Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at root s(NN)=2.76 TeV

Acharya, S.; Adamova, D.; Adler, A.; Adolfsson, J; Rinella, G.A.; Agnello, Maria; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Bearden, Ian; rtc312, rtc312; bsm989, bsm989; Gaardhøje, Jens Jørgen; Moravcova, Zuzana; Nielsen, Børge Svane; Vislavicius, Vytautas; Thoresen, Freja; Zhou, You; Alice Collaboration

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.127.092302

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV

S. Acharya et al.
(ALICE Collaboration)

(Received 24 January 2021; revised 9 June 2021; accepted 13 July 2021; published 27 August 2021)

The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions.

DOI: 10.1103/PhysRevLett.127.092302

Under conditions of extreme temperature and density, the fundamental theory of the strong interaction, quantum chromodynamics (QCD), predicts the existence of a quark-gluon plasma (QGP). In this state, quarks are deconfined from hadrons but, contrary to the initial theoretical expectations, remain strongly coupled and form a liquid state [1]. Results from heavy-ion collision data are consistent with the scenario in which the produced nuclear matter undergoes collective expansion, dominated by its hydrodynamic response to the anisotropies in the initial state geometry. This phenomenon is known as anisotropic flow [2]. This collective dynamics is sensitive to η/s and ζ/s, where η and ζ are shear and bulk viscosities and s the entropy density. The successful description of heavy-ion data with hydrodynamic models was essential to determine the low value of η/s of the QGP [3] and established the perfect liquid paradigm, one of the most striking recent discoveries in high-energy physics [4–6].

In models that describe heavy-ion collisions, the produced matter evolves collectively, with particles being emitted independently along the azimuthal direction with a distribution $f(\phi)$. The corresponding Fourier series is given by

$$f(\phi) = \frac{1}{2\pi} \left[1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_n)] \right],$$

where the flow amplitude v_n and the symmetry plane angle Ψ_n designate the magnitude and orientation of the nth order anisotropic flow [7]. Experimental challenges of measuring these anisotropic flow observables were overcome with the development of multiparticle azimuthal correlations [8–12]. A great deal of additional information can be extracted from correlations between different flow amplitudes and/or different symmetry planes [13–17].

The correlations between event-by-event fluctuations of two different flow amplitudes were quantified with the “symmetric cumulant” (SC) observables [12,18], defined by $\text{SC}(k,l) = \langle v_k^2 v_l^2 \rangle - \langle v_k^2 \rangle \langle v_l^2 \rangle$, with the angular brackets denoting an average over all events. The measurements of their centrality and transverse momentum (p_T) dependencies revealed that correlations among different flow magnitudes depend on harmonic orders as well as the collision centrality, while showing moderate p_T dependence in semicentral collisions. The results in Refs. [12,18] showed that the different SC(k,l) observables have different sensitivities to the initial conditions of a heavy-ion collision and properties of the created system and can therefore help in separating the effects of η/s in the final state anisotropies from the contributions originating in the initial state. Furthermore, it was demonstrated that the SC observables are more sensitive to the temperature dependence $\eta/s(T)$ than the individual flow amplitudes, which are sensitive only to the average values $\langle \eta/s \rangle$ [18,19].

In this Letter, a new set of observables, dubbed “higher-order SC,” are analyzed [20]. These higher-order observables extract the genuine correlation among multiple flow amplitudes and provide new and independent constraints for both the initial conditions and the QGP properties. The genuine correlation (or cumulant) of three flow amplitudes, where lower-order two-harmonic correlations have been removed, can be obtained with the following expression [20,21]:

$$\text{SC}^3(k,l,m) = \text{SC}(k,l) + \text{SC}(k,m) + \text{SC}(l,m) - 3 \langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle.$$
SC(k, l, m) ≡ \((v_k^2 v_l^2 v_m^2) - (v_k^2 v_l^2)(v_m^2) - (v_k^2 v_m^2)(v_l^2) - (v_l^2 v_m^2)(v_k^2)\) - \((v_k^2 v_l^2)(v_m^2) + 2(v_k^2)(v_l^2)(v_m^2)\). \quad (2)

