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Abstract

Six adaptive, short-term post-processing methods for correcting systematic

errors in numerical weather prediction (NWP) forecasts of near-surface air

temperatures using local meteorological observations are assessed and com-

pared. The methods tested are based on the simple moving average and the

more advanced Kalman filter. Forecasts from the rather coarse-resolution

global NWP model Global Forecast System (GFS) and the regional high-

resolution NWP model HARMONIE are post-processed, and the results are

evaluated for 100 private weather stations in Denmark. The performance of

the post-processing methods differs depending on the NWP model. Overall,

the combined moving average and a so-called lead time Kalman filter performs

the best. The moving average was shown to be superior to a diurnal bias cor-

rection Kalman filter at removing the longer-term systematic errors for HAR-

MONIE forecast data and comparable for GFS forecast data. Subsequent

application of the lead time Kalman filter corrects for the short-term errors

using the real-time forecast error. The post-processing method is adaptive and

there is no need for a long record of observations or a historical archive of

forecasts.

K E Y W O R D S

Kalman filter, local weather forecasts, NWP, post-processing

1 | INTRODUCTION

Weather forecasts are important for, for example, agricultural
systems since the weather has a significant impact on the
growth, development and yield of crops as well as the water
and fertilization need (Petr, 1991; Stigter et al., 2000;
WMO, 2010). Hence, accurate weather forecasts can have
an impact on activities related to agricultural systems

(Hoogenboom, 2000; Pelosi et al., 2016). The present study
has been motivated by the need for more accurate and local-
ized forecasts in relation to agricultural activities.

It is a well-known fact that numerical weather predic-
tion (NWP) models exhibit systematic errors, especially for
near-surface variables such as air temperature and wind
speed. This is partly due to limitations to initial conditions,
deficiencies in the physical formulation of the model
dynamics and the inability of these models to successfully
handle sub-grid phenomena (Krishnamurti et al., 2004;
Mass et al., 2002; Nicolis et al., 2009; Paegle et al., 1997;

Abbreviations: GFS, Global Forecast System; KF, Kalman filter; NWP,
numerical weather prediction; PWS, private weather station.
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Tribbia & Baumhefner, 2004). In addition, the output from
NWP models is gridded, which means that it represents an
average over a grid point/cell (Pielke, 2013). Even though
high-resolution regional NWP models usually have a spatial
resolution of a few kilometres (or even finer), they generally
exhibit local biases due to unresolved topography and
obstacles (Hart et al., 2005).

Statistical post-processing methods are commonly
used to correct systematic forecast errors. The perfect
prog (short for perfect prognosis) (Klein et al., 1959) and
model output statistics (MOS) (Glahn & Lowry, 1972) are
two of the first and most commonly used statistical post-
processing methods in meteorology. Perfect prog relates
forecasts to observations using linear regression, assum-
ing that the forecast is perfect. This means that it cannot
correct for possible dynamical model errors or biases
(Wilks, 2011). MOS is usually preferred over perfect prog
since it uses the forecasts as predictors also in the devel-
opment of the regression equations, which means that it
can include the model errors and biases in the regression
(Wilks, 2011). The major disadvantage of MOS is that it
requires a long training dataset, at least 2 years of histori-
cal NWP forecasts, to develop useful MOS equations
(Jacks et al., 1990). Furthermore, it also requires the
NWP forecasting system not to undergo any changes dur-
ing the training and prediction period (Kalnay, 2003).

