Josephson junctions in double nanowires bridged by in-situ deposited superconductors

Alexandros Vekris, Juan Carlos Estrada Saldaña, Thomas Kanne, Mikelis Marnauza, Dags Olsteins, Furong Fan, Xiaobo Li, Thor Hvid-Olsen, Xiaohui Qiu, Hongqi Xu, Thomas Kanne, Jesper Nygård, and Kasper Grove-Rasmussen

1Center For Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
2Sino-Danish Center for Education and Research (SDC) SDC Building, Yanghua Campus, University of Chinese Academy of Sciences, 380 Huaidaihuang, Huaian District, 101408 Beijing, China
3Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, 100871, China
4CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
5CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
6Beijing Academy of Quantum Information Sciences, 100193 Beijing, China

(Received 5 May 2021; revised 23 July 2021; accepted 10 August 2021; published 10 September 2021)

We characterize parallel double quantum dot Josephson junctions based on closely spaced double nanowires bridged by in-situ deposited superconductors. The parallel double dot behavior occurs despite the proximity of the two nanowires and the potential risk of nanowire clamping during growth. By tuning the charge filling and lead couplings, we map out the parallel double quantum dot Yu-Shiba-Rusinov phase diagram. Our quasi-independent two-wire hybrids show promise for the realization of exotic topological phases.

DOI: 10.1103/PhysRevResearch.3.033240

I. INTRODUCTION

Double Rashba-nanowires bridged by superconductors are at the center of proposals for qubits [1], coupled subgap states [2], and exotic topological superconducting phases based on Majorana zero modes (MZMs) [3–16]. Researchers have theorized on the existence of a topological Kondo phase in such wires when the bridging superconductor is in Coulomb blockade [3,4,15,17] and, more recently, described a device hosting parafermions [6]. Realization of these proposals should benefit from material science developments, resulting in improved nanowire-superconductor interfaces with low quasiparticle poisoning rates [18–20].

These clean interfaces have been used in the pursuit of MZMs in single nanowires [19,21] and, more recently, for coupling single and serial quantum dots (QDs) defined on single nanowires to superconductors to realize one and two-impurity Yu-Shiba-Rusinov (YSR) models [22–26]. YSR states, belonging to the class of Andreev bound states [23–25,27–39], arise in the limit of large Coulomb charging energy, $U > \Delta$, as a result of the virtual excitation of a quasiparticle into the edge of the superconducting gap [40,41]. This quasiparticle can exchange-fluctuate with a localized spin in the QD, and if the exchange coupling is strong (i.e., when the Kondo temperature, T_K, is larger than $\sim 0.3 \Delta$), the ground state (GS) changes from a doublet to a singlet [42]. In Josephson junctions (JJs), this induces a $\pi-0$ phase-shift change in the superconducting phase difference [22,23,43–59].

Devices which use pairs of QDs placed in a parallel configuration [60–62] and coupled to common superconducting leads have been extensively studied with the purpose of producing entangled electron states through Cooper pair splitting [63–66]. However, the behavior of the switching current, I_{sw}, in the presence of YSR screening [23,37,67] in parallel double QDs remains to be investigated.

In this paper, we characterize superconductivity in closely spaced pairs of InAs nanowires bridged by a thin epitaxial superconducting aluminum film deposited in situ [68]. To do so, we fabricate two side-by-side JJs out of one pair of nanowires and demonstrate that each nanowire hosts a single QD, through which supercurrent flows. From the charge stability diagram and magnetic field measurements, we establish that the interwire tunneling at the junction is negligible with an upper bound of $\sim 50 \mu eV$. The YSR physics is analyzed through the gate dependence of the linear conductance and I_{sw}, where we find that the common superconducting leads screen individually each QD, hinting at individual YSR clouds instead of a single one extending over the two QDs. We furthermore show indications of supercurrent interference when the GS parities of the QDs are different, reminiscent of a superconducting quantum interference device (SQUID) at zero magnetic field.

The paper is structured in sections. In Sec. II, we introduce the YSR double QD phase diagram and measurements...
of two double QD shells in different coupling regimes are presented, establishing weak interdot coupling. In Sec. III, we show signatures of interference between the supercurrents flowing through each junction. In Sec. IV, we demonstrate we show signatures of interference between the supercurrents applicable) or by (d) using the equation

\[TK = \frac{1}{2} \sqrt{U R \epsilon_{QD}} \left(\epsilon_{QD} - U \right) \]

with \(\Gamma_{L,R}, U_{L,R} \) as known values, and \(\epsilon_0 = \epsilon_{L,R} \) the level position of the corresponding QD. Extraction methods are presented in detail in SM, Sec. III. From the charge stability diagram, we extract similar side-gate and back-gate capacitances for the left and right QD in the order of \(C_{bg} \approx 1 \text{nF} \) and thus the charging energies are dominated by the source and drain capacitances.