The observable SC(k, l, m) is, by definition, the 3rd order cumulant of the three flow amplitudes \(v_k^2\), \(v_l^2\), and \(v_m^2\). If the previously used low order flow observables like \(v_n\)\{2\}, \(v_n\)\{4\} [10], or SC(k, l) [12] would be able to characterize all collective correlations and anisotropic flow in the system, SC(k, l, m) would be identically zero. On the contrary, the nonvanishing results for SC(k, l, m) provide access to the information to which these traditionally used flow observables are insensitive. The normalized versions of these observables (NSC) are defined as

\[
\text{NSC}(k, l, m) \equiv \frac{\text{SC}(k, l, m)}{(v_k^2)(v_l^2)(v_m^2)},
\]

which makes it easier to identify the origin of the correlations, either from the initial stage or from the collective expansion [20].

Another important aspect is the sign of the SC(k, l, m) observables, which is not trivial and can be understood if the definition in Eq. (2) is rewritten as

\[
\text{SC}(k, l, m) = \langle \cos[k \phi_1 + l \phi_2 + m \phi_3 - k \phi_4 - l \phi_5 - m \phi_6] \rangle
- \langle \cos[k \phi_1 + l \phi_2 - k \phi_3 - l \phi_4] \rangle \langle \cos[m(\phi_5 - \phi_6)] \rangle
- \langle \cos[k \phi_1 + m \phi_2 - k \phi_3 - m \phi_4] \rangle \langle \cos[l(\phi_5 - \phi_6)] \rangle
- \langle \cos[l \phi_3 + m \phi_4 - l \phi_5 - m \phi_6] \rangle \langle \cos[k(\phi_1 - \phi_2)] \rangle
+ 2 \langle \cos[k(\phi_1 - \phi_2)] \rangle \langle \cos[l(\phi_3 - \phi_4)] \rangle \langle \cos[m(\phi_5 - \phi_6)] \rangle.
\]

The double average notation indicates that in the first step averaging is performed over all distinct combinations of 2, 4, or 6 particles within the same event, and then these results are averaged over all events. Each azimuthal correlator in the above estimator can be measured efficiently and exactly with the Generic Framework published in Ref. [12]. By definition, this estimator ensures that large systematic biases from self-correlations and symmetry planes \(\Psi_n\) are eliminated. In the absence of nonflow (correlations between a few particles unrelated to collective phenomena and anisotropic flow), it reduces analytically to Eq. (2) even in the case of large event-by-event flow fluctuations [20].

The results presented in this Letter are obtained with the data from Pb-Pb collisions at \(\sqrt{s_{\text{NN}}} = 2.76\) TeV collected with the ALICE detector in 2010. After the event and track selection, the data sample corresponds to about \(8.2 \times 10^8\) minimum bias events for the 0%-50% centrality range. The Pb-Pb dataset from 2011 is not included due to the significantly different detector and trigger conditions.

For SC(k, l, m) > 0, there are the following two distinct possibilities: (a) if in an event it was found that \(v_k^2 > \langle v_k^2 \rangle\) and \(v_l^2 > \langle v_l^2 \rangle\), then the probability of finding \(v_m^2 > \langle v_m^2 \rangle\) in that event is enhanced [this case is marked as a (++, +, +) pattern in the event-by-event flow fluctuations]; (b) if \(v_k^2 > \langle v_k^2 \rangle\) and \(v_l^2 < \langle v_l^2 \rangle\) in an event, this enhances the probability of finding \(v_m^2 < \langle v_m^2 \rangle\) in that event and is marked as a (+, −, −) pattern. By using the same reasoning, it can be concluded that SC(k, l, m) < 0 permits only the (+, +, −) and (−, −, −) patterns. These persistent patterns of event-by-event flow fluctuations are invariant with respect to permutations of amplitudes of flow harmonics in the definition of SC(k, l, m), and they are a direct imprint of the three-harmonic correlations.

It was demonstrated in Ref. [20] that SC(k, l, m), as defined in Eq. (2), can be estimated reliably in an experiment with the following combination of azimuthal correlators:

\[
\text{SC}(k, l, m) = \langle (v_k^2 - \langle v_k^2 \rangle)(v_l^2 - \langle v_l^2 \rangle)(v_m^2 - \langle v_m^2 \rangle) \rangle.
\]

Detailed descriptions of the ALICE detector and performance can be found in Refs. [22–25]. The time projection chamber (TPC) was used to reconstruct charged particles and measure their momenta [26]. The inner tracking system was used to improve the vertex determination and momentum resolution, while its innermost part, the silicon pixel detector (SPD) [27,28], provided the default centrality estimation. Two scintillator arrays (VOA and V0C) were used for triggering and for an alternative determination of centrality [29–31]. The trigger conditions are identical to those described in Refs. [29,32].