Adaptive post-processing methods with a shorter training
period have also been used to correct systematic errors in
NWP forecasts. Previous studies have shown that post-
processing by moving averages (MAs) can improve upon the
raw NWP forecast (Eckel & Mass, 2005; McCollor &
Stull, 2008; Stensrud & Skindlov, 1996; Stensrud &
Yussouf, 2005; Woodcock & Engel, 2005). Another adaptive
post-processing method with a short training period that has
shown promising results is the Kalman filter (Kalman, 1960).
Among the first to use the Kalman filter for post-processing of
meteorological variables were Persson (1991) and
Simonsen (1991), who used the Kalman filter to post-process
temperature forecasts. Sincethen, the Kalman filter has been
applied to correct the diurnal bias in the forecast of 2 m tem-
peratures (Homleid, 1995), toadjust maximum and minimum
temperature forecasts (Galanis & Anadranistakis, 2002) and
to post-process near-surface temperature, humidity and wind
speed forecasts (Galanis et al., 2006; Libonati et al., 2008;
Louka et al., 2008; Sweeney et al., 2013).

The objective of this study is to compare different post-
processing methods and how well they can downscale state-
of-the-art NWP forecasts to obtain localized forecasts. The
focus is on how well the different post-processing methods
perform with respect to post-processing of a high-resolution
NWP model and a coarser-resolution NWP model for a region
with relatively homogeneous topography. Six different post-
processing methods are applied to 2-day NWP forecasts of

2 m temperature from the Global Forecast System (GFS)
model, which is a global NWP model with a relatively coarse
spatial horizontal resolution, and the HARMONIE model,
which is a regional NWP model with a high spatial horizontal
resolution. The post-processing methods are based on the MA
and the Kalman filter, aiming at eliminating recent opera-
tional model biases. The results are evaluated for 100 private
weather stations (PWSs) in Denmark for the period 1 October
2019 to 31 May 2020. Since the network of weather stations is
relatively new, no long record of observations is available.
Hence, we have focused on post-processing methods that do
not require a long training period.

Previous studies have also compared different post-
processing methods. Cheng and Steenburgh (2007) compared
the post-processing of 2-m temperature, 2-m dew point and
10-m wind speed forecasts from an intermediate-resolution
model using MOS, an MA and a Kalman filter.
Anadranistakis et al. (2004) compared post-processing by a
Kalman filter with that of an empirical post-processing
method on 2-m temperature and humidity forecasts from a
fine-resolution model, with focus on an agricultural site in
Greece. Vashani et al. (2010) compared several methods for
post-processing maximum and minimum surface tempera-
tures, also focusing on agricultural sites, but used an
intermediate-resolution model. As stated above, we have cho-
sen to compare different variants of the Kalman filter and the
MA since these do not require a long training period. We have
chosen to compare post-processing methods that focus on
reducing both the longer-term, diurnal systematic errors and
the very short-term systematic errors. Furthermore, we have
focused on comparing the results from post-processing on
both a coarse-resolution and a high-resolution NWP model in
order to analyse any difference in performance based on
model resolution. In addition, our focus is on agricultural sites
in Denmark. Compared to the areas of interest for the above-
mentioned studies, the terrain in Denmark is much less com-
plex; except for land–sea contrasts it is generally flat and
homogeneous. Therefore, the type of systematic errors is likely
to be coupled to different aspects of the models.

The paper is structured such that Section 2 describes
the observational and forecast data used. Section 3 pre-
sents the post-processing methods, and the results are
shown in Section 4. The results and future prospects are
discussed in Sections 5, and Section 6 summarizes the
paper with conclusions.

2 | DATA

2.1 | Observational data

Crowd-sourced data are commonly defined as data
obtained through outsourcing to citizens (Howe, 2006).