<table>
<thead>
<tr>
<th>Shell</th>
<th>(U_L) (meV)</th>
<th>(U_R) (meV)</th>
<th>(\Gamma_L) (meV)</th>
<th>(\Gamma_R) (meV)</th>
<th>(g_L) (\epsilon_L)</th>
<th>(g_R) (\epsilon_R)</th>
<th>(k_L T_R) (meV)</th>
<th>(k_R T_L) (meV)</th>
<th>(\gamma)</th>
<th>(\Delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>3.8 ± 0.5</td>
<td>2.3 ± 0.3</td>
<td>0.23 ± 0.02(^a)</td>
<td>0.6 ± 0.1(^b)</td>
<td>0.06 ± 0.01</td>
<td>0.26 ± 0.05</td>
<td>(3.1 ± 0.3) \times 10^{-5}</td>
<td>0.03 ± 0.01(^d)</td>
<td>6 \times 10^{-4}</td>
<td>0.5</td>
</tr>
<tr>
<td>X</td>
<td>3.7 ± 0.5</td>
<td>1.1 ± 0.3</td>
<td>0.33 ± 0.01(^c)</td>
<td>0.55 ± 0.05(^d)</td>
<td>0.09 ± 0.01</td>
<td>0.5 ± 0.1</td>
<td>(8 ± 1) \times 10^{-5}</td>
<td>0.07 – 0.18(^e)</td>
<td>0.001</td>
<td>3.2</td>
</tr>
<tr>
<td>Y</td>
<td>3.6 ± 0.5</td>
<td>1.1 ± 0.3</td>
<td>1.05 ± 0.01(^c)</td>
<td>0.55 ± 0.05(^d)</td>
<td>0.29 ± 0.04</td>
<td>0.5 ± 0.1</td>
<td>0.06 ± 0.02(^d)</td>
<td>0.07 – 0.18(^e)</td>
<td>1</td>
<td>3.2</td>
</tr>
</tbody>
</table>

\(^a\)Using method (d), we extract 0.06 meV.

The source and the drain contacts of the device each branch out into two leads as shown in Fig. 1(a), enabling us to characterize the parallel JJs [71] in a four-terminal configuration (at the level of the leads) by applying a current, \(I_{bias} \), from source to drain leads and measuring the voltage response, \(V \), in a different pair of leads. In this way, we obtain \(I_{bias} - V \) curves which switch from a supercurrent branch at low \(I_{bias} \) to a high-slope dissipative branch at \(I_{sw} \). Two such curves are shown in Figs. 1(c) and 1(d) for the open and Coulomb blocked regimes, respectively. We measure \(I_{sw} \) up to 35 nA in the former regime and up to approximately 500 pA in the latter regime. Figure 1(d) is measured with QDL in Coulomb blockade and QDR near a Coulomb resonance. Note that the supercurrent exhibits hysteresis, as the switching is found at different currents for positive and negative applied bias. In the Coulomb blockade, the supercurrent branch shows a finite slope, \(R_s \), which increases with \(I_{bias} \). However, this does not affect our identification of \(I_{sw} \) as a jump in the curve down to 5 pA (see SM, Sec. II). In our analysis below (Sec. III), we do not claim quantitative estimates of the critical current, \(I_C \), which may be larger, but merely address the qualitative behavior of \(I_{sw} \). From independent \(I_{bias} - V \) measurements in the open regime, we estimate an upper bound of the contact resistance between the metal-lead and the hybrid-nanowire in the order of 20 \(\Omega \) (see SM for discussion).