The event and track selection are based on previous SC analyses [18,33]. The reconstructed primary vertex is required to be within ±10 cm of the nominal interaction point along the beam axis. The main analysis is performed using tracks reconstructed only with the TPC (referred to as “TPC-only” from now on) in the kinematic range 0.2 < \(p_T\) < 5.0 GeV/c and \(|\eta| < 0.8\). The low \(p_T\) cutoff decreases the biases from the smaller reconstruction efficiency, while the high \(p_T\) cutoff reduces the anisotropic
contaminations in the azimuthal distributions from jets. The selected tracks are reconstructed with a minimum of 70 space points out of a maximum of 159 in TPC and the χ^2/NDF of their momentum fit is required to satisfy $0.1 < \chi^2$/NDF < 4.0. Only tracks with a maximum distance of closest approach (DCA) to the primary vertex of 2.4 cm in the transverse plane and 3.2 cm along the beam axis are kept for the analysis. This choice reduces the contributions from secondary tracks and has already been used in Ref. [18] with hybrid tracks, for which the tracking information is combined from the TPC and the inner tracking system detectors to achieve the best transverse momentum resolution and to correct for the nonuniform azimuthal acceptance due to dead zones in the SPD [25,34]. Also, tracks with an abrupt change of direction, e.g., due to multiple scattering or K^\pm decays, are rejected. With this selection, the contamination from secondaries in TPC-only tracks varies from about 16% at 0.2 GeV/c to about 7% at 5 GeV/c. The track reconstruction efficiency is almost constant at about 80%–88% as a function of transverse momentum. Its uncertainties are found to be negligible and thus not propagated in the final results.

Corrections both for nonuniform reconstruction efficiency (NUE) as a function of transverse momentum and nonuniform acceptance (NUA) as a function of azimuthal angle are computed as particle weights, following Ref. [12]. Particle weights for NUE were obtained with the Monte Carlo generator HIJING (Heavy-Ion Jet INteraction Generator) [35], while the ones for NUA are data driven. Only the corrections for NUE are applied to all the selected tracks in the main analysis with the default selection. Effects of NUA in TPC-only tracks were also checked but found to be negligible. The nonflow contributions estimated with HIJING are found to be negligible for all SC(k,l,m) observables reported in this Letter [20].

The systematic uncertainties are estimated by varying each selection criterion independently. The values of SC(k,l,m) with the variation and with the default selection are compared in each centrality interval. If the difference between the two results when taking into account the correlations between their statistical uncertainties is larger than one σ (σ is the uncertainty of the difference), the variation is included in the quadratic sum for the total systematic uncertainty. The importance of each trial depends on the considered SC(k,l,m). The data sample was collected with two configurations of the magnetic field polarity in the solenoid magnet surrounding the ALICE central barrel detectors, giving two samples with similar size. The main analysis uses both samples, and no significant systematic effect is seen for the analysis on each individual orientation of the field polarity. Below, the ranges of relative variations observed in semicentral collisions (20%–50%) for each trial are reported. Moreover, the variations observed in collisions with a centrality up to 20% and for SC(2, 4, 6) and SC(3, 4, 5) in the range 20%–30% can be larger than the ones indicated due to the small size of the signal and are therefore not reported. The systematic uncertainties are represented by the shaded boxes around each data point in all figures.