2 of 21 ALERSKANSAND KAASMeteorological Applications
Science and Technology for Weather and Climate



Due to recent technological advances, the term“crowd-
sourced data” also includes data obtained from private sen-
sors (Muller et al., 2015). In atmospheric sciences, an increas-
ing number of data obtained through crowd-sourcing from
private sensors are being investigated, such as data from
smartphones (Hintz et al., 2019; Kim et al., 2016) and PWSs
(Chapman et al., 2017; Nipen et al., 2020). As opposed to offi-
cial stations, PWSs usually do not comply with the rules and
standards defined by the WorldMeteorologicalOrganization
(WMO) (WMO, 2018). This means that PWSs can be placed
in areas that are not well-suited for measurements of meteo-
rological variables, such as close to buildings and trees, on
balconies or even indoors. Another disadvantage of crowd-
sourced data from private sensors is that the measurement
instruments usually are low-cost and not as accurate and
well-calibrated as the instruments used in official weather
station networks (Bell et al., 2013, 2015). The major advan-
tage of crowd-sourced data, on the other hand, is the spatial
density of observations, where observations from non-
traditional sources vastly outnumber observations from
official networks.

The observational data used in this study consist of
observations from FieldSense's network of PWSs. Other
providers of PWSs also exist, such as Netatmo. FieldSense
has approximately 1000 stations in Denmark as of
20 October 2020, whereas the national meteorological ser-
vice in Denmark, the Danish Meteorological Institute
(DMI), has approximately 70 WMO-compliant stations
(although not all of them measure temperature). This
means that the private network owned by FieldSense is
more than 10 times as dense as the network operated by
DMI. The weather stations from FieldSense are mainly
developed for use in agricultural applications and are gener-
ally placed on or in the vicinity of fields. Hence, the network
coverage is densest in areas with a high agricultural activity.
Netatmo has an even denser network of PWSs compared
with FieldSense. However, their coverage is densest in pop-
ulated areas, such as cities, and more sparse in remote and
rural areas. This is the main reason for choosing Field-
Sense's network in the first place, since the aim of this study
is to develop a post-processing method for correcting local
systematic errors in an NWP forecast for the benefit of agri-
cultural activities. Furthermore, since the aim is to produce
site-specific forecasts that better match the locally observed
weather, it is assumed that the observations represent the
truth, that is, as a fundamental premise for the entire study
we are not aiming at forecasting the true local temperature
but “only” the actual temperature recorded. Therefore, the
forecasts are validated using the observations and compari-
sons between the post-processed and raw forecasts are
based on their performance relative to the observations.

The observational data consist of 2 m air temperature
observations from a selection of 100 FieldSense stations

in Denmark. Figure 1 shows the location of the selected
stations. The temporal resolution of the observations is
10 min; however, here we have only used the observa-
tions closest in time to the output times of the NWP
models used. It is important to apply appropriate quality
control (QC) methods to identify obviously erroneous
observations. In this study, we have focused on using QC
methods based on the temporal properties of the individ-
ual stations. These tests consist of a plausibility check, a
rate of change check and a persistence check (Fiebrich
et al., 2010; Zahumenský, 2004). Furthermore, since the
stations can be moved, only stations that were stationary
throughout the whole investigation period were used. In
addition, indoor locations were excluded.

2.2 | NWP data

As previously mentioned, the post-processing methods were
tested on forecast data from two different NWP models,
namely GFS from the National Center for Environmental
Prediction (NCEP) and the DMI-HARMONIE NWP model,
which is developed by the HIRLAM and ALADIN consortia
and run operationally by the Icelandic and Danish Meteoro-
logical Institutes (IMO and DMI). The two models were
chosen to facilitate a comparison between post-processing
of forecasts from a coarse-resolution model and a high-
resolution model.

GFS is a hydrostatic global NWP model with a finite-
volume dynamical core with a horizontal resolution of
approximately 13 km and 64 vertical layers. The forecast
is updated four times a day (00, 06, 12 and 18 UTC) and

F I G U R E 1 Location of the 100 private weather stations used
in this study. The stations marked by a blue star indicate the
locations of the stations at Ringsted (1), Langeland (2), Faaborg (3)
and Tørring (4)
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has hourly forecast output for the first 120 h, whereas
forecast output for every 3 h is produced for forecast days
5–16. In this study, the GFS data with a spatial resolution
of 0.25� were used (NCEP, 2015). The data were accessed
via the National Center for Atmospheric Research
(NCAR) Research Data Archive (https://rda.ucar.edu/).
Since historical GFS data were used, which only include
model output for every third hour, the temporal resolu-
tion of the GFS data used in this study is three-hourly.