As a guide to the different GS configurations accessed in this paper, we show in Fig. 1(e) a sketch of the phase diagram of the parallel double quantum dot (DDQD) JJ versus coupling to the leads when the two QDs have independent GSs (\(t_d = 0 \)). The sketch corresponds to odd occupancy (1,1) of the QDs and it is valid for the large level-spacing regime, \(\Delta E_i > U_i \), where \(i \) stands for left and right QDs. The independent-GS case is applicable to our device as most \(I_{sw} \) measurements are done away from the triple points of the QDs, where the effect of a finite \(t_d \) is negligible. GS changes occur when the total tunneling rates \(\Gamma_{L,R} \) of each of the QDs to the common superconducting leads surpass a threshold which depends on \(U_{L,R}/\Delta \) [31], where \(\Delta \) is the superconducting gap. Above this threshold, the spin of each QD is individually screened by the superconducting
FIG. 1. (a) Scanning electron micrograph of device 1. Two nanowires with common superconducting leads form two parallel Josephson junctions. Side-by-side quantum dots serve as weak links for each II. The direction of an external in-plane magnetic field, B, when applied, is indicated by an arrow and has an angle of 45° with the device. In inset, a schematic cross section of the double nanowire is shown, indicating facets of the nanowires covered by Al at the leads. (b) Sketch of the two side QDs coupled to two superconducting leads. Interdot tunnel coupling, t_d, may be present. The GS parity of the left (L) and right (R) QDs is changed by tuning of different shells from Figs. 2, 4 and SM, Sec. VI (device 2) are shown. (c), (d) Γ_{L/U_c}, Γ_{R/U_c} versus magnetic field, B, dependence of parity transition lines which enclose the 1,1 charge sector in (a) versus plunger gate voltages of the (b) left and (c) right QDs, obtained by sweeping the gates along the green and blue arrows, shown in (a). For simplicity, only V_{Lg} and V_{Rg} are, respectively, shown. (e)–(i) Color maps of ΔI, voltage-biased differential conductance, dI/dV, in the superconducting state for shells W (a) and X (e) versus left and right QD plunger gates. In (a), charges N_{Lg}, N_{Rg} correspond to the charge occupation of the highest unoccupied energy level of each QD. In (e), white dashed lines represent the position of the Coulomb lines measured at $B = 2$ T, (b), (c) Zero-bias dI/dV color maps showing the magnetic field, B, dependence of parity transition lines which enclose the 1,1 charge sector in (a) versus plunger gate voltages of the (b) left and (c) right QDs, obtained by sweeping the gates along the green and blue arrows, shown in (a). For simplicity, only V_{Lg} and V_{Rg} are, respectively, shown. (f)–(i) Color maps of dI/dV versus magnetic field, B, and source-drain bias voltage, V_{SD}, taken in four different charge sectors indicated by symbols in (e). Higher B field measurement of (h) can be found in SM Sec. III. Dashed lines are added as a guide to the eye. (d), (j) Pairs of phase-diagram sketches for independent left and right QDs. Horizontal color-coded lines in each pair indicate qualitatively $\Gamma_{L}(\Gamma_{R})$ versus left (right) QD level position $\epsilon_L(\epsilon_R)$ in the stability diagrams of (a) and (e), respectively, following the arrows shown.

FIG. 2. (a), (e) Color maps of two-terminal, voltage-biased zero-bias differential conductance, dI/dV, in the superconducting state for shells W (a) and X (e) versus left and right QD plunger gates. In (a), charges N_{Lg}, N_{Rg} correspond to the charge occupation of the highest unoccupied energy level of each QD. In (e), white dashed lines represent the position of the Coulomb lines measured at $B = 2$ T, (b), (c) Zero-bias dI/dV color maps showing the magnetic field, B, dependence of parity transition lines which enclose the 1,1 charge sector in (a) versus plunger gate voltages of the (b) left and (c) right QDs, obtained by sweeping the gates along the green and blue arrows, shown in (a). For simplicity, only V_{Lg} and V_{Rg} are, respectively, shown. (f)–(i) Color maps of dI/dV versus magnetic field, B, and source-drain bias voltage, V_{SD}, taken in four different charge sectors indicated by symbols in (e). Higher B field measurement of (h) can be found in SM Sec. III. Dashed lines are added as a guide to the eye. (d), (j) Pairs of phase-diagram sketches for independent left and right QDs. Horizontal color-coded lines in each pair indicate qualitatively $\Gamma_{L}(\Gamma_{R})$ versus left (right) QD level position $\epsilon_L(\epsilon_R)$ in the stability diagrams of (a) and (e), respectively, following the arrows shown.
The resistance $R_S = 1/(dI/dV(V_{SD} = 0))$ as an indicator of the magnitude of I_m. This is particularly relevant in the Coulomb-blockade regime, when I_m is small and R_S is significant (see SM, Sec. II). We only use this empirical relation to comment on the voltage-biased measurements in Fig. 2. We observe approximately vertical and horizontal conductance lines which overlap and displace each other at their crossings, without exhibiting any significant bending. The displacement is a signature of a finite interdot charging energy, while the lack of bending indicates that $q_t \approx 0$ (with an upper limit of 50 μV based on the width of the sharpest conductance lines). No signatures of crossed-Andreev reflection (CAR) or of elastic cotunneling [74] are observed in this measurement. We interpret these lines as GS parity transition lines, which indicate changes of parity in the left and right QDs, respectively. The lines separate nine different and well-defined parity sectors. We assign corresponding effective left and right QD charges, N_L, N_R, to each of these sectors based on the shell-filling pattern of the stability diagram in larger plunger-gate ranges (see SM, Sec. I). The charges obtained in this way are indicated in Fig. 2(a). These charges correspond to the charge occupation of the highest unoccupied energy level of each QD.

