frac{e^{i k_{y} R}}{(2\pi)^{2}} \frac{\varepsilon - \varepsilon_{k_{y}} + \nu_{\Delta} k_{y} \tau_{x} \sigma_{x}}{(i\varepsilon)^{2} - (\nu_{\Delta} k_{y})^{2}}.
\]

(52)

We now proceed with the evaluation of the spin susceptibility. For this purpose, we also consider a semiclassical approach in which \( k_{F} \) is substantial, thus allowing to approximate the kinetic energy as \( \varepsilon(k_{y}) \approx \pm v_{F}(k_{y} \mp k_{F}) \), with the latter being expanded about the two Fermi points \( k_{y} = \pm k_{F} \) with \( v_{F} = k_{F}/m \). Moreover, due to the presence of the strong anisotropy, it is preferable to integrate over the \( k_{y} \) variable first. Since the integrand peaks at \( k_{y} = 0 \), we can safely consider that the integration is over \( (-\infty, +\infty) \), without worrying about the possible necessity to introduce a cutoff. In this case, employing standard residue theory provides

\[
\hat{G}_{\alpha = 0}^{\alpha\alpha}(\varepsilon, \mathbf{R}) = -\int \frac{dk_{y}}{4\pi v_{F} \nu_{\Delta}} e^{i k_{y} R} \chi_{\alpha\beta}(\mathbf{R}) \left\{ \frac{i e - \varepsilon_{k_{y}} \tau_{x}}{\sqrt{\varepsilon_{k_{y}}^{2} + e^{2}}} + i\varepsilon_{k_{y}} \tau_{x} \sigma_{x} \right\}.
\]

(53)

By now exploiting the assumed semiclassical limit, we introduce the variable \( \xi = \pm (k_{y} \mp k_{F}) \) which allows us to carry out the substitution \( k_{y} = \pm (k_{F} + \xi / v_{F}) \). After taking the limit \( k_{F} \to \infty \), we obtain for \( X, Y \neq 0 \):

\[
\hat{G}_{\alpha = 0}^{\alpha\alpha}(\varepsilon, \mathbf{R}) = \frac{\cos(k_{F} Y)}{\nu_{F} \nu_{\Delta}} \int_{-\infty}^{+\infty} d\xi \frac{e^{i \xi Y} - \sqrt{\xi^{2} + e^{2}} |X| / \nu_{\Delta}}{\nu_{\Delta}} \times \left\{ \frac{i e - \varepsilon_{k_{y}} \tau_{x}}{\sqrt{\varepsilon_{k_{y}}^{2} + e^{2}}} - i\varepsilon_{k_{y}} \tau_{x} \sigma_{x} \right\}.
\]

(54)

By further restricting to situations where \( |X| \) is small with \( \Theta = |X| / \nu_{\Delta} \ll 1 \), we manage to obtain approximate closed-form expressions by replacing the exponential term \( \text{Exp}(-\sqrt{\xi^{2} + e^{2}} |X| / \nu_{\Delta}) \) by its factored form \( \text{Exp}(-|\xi||X| / \nu_{\Delta}) \text{Exp}(-\varepsilon |X| / \nu_{\Delta}) \) when evaluating the term \( \alpha \tau_{x} \sigma_{x} \), and by completely discarding it when evaluating the remaining two terms. These approximations lead to the expression

\[
\pi v_{F} \nu_{\Delta} \chi_{\alpha\beta}(\varepsilon, \mathbf{R}) \approx \frac{\sin(k_{F} Y) e^{-|\xi||X| / \nu_{\Delta}}}{\nu_{\Delta}} \times \left[ i e \varepsilon_{k_{y}} - i\varepsilon_{k_{y}} \tau_{x} \sigma_{x} \right].
\]

(55)

With the Green function at hand, we now determine the elements of the spin-susceptibility tensor. We find that for \( \alpha = 0 \), the only nonzero elements are \( \chi_{xx}^{\alpha\alpha}(\mathbf{R}) = \chi_{yy}^{\alpha\alpha}(\mathbf{R}) = \chi_{zz}^{\alpha\alpha}(\mathbf{R}) = \chi_{xx}^{\alpha\alpha}(\mathbf{R}) \equiv \chi_{mm}^{\alpha\alpha}(\mathbf{R}) = \mathcal{I}_{1}(\mathbf{R}) - \mathcal{I}_{2}(\mathbf{R}) + \mathcal{I}_{3}(\mathbf{R}) \) and \( \chi_{zz}^{\alpha\alpha}(\mathbf{R}) = \mathcal{I}_{1}(\mathbf{R}) - \mathcal{I}_{2}(\mathbf{R}) - \mathcal{I}_{3}(\mathbf{R}) \), which consist of the three non-negative contributions presented below:

\[
\mathcal{I}_{1}(\mathbf{R}) = 1 + \frac{\cos(2k_{F} Y) v_{F}}{2\pi (\pi \nu_{\Delta} Y)^{2}} |X| \int_{-\infty}^{+\infty} du u^{2} K_{0}^{2}(\xi(u)),
\]

(56)
dependence of the spin susceptibility, we find that both of additional sources of spin anisotropy, the arising FM-like moments can gap out the nodes. However, in the absence model of Eq. (14) only the in-plane ordering of the magnetic moment become projected out in the low-energy limit, allowing to the magnetic moments to develop in-plane or engineer additional in-plane spin-anisotropies, which can be traced back to the spin-dependent positions of two magnetic moments forms an angle with the axis, then an easy plane spin anisotropy forces the magnetic moment to point out-of-the plane, i.e., along the z axis.