HARMONIE is a non-hydrostatic limited-area NWP
model operated at 2.5 km horizontal resolution with
65 vertical layers. A detailed description of the HAR-
MONIE model configuration can be found in Bengtsson
et al. (2017), and Yang et al. (2017) the operational imple-
mentation of the current version of HARMONIE at DMI.
The forecast is updated eight times a day and has lead
times up to 60 h with hourly output.

In this study, forecast data for up to 2 days ahead
were extracted for both models. Data were extracted for
the period 1 October 2019 to 31 May 2020 for Denmark.
The forecast data from both models were interpolated to
the station locations using bi-linear horizontal interpola-
tion of the four closest grid points. The performance of
the post-processing methods and the raw NWP forecast
were tested on a subset of the data using both bi-linear
interpolation and the nearest grid point in order to inves-
tigate the effect of interpolation to station location. Gen-
erally, using the nearest grid point resulted in slightly
higher errors. The improvement obtained from the post-
processing methods, however, were very similar, regard-
less of the interpolation method used.

3 | STATISTICAL POST-
PROCESSING METHODS

Six post-processing methods were evaluated and com-
pared in this study. The methods considered range from
the simple MA to the more advanced Kalman filter. They
are all adaptive, meaning that they correct the current
forecast using previous forecasts and local observations.

3.1 | Moving average

An MA is tested. Separate MAs are used for each forecast
cycle and they are constructed to remove the bias based
on forecast lead time. The mean error for each forecast
lead time over a specified window is calculated and the
results are then subtracted from the current forecast.
The window over which to calculate the MA was investi-
gated for a subset of the data and results for window sizes
in the range 3–30 days were compared for both forecast

datasets. For the GFS forecast data, the root mean
square error (RMSE) of the post-processed forecast was
reduced with increasing window length. The differences
between the window lengths were most pronounced for
the longer lead times, where the 30-day MA clearly per-
formed the best. For HARMONIE forecast data, using a
window length of less than 10 days resulted in an
increase in RMSE for the longer lead times. Again, the
30-day MA gave the best results, especially for the lon-
ger lead times. Therefore, the window size was set to
30 days.

3.2 | Weighted moving average

The weighted moving average (WMA) puts higher
weights on the most recent observations, as opposed to
the simple MA, which weights all observations equally. A
linearly WMA, also constructed to correct for lead time
biases, was tested. The window size was set to the same
as that of the simple MA, namely 30 days.

3.3 | Kalman filter

The Kalman filter is an optimal recursive algorithm for esti-
mating an unknown process based on observations and
information about the process' temporal evolution. In this
section, the general form of the Kalman filter equations is
described. For a more detailed and complete description
see, for example, Kalman (1960) and Gelb (1974).

The system equation and the observation equation
form the basis of the Kalman filter. The system equation
describes the relationship between the state vector of the
unknown process,x, at time t � 1ð Þand at time t, that is,
it describes the prediction ofx from time t � 1ð Þto time t

xt ¼Ftxt� 1 þ Btut þ Gtw t: ð1Þ

Here xt is an n � 1 vector, describing the state of the pro-
cess at timet, where n is the dimension of the filter,
which varies depending on how the Kalman filter is
implemented. In the present study, the state vector is the
true forecast error of the 2 m temperature (T2m), defined
as forecast minus observed temperature, andn is given
either by the forecast length or the number of forecast
hours per day, depending on the filter implementation
(see Sections 3.3.1 and 3.3.2).w t is a Gaussian, zero-mean
white noise process with variance Qt ; w t � N 0,Qtð Þ,
describing the random change in the evolution of the
forecast error from time t � 1ð Þto t and ut is a control
input, which represents any input added to the system.
Both of these vectors also have dimensionsn � 1. Ft is the
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system matrix, which describes how theT2m forecast
error evolves with time, Gt is the system noise matrix,
which is related to the uncertainty of the system, and Bt
is the input matrix, which is related to the control input.
These matrices all have dimensionsn � n.