To assign GS parities to these nine sectors, and to determine independently if, in addition to interdot charging energy, there is a significant I_m, we trace the evolution of the parity transition lines of the 1,1 charge sector against B. In the case of the singlet GS, i.e., when the spins of the two QDs are exchange-coupled (finite t_d), these lines are expected to come together with B [75]. Instead, as shown in the zero-bias dI/dV color maps in Figs. 2(b) and 2(c), the parity transition lines enclosing the 1,1 charge sector split apart with B, i.e., the two QDs are independent doublets, despite the relative proximity of the two nanowires. The splitting of the parity lines occurs both in the case when the parity of the left (right) QD is varied and the right (left) QD is kept in the doublet GS [see green and blue arrow, respectively, in Fig. 2(a)]. The GS (singlet S or doublet D) of the other eight charge sectors are indicated on the top and right exterior parts of the stability-diagram color map in Fig. 2(a).

Given the decoupling between the two QDs, we can approximate their phase diagrams by those of two independent single QDs. Neglecting the interdot charging energy, we sketch in Fig. 2(d) the well-known single-QD phase diagrams for the GS of the left and right QDs versus QD level position, $\epsilon_{L,R}$, and versus the total tunneling rate of each QD to the leads, $\Gamma_{L,R}$, over their charging energy, $U_{L,R}$. The doublet dome has an upper height limit of $\Gamma_{L,R}/U_{L,R} = 1/2$ in the infinite Δ limit, and its height decreases in the $U \gg \Delta$ limit (i.e., the YSR regime) to which our QDs belong [34,76]. In the left phase diagram, the horizontal green line which crosses the doublet dome indicates a cut where ϵ_L is varied and ϵ_R is kept fixed such that the GS parity of the right QD is a doublet, and the GS parity of the left QD is variable. This line represents schematically the gate trajectory in Fig. 2(b), as indicated with the green arrow, which is collinear to the green arrow in Fig. 2(a), and which varies the parity of the left QD as $S-D-S$ while keeping the parity of the right QD as D. A similar relation exists between the horizontal blue line in the right phase diagram and the gate trajectory (blue arrow) in Fig. 2(c), also collinear to the corresponding arrow in Fig. 2(a). From these phase diagrams, we note that parity transitions are strictly equal to Coulomb degeneracies only at zero $\Gamma_{L,R}$. The measurements above confirm the expected DQD behavior for low lead couplings, which shows a D,D ground for charge state 1,1 corresponding to the lower left quadrant of the phase diagram in Fig. 1(e).

Next, we investigate a shell with different couplings to the leads (shell X) which belongs to the upper left quadrant of phase diagram in Fig. 1(e). Figure 2(e) shows the zero-bias dI/dV color map in the superconducting state versus plunger gates of the two QDs of shell X. The two horizontal GS-parity transition lines, which bounded the green trajectory in the case of shell W, are absent in the case of shell X, and are instead replaced by a band of enhanced conductance. The conductance band is cut two times by approximately vertical conductance lines, which correspond to GS-parity transition lines of the left QD.