On the other hand, there are variations that impact only some SC(k,l,m) observables. For example, the variation of the distance of the primary vertex to the nominal interaction point along the beam direction (±6 cm and ±12 cm) does not impact SC(2, 3, 5), NSC(2, 3, 5), and SC(3, 4, 5) but results in an uncertainty of about 3.2% for SC(2, 3, 4) and NSC(2, 3, 4). For the DCA variation in the plane transverse to the beam direction (from 2.4 cm to 1 cm and 2 cm), only SC(2, 4, 6) is not affected, while there is an effect of about 12% for NSC(2, 3, 4) to about 36% for SC(2, 3, 5). The default analysis uses the centrality estimated with the SPD, while the systematic check is based on the determination of the centrality with the V0 detector. This change impacts the final results for all combinations with the exception of SC(3, 4, 5), ranging from about 15% for SC(2, 3, 4) and NSC(2, 3, 4) to 21% for SC(2, 3, 5). The variation of the minimum number of space points in the TPC (from 70 to 50 and 100 space points) leads to systematic biases in SC(2, 3, 4), SC(2, 3, 5), and NSC(2, 3, 5), ranging from 5% for SC(2, 3, 4) to 14% for SC(2, 3, 5). This is also the case for the quality of fit χ^2/NDF for 0.3 < χ^2/NDF < 4.0 and 0.1 < χ^2/NDF < 3.5. This leads to significant differences for SC(2, 4, 6), SC(3, 4, 5), and NSC(2, 3, 5) [about 12% for NSC(2, 3, 5)]. For the tightening of the DCA criterion along the beam axis from 3.2 cm to 2.1 cm, we report the systematic bias of about 8%–10% for SC(2, 3, 5) and NSC(2, 3, 5). Finally, non-negligible systematic effects are seen when repeating the analysis with hybrid tracks, which have a smaller contamination from secondaries, allowing an estimation of their systematic effects in the default selection. For this last check, all SC(k,l,m) see significant changes [between 4% and 19% for SC(2, 3, 4) and NSC(2, 3, 5), respectively].

The centrality dependence of SC(k,l,m) and NSC(k,l,m) for the different combinations of flow amplitudes is shown in Fig. 1(a) and Fig. 1(b), respectively.

When moving from central to semicentral collisions, the magnitude of both SC(2, 3, 4) and SC(2, 3, 5) increases, albeit with opposite sign. These nonzero values for semicentral collisions are the first experimental indications of correlations between three flow amplitudes. The results for SC(2, 3, 5) provide new and independent constraints on the nonlinear response contribution in v_2 from v_2 and v_3, which for the first time do not require any assumption in the derivation on the nature of two-harmonic correlations [36]. For the higher-order flow amplitudes, the measurements for SC(2, 4, 6) and SC(3, 4, 5) are compatible with zero for all centralities. The negative increasing trend observed for SC(2, 3, 4) is also present for NSC(2, 3, 4). However, this is not the case for SC(2, 3, 5) and NSC(2, 3, 5).
increase seen in the former cannot be found in the latter, which shows a decrease for semicentral events. This different behavior originates from the fact that the nonlinear response introduces a correlation among all three amplitudes in SC(2,3,5), while the contribution from nonlinear response is not present in SC(2,3,4).

The results for the higher-order SC observables are compared to the event-by-event Eskola-Kajantie-Ruuskanen-Tuominen (EKRT) + viscous [19] and TRENTo + iEBE-VISHNU hydrodynamic models [37]. In the EKRT model, the initial energy density profiles are calculated using a next-to-leading order perturbative-QCD + saturation model [38,39]. The subsequent space-time evolution is described by relativistic dissipative fluid dynamics with different temperature parameterizations $\eta/s(T)$. This state-of-the-art model gives a good description of the charged hadron multiplicity and the low-p_T region of the charged hadron spectra at BNL’s Relativistic Heavy Ion Collider and at CERN’s Large Hadron Collider. Each of the $\eta/s(T)$ parameterizations is adjusted to reproduce the measured v_n from central to semipерipheral collisions. The model calculations in which the temperature of the phase transition is larger than for the “param 1” parameterization are ruled out by the previous measurements [18,33]. In the study presented in this Letter, the EKRT prediction for the centrality dependence of SC(k,l,m) was obtained from a sample consisting of 40,000 events in the 0%–100% centrality range.

The calculations for the $\eta/s(T)$ = “param 1” parameterization, which gives a good description of the lower-order SC results, are thus compared to our new results for higher-order SC in Fig. 2. They can describe the overall trends of all combinations in the centrality dependence. However, SC(2,4,6) is found to be strictly positive in models.