The observation equation relates theT2m forecast
error (i.e., the state vectorxt) to the observed 2 m temper-
ature forecast error,yt,

yt ¼Htxt þ vt: ð2Þ

Here, yt is the observation vector, which contains the
observations and has dimensionsp� 1, where p is the
number of observations at each given time. In this study,
p¼1 since we are only considering one observation per
station for each given time. Ht is the observation matrix,
with dimensions p� n, which maps the state vector to the
observation space, andvt is a Gaussian, zero-mean white
noise process with variance Rt ; vt � N 0,Rtð Þ, describing
the random observation error.

The Kalman filter is an iterative method and can be
divided into two steps: the prediction step and the update
step. In the first step, the prediction equations are used to
predict the estimates of the state vector,xt , and its error
covariance, Pt , ahead in time, based only on the previous
estimates of the state,̂xt� 1jt� 1 , and its error covariance,
P̂t� 1jt� 1,

x̂tjt� 1 ¼Ftx̂t� 1jt� 1 þ Btut, ð3Þ

P̂tjt� 1 ¼FtP̂t� 1jt� 1F
T
t þ GtQtG

T
t : ð4Þ

After the prediction step follows the update step,
where observations from timet are used to update the
estimate of the state vector and its error covariance

x̂tjt ¼x̂tjt� 1 þ Kt yt � Htx̂tjt� 1
� �

, ð5Þ

P̂tjt ¼ I � KtHtð Þ̂Ptjt� 1, ð6Þ

where Kt is the Kalman gain, given by

Kt ¼P̂tjt� 1H
T
t HtP̂tjt� 1H

T
t þ Rt

� � � 1
: ð7Þ

The differenceyt � Htx̂tjt� 1 in Equation (5) is called the
innovation (or residual). The Kalman gain determines
how much weight is put on the previous estimate and
how much is put on the innovation. In other words, the
Kalman gain determines how fast the filter can adapt to
new observed changes.

Equations (3)–(7) are used to update the Kalman filter
from time t � 1ð Þ to t . Prior to running the filter, the
following must be defined: the system matrix Ft , the
observation matrix Ht , the input matrix Bt , the noise
matrix Gt , the system noise covariance matrix Qt and the
observation noise covariance matrix Rt. Furthermore, ini-
tial values for the state vector,x0 , and the state covari-
ance matrix, P0, must be given. The choice ofx0 and P0 is
not very important for the performance of the filter since
their estimates will converge relatively fast towards their
“ true” Kalman-estimated values (Welch & Bishop, 2002).
However, the choice of noise covariances affects the out-
come of the filter significantly. Since only one tempera-
ture observation per station is available at any time, the
covariance of the observation noise, Rt is a scalar, which
can be written as Rt ¼R2, where R2 is the variance of the
observation noise. The covariance matrix of the system
noise, on the other hand, can be written as the product
between the varianceQ2 and a correlation matrix, rcorr ;
Qt ¼Q2�rcorr. The ratio Q=R affects the Kalman gain, and
therefore also how fast the filter is able to adapt to
new changes. How to choose the covariance matrices
of the system and observation noises is one of the
most difficult aspects of constructing a Kalman filter.
Several different methods have been proposed, such
as tuning to obtain a desired performance or property
(Homleid, 1995) and online estimations (Crochet,
2004; Galanis & Anadranistakis, 2002). The method
adopted here is an adaptive method where the struc-
ture of the system noise matrix, rcorr, is updated contin-
uously based on previous forecast errors, whereas the
ratio Q=R is based on tuning to obtain a good perfor-
mance of the filter. The calculation of rcorr is described in
Section 3.3.3. The time step update, that is, how often the
Kalman filter is run, is the same as the output frequency
of the NWP model, that is, 1 h for HARMONIE forecasts
and 3 h for GFS forecasts.