The parity of the band of enhanced conductance in the stability diagram is determined from the B evolution of the differential conductance in the normal state versus V_{AP} at two fixed gate voltages. These two gate voltages are indicated by a square (charge states 0,1) and a circle (1,1) in the stability diagram, and their B dependence is, respectively, shown in Figs. 2(b) and 2(i). As a control experiment, the B dependence for two fixed gate voltages above the conductance band indicated by a star (0,2) and a triangle (1,2) in the stability diagram, is shown in Figs. 2(f) and 2(g). The four measurements show closing of the superconducting gap at $B = 0.4$ T, which is consistent with the jump in the zero-bias dI/dV signal in Figs. 2(b) and 2(c) at $B \approx 0.4$ T. However, whereas Figs. 2(g)–2(i) (1,2,0.1,1,1) display conductance steps near zero bias which split with B field in the normal state, there is no such splitting in Fig. 2(f), consistent with even filling of both dots. We assign effective QD charge numbers to the charge stability diagram from a $B = 2$ T measurement (see SM, Sec. III) and overlay the Coulomb lines obtained, which delimit the nine charge sectors [white dashed lines in Fig. 2(e)].

We note an additional important difference in the data of the low-bias splitting states. In Fig. 2(g) (1,2), the splitting can be traced back to zero bias at $B = 0$, while in Fig. 2(h) (0,1) the splitting is traced to zero bias only at a finite field of ≈ 1 T. The pair of features whose splitting can be traced to a $B = 0$ onset in Fig. 2(g) (1,2) correspond to cotunneling steps of the odd-occupied left QD experiencing Zeeman splitting. In turn, the pair of features which starts to split at 1 T in Fig. 2(h) corresponds to the Zeeman splitting of a Kondo resonance in the right QD. The splitting ensues when $E_Z \sim q_gT_{K_{X}}$ [77]. Notice that the Kondo resonance is also visible in the data after the gap closure at $B = 0.4$ T. From the splitting, we find a g-factor $g \sim 8.5 \pm 0.1$. Table I shows that $q_gT_{K_{X}} > 0.3\Delta$ for shell X, which is consistent with a YSR singlet state in the right QD in the superconducting state.

The B-dependence data in Figs. 2(f)–2(i) therefore allows us to assign the GS to the QDs, D or S, in each of the nine sectors in Fig. 2(e). We indicate schematically by a green and blue horizontal line in the two individual-QD phase diagrams in Fig. 2(j) the GS along the gate trajectories collinear to the same-colored arrows in the color map of Fig. 2(e). The green (blue) gate trajectory, which goes along (perpendicular to) the...
band of enhanced conductance intersects twice (goes above) the doublet dome, leading to two (zero) parity transitions.

III. SUPERCURRENT INTERFEREENCE FOR DIFFERENT QUANTUM-DOT PARITIES

We switch back to the four-terminal measurement configuration to correlate the intrinsic phase of each JJ with the magnitude of I_{sw}. In Fig. 3, we show I_{sw} versus plunger gate voltages, where I_{sw} is extracted in a similar fashion as in Fig. 1(d). In Figs. 3(a) and 3(c) [Figs. 3(b) and 3(d)], the plunger gate voltages are swept along trajectories which vary the occupation in the left (right) QD while keeping the occupation of the right (left) QD fixed, following the green (red, blue) arrows in Figs. 2(a) and 2(e), i.e., for shells W and X, respectively. For reference, we assign the expected phase shift in one of the QD Josephson junctions. The red curve is offset on the gate axis to correct for the cross talk between the gates and the QDs. The value of I_{sw} at the parity transitions may include a contribution due to the presence of bound states crossing zero energy. Hence, the magnitude of I_{sw} on transitions should not be taken into account.

The common phenomenology in the data is as follows. After a smooth buildup of I_{sw} toward a $0 \rightarrow \pi$ transition, the current abruptly drops at the edge of the π domain, resulting in an asymmetric I_{sw} peak [49]. A pair of asymmetric peaks is seen in the data in Figs. 3(a)–3(c), as one of the QDs experiences parity transitions and therefore a sequence of $0 \rightarrow \pi \rightarrow 0$ phase-shift changes. If the parity stays unchanged, such peaks are absent, as in Fig. 3(d). Instead, I_{sw} is smoothly enhanced toward odd occupation of the right QD, which is YSR screened (i.e., $k_B T_K > 0.3 \Delta$) [54]. Interestingly, when comparing the red and blue traces in Fig. 3(d), which correspond to different phase shifts (π and 0, respectively) in the JJ formed by the left QD, we observe that I_{sw} is stronger near $V_{gR} = 0.4$ V. Note that $V_{gR} = 0.4$ V corresponds to the 1,1 charge state for the blue trace, and to the 0,1 charge state for the red trace. The exact magnitude of I_{sw} in that gate value for the red and blue curves is consistent with what is found in Fig. 3(c) in the (□) and (○), respectively. We can interpret the reduction in I_{sw} at $V_{gR} = 0.4$ V in the blue trace with respect to the red trace by considering the double nanowire device as a SQUID at zero threaded magnetic flux [45,47,54]. The I_c of a SQUID with a sinusoidal current-phase relation at zero flux can be written as [54]

$$I_c = \sqrt{(I_{c1} - I_{c2})^2 + 4I_{c1}I_{c2}\cos\left(\frac{\delta_1 + \delta_2}{2}\right)^2},$$