The hybrid hydrodynamic model TRENTo + iEBE-VISHNU has successfully described the previous ALICE measurements [37]. It consists of the TRENTo model [40] for the initial condition, which is connected with a free streaming to a 2 + 1 dimensional causal hydrodynamic model VISH2 + 1 [41,42]. The evolution is continued in the hadronic phase via the ultrarelativistic quantum molecular dynamics model [43,44]. The initial conditions, $\eta/s(T), \xi/s(T)$ and other free parameters of the hybrid model are extracted by the global Bayesian analysis. We perform a model calculation with the best-fit parameter points chosen by maximum a posteriori (MAP) for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV as they are reported in Ref. [37]. All the kinematic cuts such as transverse momentum and pseudorapidity intervals are matched with the data reported in this Letter.

In heavy-ion collisions, the main source of anisotropy in the azimuthal distribution in the final state originates from anisotropies in the initial state geometry. The initial state geometry can be described by quantities called eccentricities, e_n, that are the moments of the initial energy (or entropy) density. For instance, the values of e_2 and e_3 indicate to what extent the initial geometry is elliptical and triangular, respectively. For small values of eccentricities, one can approximate the response of the collective evolution to the initial state geometry as a linear relation $v_n = k_n e_n$ [45,46]. For $n = 2, 3$, this linear approximation is more accurate than for higher harmonics where nonlinear terms play a non-negligible role [13]. If the higher-order eccentricity cumulants are normalized by their averages [analogous to Eq. (3)], the response coefficients k_n can cancel between numerator and denominator. Therefore, any difference in the NSC values calculated from the eccentricities in the initial state to those obtained from the measured flow amplitudes in the final state is an indication of a hydrodynamic nonlinear response.

The comparison to the TRENTo + iEBE-VISHNU calculation is also shown in Fig. 2. The overall trends in the centrality dependence are captured by this model. However, both SC(2,3,4) and SC(2,3,5) are clearly underestimated, while NSC(2,3,4) and NSC(2,3,5) are in a better agreement with the data. In the case of NSC(k,l,m), predictions from
TRENTo for the initial state are shown in Fig. 2(b) and Fig. 2(d). As iEBE-VISHNU uses TRENTo as input, the comparisons between the two sets of predictions can give insights about the development of multiharmonic correlations in the system. The relative change in NSC(2,3,4) for iEBE-VISHNU calculations from the ones from TRENTo for 10%–30% centralities indicates that in addition different correlations have developed during the hydrodynamic evolution of the medium. The same phenomenon is hinted at within uncertainties in NSC(2,3,5). In this latter case, this can be explained by the nonlinear response contribution to \(v_5 \) induced by the low order \(v_2 \) and \(v_3 \) found in Refs. [47,48]. For SC(2,4,6) and SC(3,4,5), iEBE-VISHNU is in agreement with the predictions from EKRT within uncertainties.

Recent Bayesian analyses [37,49] show that the TRENTo model reproduces certain features of EKRT models with the energy deposition parameter, \(p \approx 0.0 \). However, as shown in Fig. 2(b) and Fig. 2(d), in semicentral collisions the TRENTo model shows stronger initial-state correlations among eccentricities than the EKRT model, and the resulting final-state multiharmonic correlations obtained with SC(2,3,4) show differences as well. This difference can originate from the fact that EKRT does not include effects from bulk viscosity, while the extracted bulk viscosities from two different Bayesian analyses give sizable differences.

In summary, we have presented the first measurements of correlations between three flow amplitudes, obtained with higher-order SC observables in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV. The nonzero values of SC(2,3,4) for semicentral collisions are the first experimental indication of correlations (cumulants) between three flow amplitudes. The relative changes between TRENTo and iEBE-VISHNU for NSC(2,3,4) and NSC(2,3,5) are consistent with the development of different correlations during the collective evolution of the medium. A similar conclusion can be extracted from the EKRT model. These results provide the first constraints on the nonlinear response contribution in \(v_5 \) from \(v_2 \) and \(v_3 \), which do
not require any assumption on the nature of lower-order two-harmonic correlations. The new results for \(\sigma(k, l, m) \) provide independent constraints for the initial conditions, system properties, nonlinear response, and possible patterns of event-by-event flow fluctuations when compared to the previous flow measurements obtained with lower-order observables.

