Acceptance of Insect Foods Amongst Danish Children is Positively Affected by Information About Their Sustainability Benefits, Not by Information About Taste or Nutrition

Erhard, Ainslee L.; Águas Silva, Magda; Damsbo-Svendsen, Marie; Karpantschof, Bat-El Menadeva; Frøst, Michael Bom

Publication date: 2021

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Acceptance of Insect Foods Amongst Danish Children is Positively Affected by Information About Their Sustainability Benefits, Not by Information About Taste or Nutrition

Ainslee L. Erhard*, Magda Águas Silva, Marie Damsbo-Svendsen, Bat-El Menadeva Karpantschof & Michael Bom Frøst*

*Presenting authors (jpb640@alumni.ku.dk & mbf@food.ku.dk) Department of Food Science, Design and Consumer Behaviour, Faculty of Science, University of Copenhagen

Background
Edible insects are a promising alternative protein source to unsustainable conventional meat. Despite this, disgust and neophobia are cited as significant barriers to the adoption of these novel foods in Western diets.

The aim of this study was to assess the effects of providing three types of information — the taste, health, and sustainability benefits of entomophagy (i.e. the practice of eating insects) — on the willingness to try and hedonic response to insect-based foods among children. Online educational material for the children about the three types of benefits was developed.

Methods
Participants: 5th and 6th grade students from Danish schools (n=181, m=83, f=98, 11-13y).

Intervention: Classes were randomly assigned to one of three experimental groups. Participation in an online lecture and quiz on the benefits of eating insects in relation to either taste, health, or the environment during Summer 2020.

Data analysis: Answers on emoji scale were converted to continuous numerical values ranging from 1-7. Participants segmented into three groups based on FNTT score quartiles. Incomplete surveys were eliminated from the dataset prior to analysis. Data analysis: RStudio® version 1.2.5001 and Excel version 16.50.

Results
- Participants were moderately willing to try insect foods before (3.9 ±1.8) and after (4.0 ± 1.8) the intervention.
- ANCOVA revealed significant differences in post-WTT between interventions after controlling for pre-WTT (p < 0.01). Per post hoc analysis, mean WTT score was significantly higher in the sustainability (4.6 ± 0.4) group than the health (3.9 ± 0.3) and taste group (3.7 ± 0.4), p < 0.01.
- A paired t-test demonstrated a significant difference (p = 0.02) between pre- and post-WTT scores in the sustainability group (see table).
- FNTT scores were negatively correlated with WTT both pre-(r = 0.55, p < 0.001) and post-(r = -0.54, p < 0.001).
- There was close to zero correlation between FDS and WTT pre-(r = -0.19, p = 0.80) and post, r (179) = -0.04, p = 0.56.
- The whole cricket received lower hedonic ratings (3.0 ± 1.5) than the buffalo worm (4.1 ± 1.4, p < 0.001) but no sig. difference in hedonic rating between processed foods made with flour from the two species (e.g. BUF-bar versus CR-bar and BUF-bread versus CR-bread).
- The cookies received the highest (5.1 ± 2.0) and the falafel the lowest average hedonic rating (2.8 ± 1.6).

Discussion
Caution should be taken when anticipating adoption of novel foods and assimilation into diets from measures of willingness to try, especially when self-reported. The use of commercially available products, made it impossible to control for differences in appearance across items allowing individual preferences to confound hedonic response.

Conclusion
Communicating information about sustainability benefits of entomophagy increased willingness to try insect foods, while information on the taste and health benefits did not. Neophobia was a strong predictor of willingness to try, whereas disgust sensitivity was not. Certain types of insect products were better liked than others (e.g. cookies over falafel). There was a species effect on hedonic response when presented whole, although not when processed into products made with insect flour.

Funding: This work is part of the research project Smag for Livet (Taste for Life) and was funded by the Nordea Foundation, Denmark.

References:


Images of Insect Products Included in Survey (Post-Intervention)
1. Whole buffalo worm
2. Whole cricket
3. Protein bar (BUF)
4. Cricket bread (BUF)
5. Protein bar (CR)
6. Crisp bread (CR)
9. Falafel (CR)
10. Cookies (CR)

BUF: made with buffalo worm flour; CR: made with cricket flour

Table: Results of a Paired t-test of Pre-and Post-Intervention Willingness to Try

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
<th>Mean difference</th>
<th>t-value</th>
<th>df</th>
<th>Sig (two-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taste</td>
<td>3.9</td>
<td>4.0</td>
<td>0.1</td>
<td>0.2</td>
<td>61</td>
<td>0.414</td>
</tr>
<tr>
<td>Health</td>
<td>4.0</td>
<td>3.9</td>
<td>0.1</td>
<td>0.31</td>
<td>70</td>
<td>0.760</td>
</tr>
<tr>
<td>Sustainability</td>
<td>3.9</td>
<td>4.5</td>
<td>1.7</td>
<td>2.40</td>
<td>47</td>
<td>0.021*</td>
</tr>
<tr>
<td>Total</td>
<td>3.9</td>
<td>4.0</td>
<td>0.1</td>
<td>0.79</td>
<td>180</td>
<td>0.429</td>
</tr>
</tbody>
</table>

p ≤ 0.05