(1)

where $I_{c1,2}$ are the critical currents of the two JJs and $\delta_{1,2}$ are the intrinsic phase shifts (0 or π) of the junctions. As a result, the total I_c is given by $I_{c\square} = I_{c1} + I_{c2}$ when the DQD is in the $0,0$ phase and $I_{c\bigcirc} = I_{c1} - I_{c2}$ in the $\pi,0$ phase. These equations can explain the findings in Figs. 3(c) and 3(d), as I_{sw} is enhanced when both JJs have the same intrinsic phase, and it is weaker when the two JJs have different phases.

IV. SCREENING EVOLUTION OF SWITCHING CURRENT

Finally, we demonstrate individual control of the couplings between the SC leads and the QDs, realizing the transition from the upper left (one screened spin in 1,1) to upper right quadrant (both spins screened) in the YSR phase diagram depicted in Fig. 1(e). Whereas the changes in GS parity in Fig. 2 occurred primarily by changing the side-gate voltages to go from shell W to shell X, here the changes occur within a unique shell. This is done in a shell identified as Y, using V_{bg} as a tuning knob of $\Gamma_{g1,2}$. In Figs. 4(a)–4(c), we show color maps representing parity stability diagrams at different V_{bg} analogous to those in Figs. 2(a) and 2(e); however, instead of plotting a measurement of voltage-biased dI/dV, we directly plot a four-terminal measurement of I_{sw} versus plunger-gate voltages. To obtain each color map, we measure the $I_{bias} - V$ characteristic at each plunger gate voltage coordinate (i.e., at each pixel in the color map) and extract I_{sw} as in the example in Fig. 1(d).

In Fig. 4(a), the I_{sw} parity stability diagram shows two I_{sw} peaks which correspond to two parity transitions of the left QD. The lack of right-QD parity transition lines indicates that the right QD is YSR screened. We corroborate that this is indeed the case from a measurement of T_K at $B = 4.0$ T in the normal state, and we find $k_B T_K > 0.3 \Delta$ (see Table I). We also note that, although faintly visible here, a two-terminal dI/dV measurement of the stability diagram in otherwise the same conditions as here displays an horizontal band of (weakly) enhanced conductance, which is the same phenomenology identified in Fig. 2(d) with YSR spin screening. However, the enhancement is weak enough to preclude resolution of I_{sw}, and therefore a similar band of I_{sw} only shows at the right part of Fig. 4(a) ($V_{gL} \approx -2.95$ V, $V_{gR} \approx 0.45$ V).
compensated by changing V_B at a normal-state two-terminal differential conductance measurement (a), Coulomb lines positions (black dashed lines) are obtained from qualitatively Γ_1, panel) and right QD (lower panel). In the top panel, green-shaded I results in stronger coupling to the left superconducting lead. The tunneling rate color maps. (d) Independent-QD phase-diagram sketches as function of the two independent QDs is indicated on the exterior side of the gates of the two QDs, taken at three different V_{bg} values in shell Y. In (a), Coulomb lines positions (black dashed lines) are obtained from a normal-state two-terminal differential conductance measurement at $B = 2$ T. To keep shell Y in frame, the effect of V_{bg} has been compensated by changing V_L and V_R. In (a) and (c), the GS of the two independent QDs is indicated on the exterior side of the color maps. (d) Independent-QD phase-diagram sketches as function tunneling rate $\Gamma_{L,R}$ and QD level position, $\epsilon_{L,R}$, for the left QD (top panel) and right QD (lower panel). In the top panel, green-shaded horizontal lines indicate qualitatively Γ_L in directions collinear to the arrows of the same color in (a)–(c). The blue line indicates qualitatively Γ_R in (a)–(c). Note that decreasing the back-gate voltage results in stronger coupling to the left superconducting lead. The I_{sw} is extracted by measuring the $I_{sw} - V$ curve from zero to positive current for each gate point.