The ALICE Collaboration would like to thank Harri Niemi for providing the latest predictions from the state-of-the-art hydrodynamic model. The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science and Technology of China (MSTC), and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN, and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC), and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IISt), Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT), and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education, National Science Centre, and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation, and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation, and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research, and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA), and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

53 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
54 INFN, Sezione di Bari, Bari, Italy
55 INFN, Sezione di Bologna, Bologna, Italy
56 INFN, Sezione di Cagliari, Cagliari, Italy
57 INFN, Sezione di Catania, Catania, Italy
58 INFN, Sezione di Padova, Padova, Italy
59 INFN, Sezione di Roma, Rome, Italy
60 INFN, Sezione di Torino, Turin, Italy
61 INFN, Sezione di Trieste, Trieste, Italy
62 Inha University, Incheon, Republic of Korea
63 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
64 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
65 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
66 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
67 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
68 Institute of Space Science (ISS), Bucharest, Romania
69 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
70 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
71 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
72 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
73 iThemba LABS, National Research Foundation, Somerset West, South Africa
74 Jeonbuk National University, Jeonju, Republic of Korea
75 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
76 Joint Institute for Nuclear Research (JINR), Dubna, Russia
77 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
78 KTO Karatay University, Konya, Turkey
79 Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France
80 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
81 Lawrence Berkeley National Laboratory, Berkeley, California, USA
82 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
83 Moscow Institute for Physics and Technology, Moscow, Russia
84 Nagasaki Institute of Applied Science, Nagasaki, Japan
85 Nara Women’s University (NWU), Nara, Japan
86 National and Kapodistrian University of Athens, School of Physics, Athens, Greece
87 National Centre for Nuclear Research, Warsaw, Poland
88 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
89 National Nuclear Research Center, Baku, Azerbaijan
90 National Research Centre Kurchatov Institute, Moscow, Russia
91 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
92 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
93 NRC Kurchatov Institute IHEP, Protvino, Russia
94 NRC « Kurchatov»what Institute—ITEP, Moscow, Russia
95 NRNU Moscow Engineering Physics Institute, Moscow, Russia
96 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
97 Nuclear Physics Institute of the Czech Academy of Sciences, Rež u Prahy, Czech Republic
98 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
99 Ohio State University, Columbus, Ohio, USA
100 Petersburg Nuclear Physics Institute, Gatchina, Russia
101 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
102 Physics Department, Panjab University, Chandigarh, India
103 Physics Department, University of Jammu, Jammu, India
104 Physics Department, University of Rajasthan, Jaipur, India
105 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
106 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
107 Physik Department, Technische Universität München, Munich, Germany
108 Politecnico di Bari and Sezione INFN, Bari, Italy
109 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
110 Rudjer Bošković Institute, Zagreb, Croatia
111 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
112 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
113 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
114 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
115 St. Petersburg State University, St. Petersburg, Russia
116 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
117 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
118 Suranaree University of Technology, Nakhon Ratchasima, Thailand
119 Technical University of Košice, Košice, Slovakia
120 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
121 The University of Texas at Austin, Austin, Texas, USA
122 Universidad Autónoma de Sinaloa, Culiacán, Mexico
123 Universidade de São Paulo (USP), São Paulo, Brazil
124 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
125 Universidade Federal do ABC, Santo André, Brazil
126 University of Cape Town, Cape Town, South Africa
127 University of Houston, Houston, Texas, USA
128 University of Jyväskylä, Jyväskylä, Finland
129 University of Liverpool, Liverpool, United Kingdom
130 University of Science and Technology of China, Hefei, China
131 University of South-Eastern Norway, Tønsberg, Norway
132 University of Tennessee, Knoxville, Tennessee, USA
133 University of the Witwatersrand, Johannesburg, South Africa
134 University of Tokyo, Tokyo, Japan
135 University of Tsukuba, Tsukuba, Japan
136 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
137 Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
138 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
139 Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Département de Physique Nucléaire (DPhN), Saclay, France
140 Università degli Studi di Foggia, Foggia, Italy
141 Università di Brescia and Sezione INFN, Brescia, Italy
142 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
143 Warsaw University of Technology, Warsaw, Poland
144 Wayne State University, Detroit, Michigan, USA
145 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
146 Wigner Research Centre for Physics, Budapest, Hungary
147 Yale University, New Haven, Connecticut, USA
148 Yonsei University, Seoul, Republic of Korea

*Deceased.
†Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy.
‡Also at Dipartimento DET del Politecnico di Torino, Turin, Italy.
§Also at M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
¶Also at Institute of Theoretical Physics, University of Wroclaw, Poland.