Two different variants of the Kalman filter are tested
for post-processing of the 2 m temperature forecasts.
They are described more in detail in the following.

3.3.1 | Diurnal bias correction Kalman filter

The first variant of the Kalman filter tested here is a diur-
nal bias correction Kalman filter (KFDBC) that is based on
the Kalman filter proposed by Homleid (1995). The aim
of this filter is to correct systematic diurnal forecast errors
and therefore the state vector in the Kalman filter is a
vector containing one element for each forecast output
hour of the day. Since the forecast errors are assumed to
vary only during a 24-h period, forecasts valid at the same
time will be corrected equally. As an example, a forecast
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valid at + 01 h and + 25 h will be corrected by the same
correction term.

To fully describe the KFDBC system, the following
matrices in Equations (3)–(7) need to be defined; Ft , Ht ,
Qt , Rt , Bt and Gt , as well as the initial conditionsx0 and
P0.

Since there is no simple relationship describing how
xt evolves with time, the system matrix is defined as Ft ¼
In. In is the identity matrix and n denotes the dimension
of the filter (n ¼24 for HARMONIE and n ¼8 for GFS).
The observation matrix, Ht, is a 1� n vector. Since the fil-
ter should make corrections on a diurnal basis, the obser-
vation matrix varies with time, such that only the
observation from the current time t is considered by
the filter. For example, at 00 UTC the observation matrix
for application to HARMONIE forecasts is Ht ¼
1 0 0� � � 0½ �, and at 01 UTC it is Ht ¼ 0 1 0 � � � 0½ �, and
so forth.

Different values for Q and R were tested and it was
found that the optimal value for the ratio Q=R was 0.03.
As mentioned, this ratio decides how fast the Kalman fil-
ter adapts to new changes. The larger the ratioQ=R, the
faster the Kalman filter adapts to new changes. However,
when investigating the performance of the Kalman filter
for different ratios, it was found that higher ratios lead to
higher variability in the corrections of KFDBC and there-
fore also a larger standard deviation of the post-processed
forecast, which is not desirable. This was also shown by
Homleid (1995). Therefore, the choice was made to use a
ratio of 0.03.

No control input is used and therefore Bt is not
needed. In addition, the system noise matrix, Gt , is taken
as the identity matrix since the system noise is considered
time-invariant. The initial value for xt is chosen asx0 ¼
0 0 �� � 0½ �T, where xt is an n � 1 vector. Since the esti-

mate of xt converges relatively fast, it is of little impor-
tance how the state is initialized (Welch & Bishop, 2002).
For the initial value of Pt , the structure is chosen identi-
cal to the correlation matrix of the system noise covari-
ance. The variance of P0 is chosen asP2 ¼4, to indicate
the uncertainty associated with the initial guess forxt.

3.3.2 | Lead time Kalman filter

The lead time Kalman filter (KFLT ) is constructed for
forecast lead time instead of time of the day and is based
on the local adaptive Kalman filter proposed by Doeswijk
and Keesman (2005). A brief description of the relevant
parameters is given here; for further details on the filter,
see the study by Doeswijk and Keesman (2005).

The state vector,xt , represents theT2m forecast error
and has dimensionsn � 1 , where n is the dimension of

the filter and is equal to the number of output per fore-
cast, that is,n ¼48 for HARMONIE and n ¼16 for GFS.
For update times where no new forecast is available, the
state vector is updated so that the first element always
represents the next lead time in the forecast. However,
whenever a new forecast is available, at timet* , the state
vector is reset since it is assumed that the new forecast is
better than the KF-updated old forecast. Therefore, Ft

is an n � n time-varying matrix given by

Ft ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

0 0 0 � � � 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

8t � t* ð8Þ

Ft ¼0 8t ¼t* ð9Þ

The observation matrix is time-invariant and defined so
that only the most recent observation is considered; Ht ¼
1 0 0 � � � 0½ �. Different values forQ and R were tested.