Reducing V_{bg} alters the I_{sw} parity stability diagram by bringing the two I_{sw} peaks (parity lines) of the left QD closer together, as shown in Fig. 4(b). Note that a faint, approximately horizontal band of I_{sw} is observed along the direction pointed by the dark-green arrow, which comes as a result of enhancement of I_{sw} due to YSR spin-screening of the right QD. In Fig. 4(c), further reduction of V_{bg} leads to merging of the parity lines into a vertical band of I_{sw} across the whole plot. At this point, the spins of both QDs are YSR screened into singlets. We have therefore traced the phase diagram shown in Fig. 1(e), where either one spin of a QD or both are screened by the YSR mechanism, triggering a phase change in the current-phase relation of the JJs. Additional data on the magnetic field dependence of this shell can be found in the SM, Sec. IV.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have demonstrated parallel QD JJs fabricated out of a double-nanowire platform in which the nanowires are bridged by an in-situ deposited superconductor. We mapped out the parallel QD YSR phase diagram via conductance and switching current measurements showing the tunability of the GS of each JJ from doublet to singlet. The analysis also revealed that the nanowires are predominantly decoupled with an upper bound on the dot tunnel coupling in the order of $t_d \lesssim 50 \mu$eV for the specific charge states studied in two devices (see SM, Sec. VI). A lower bound is hard to identify due to the lack of evident anticross in device 1, but in device 2 the lower bound of t_d is estimated to be in the same order of magnitude as the upper bound. In general, other shells may be stronger coupled at higher gate voltages and the interdot tunnel coupling may be increased by adjusting nanowire growth parameters [68]. Finally, we showed indications of switching current addition and subtraction via appropriate choice of GSs of the two dots involving the YSR singlet state, i.e., $0, 0$ and $\pi, 0$ (phase difference) regimes, respectively.

The above observations of basic superconducting properties in in-situ made hybrid double nanowire material open up for more advanced experiments addressing a number of recent theoretical proposals. In parallel double-QD Cooper-pair splitters [63,78], the CAR mechanism responsible for the splitting is weakened by an increase in the distance between the tunneling points from the superconductor into the two QDs [79]. The proximity of the nanowires set by growth [68] and the cleanliness of the Al-InAs interface may turn out to be beneficial for CAR, which is also the basis for creating coupled YSR states in these systems [2,80]. The latter is investigated in a parallel work on the same hybrid double nanowire material [68] as used in this paper [67]. The hybrid double nanowires are furthermore prime candidates for realizing several species of topological subgap states [5,6]. For finite CAR, the requirements for entering the topological regime hosting Majorana bound states have been shown to be lowered [8,12], and parafermions may be achieved in a regime where CAR dominates over local Andreev processes [6]. In superconducting islands fabricated in our hybrid double nanowires, the topological Kondo effect can be pursued [3,4,15], and in JJs as here demonstrated, nonstandard types of Andreev bound states may be stronger coupled at higher gate voltages and the interdot tunnel coupling may be increased by adjusting nanowire growth parameters [68]. Finally, we showed indications of switching current addition and subtraction via appropriate choice of GSs of the two dots involving the YSR singlet state, i.e., $0, 0$ and $\pi, 0$ (phase difference) regimes, respectively.

ACKNOWLEDGMENTS

We thank Gorm Steffensen, Jens Paaske, Michele Burrello, and Constantin Schrade for useful discussions and Xinyan Wang for experimental contribution. We acknowledge the support of the Sino-Danish Center, the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 832645, QuantERA SuperTop (NN 127900), the European Union’s Horizon 2020 research and innovation programme FETOpen Grant No. 828948 (AndQc), the Danish National Research Foundation, Villum Foundation (Research Grant No. 25310), the Ministry of Science and Technology of China through the
National Key Research and Development Program of China (Grants No. 2017YFA0303304 and No. 2016YFA0300601), the National Natural Science Foundation of China (Grant No. 11874071), the Beijing Academy of Quantum Information Sciences (Grant No. Y18G22), Carlsberg Foundation and the Independent Research Fund Denmark.

[70] Additional data as well as raw data used to produce the figures and Supplemental figures from the paper can be found at the repository ERDA of the University of Copenhagen at https://doi.org/10.17894/ucph.9cfe99c5-c548-481c-bb19-dd544f53d46a.