Let us now consider the effects of nonzero $\alpha$ which implies that the Rashba SOC in non-negligible. For a perfectly ordered array of localized magnetic moments with a spacing $|Y|$ in the y direction, we find that the z axis susceptibility is unaltered and the components $\chi_{yz,zy}$ remain zero. Nonetheless, there is now a modification of the strengths of the in-plane susceptibilities. In addition to the above, the in-plane off diagonal elements $\chi_{xy}(R) = -\chi_{yx}(R)$ become now nonzero. These results are reflected in the expressions

$$\chi_{in}(R) = \cos(2m_{\alpha}Y)\chi_{\alpha=0}(R), \quad (60)$$

$$\chi_{xy}(R) = \sin(2m_{\alpha}Y)\chi_{\alpha=0}(R). \quad (61)$$

Notably, a similar susceptibility structure has been discussed previously in Ref. [122] in connection to MZM platforms with magnetic chains. Here, the obtained spin-susceptibility transforms the emergent in plane FM order into an in-plane magnetic helix texture, while it leaves the out-plane AFM order unaffected. Since the z components of the magnetization become projected out in the low-energy model of Eq. (14) only the in-plane ordering of the magnetic moments can gap out the nodes. However, in the absence of additional sources of spin anisotropy, the arising FM-like magnetic helix texture cannot gap out the outer-helical branch nodes of the model in Eq. (50), since its winding compensates that of the Rashba SOC. A possible escapeway is to impose or engineer additional in-plane spin-anisotropies, which can allow to the magnetic moments to either develop in-plane magnetic helix textures with a different pitch than the one characterizing the Rashba SOC, or enable in plane AFM phases.

For the example the addition of terms such as $(S^z_n)^2$ generally opens the door for the above scenarios, as it has already demonstrated in Ref. [122]. So far, we have not made any mention in connection to the pair of nodes associated with the inner helical branch arising due to the Rashba SOC. In analogy to Sec. VIII, also here, we can assume the presence of a weak Zeeman field in order to lift the inner helical branch [10,11]. Finally, we wish to remind the reader that the present platforms appear attractive for pinning MZMs in vortices of the arising in-plane magnetic helix texture or AFM order, since the spin-orientation of the magnetic moments is in principle locally tunable using scanning tunneling microscopy.

X. SUMMARY AND OUTLOOK

We provide a novel pathway to engineer Majorana zero modes (MZMs), which relies on nodal superconductors (SCs) and at the same time does not require the presence of superconducting vortices. In contrast, we show that MZMs become accessible in nodal SCs which are under the influence of magnetic texture crystals (MTCs). At this point, we wish to clarify that our approach is distinct to Refs. [48,125–129]. There, isolated magnetic skyrmions, and not crystals as we consider here, have been employed as smooth defects which pin various types of bound states in fully-gapped SCs, these including MZMs [48,126–128]. Instead, within our proposal, MZMs are pinned by spin and/or shift vortices induced in the MTC, which constitute singular defects.

Our analysis provides a detailed study of various topological scenarios in both 2D and 3D nodal SCs, which cover all three Majorana symmetry classes, i.e., BDI, D, and DIII. We present in detail the construction for two topological invariant quantities, which predict vortex MZMs in class BDI in 2D and chiral Majorana modes in class D in 3D. Topological invariants for the remaining cases can be constructed using these two fundamental invariants. Even more, we show how to render Majorana Kramers pair solutions still accessible, in spite of the violation of the standard time-reversal symmetry by the MTC. As an example we discuss a two-band model in 2D which harbors a single vortex Kramers pair of MZMs in 2D. Our analytical approach and predictions based on the various topological invariants are backed by our numerical simulations on the lattice.

The last part of our investigation concerns the experimental realization of our proposals in connection to intrinsic nodal SCs. We discuss the following three different possible paths to engineer the required MTCs and concomitant vortex MZMs: (i) MTCs which are engineered using nanomagnets, (ii) MTCs that arise spontaneously by virtue of the interactions dictating the electrons of the SC, and (iii) MTCs which are harbored by a lattice of localized magnetic moments which are exchange-coupled to the nodal SC. We provide insight in the above possibilities and discuss their advantages and possible limitations. Regarding the stabilization of vortices in MTCs, we note that certain types of topological defects in MTCs, e.g., disclinations [130,131], have already been experimentally observed in helimagnets [132–136]. Similarly,
shift/spin vortices can arise spontaneously, get pinned by disorder or engineered with nanomagnets, or scanning tunneling microscopy (STM) tips.

Apart from quantum materials, our idea may also be relevant for artificial platforms, such as a 2D electron gas (2DEG) in proximity to a conventional SC with strong Rashba SOC. Here, one wishes to harness the proximity effect to induce a mixed-spin type nodal pairing term in the 2DEG. This appears particularly promising for superconductor-semiconductor devices for which a strong debate has been raised recently [28,137–144]. We hope that our theory inspires the development of new platforms which take advantage of the advanced fabrication and measurement techniques which currently exist for semiconductor hybrids, and combine them with the control over MTCs and vortex MZMs using spin-polarized STM.

ACKNOWLEDGMENTS

We thank M. H. Christensen and A. V. Balatsky for inspiring discussions. D.S. and B.M.A. acknowledge support from the Carlsberg Foundation, and P.K. from the National Science Foundation of China (Grant No. 12050410262). B.M.A. additionally acknowledges support from the Independent Research Fund Denmark Grant No. 8021-00047B.


[95] M. Sato and S. Fujimoto, Topological phases of noncentrosymmetric superconductors: Edge states, majorana


[107] Y. Zheng, P. M. Tam, J. Hou, A. E. Böhmer, T. Wolf, C. Meingast, and R. Lortz, Absence of nematic order in the pressure-induced intermediate phase of the iron-based superconductor Ba0.45K0.15Fe2As2, Phys. Rev. B 93, 104516 (2016).