The desired properties for the lead time Kalman filter is
that it should be able to quickly adjust the forecast in the
very near future, which means that the ratioQ=R should
be relatively large. By testing different values forQ and R,
it was found that the optimal ratio isQ=R¼6:0.

Gt is an n � n time-varying matrix, which is only rele-
vant at time t* , that is, whenever a new forecast is avail-
able. The same applies to the input matrix Bt. Therefore

Gt ¼Bt ¼In 8t ¼t* ð10Þ

Gt ¼Bt ¼0 8t � t* : ð11Þ

The initial value for xt is chosen asx0 ¼ 0 0 � � � 0½ �T

and the initial value of the structure of P0 is chosen iden-
tical to the correlation matrix of the system noise covari-
ance. To reflect the uncertainty associated with the initial
guess forxt, the variance of P0 is chosen asP2 ¼4.

3.3.3 | System noise covariance matrix

The system noise covariance matrix can be decomposed
into two parts: a variance,Q2, and a correlation matrix,
rcorr. It is, as mentioned, the ratio betweenQ and R that
decides how fast the Kalman filter will react to new
changes in the bias. On the other hand, it is the structure
of rcorr that decides how the Kalman correction is propa-
gated from the current update time to the rest of the
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forecast. To take into account that different seasons and
weather situations might give rise to differing correla-
tions between forecast hours, rcorr is updated continu-
ously. The previousN forecast–observation pairs are used
to calculate the auto-correlation of theT2m forecast error

rk ¼

PN� k

i¼1
xi � �xð Þxiþ k � �xlagged

� �

������������������������
PN� k

i¼1
xi � �xð Þ2

s �������������������������������������
PN

i¼kþ 1
xi � �xlagged

� � 2

s , ð12Þ

where xi is the ith forecast error for the original data and
xiþ k is the ith forecast error for thek-unit lagged data.

The number of forecast–observation pairs,N, to use
in the calculation was investigated, where 5, 10, 15, 20,
25 and 30 days (where each day consists of data from all
forecast cycles) were tested. Using only 5 days of data
resulted in a too variable correlation matrix with time,
which lead to an increase in the standard deviation of the
post-processed forecast over time. A window size of
30 days resulted in a more smooth yet still varying corre-
lation matrix, which did not result in an increase in the
standard deviation of the post-processed forecast. As a
result, 30 days of forecast–observation pairs are used to
calculate the correlation matrix for all Kalman filter post-
processing algorithms. The correlation matrix is updated
once every day.

The Q=R ratios used for KFDBC and KFLT , defined in
Sections 3.3.1 and 3.3.2, were optimized based on the
choice of a window size of 30 days for the calculation of
the correlation matrix.

3.4 | Combined post-processing methods

3.4.1 | Diurnal bias correction Kalman filter
followed by lead time Kalman filter

NWP bias usually has both a diurnal component and a
real-time component. The diurnal bias correction
Kalman filter aims to correct the systematic diurnal fore-
cast errors, whereas the lead time Kalman filter aims at
correcting the forecast error in the very short-range time
period. By applying the lead time Kalman filter after the
diurnal bias correction Kalman filter, a combination
between diurnal corrections and very short-range correc-
tions would be obtained. Therefore, the fifth post-
processing algorithm, referred to as the double Kalman
filter (KF X2), is a combination of the diurnal bias correc-
tion Kalman filter followed by the lead time Kalman
filter.

3.4.2 | MA followed by lead time Kalman
filter

The MA is also constructed to remove the longer-term
bias. Hence, a logical combination after having combined
the diurnal bias correction Kalman filter and the lead
time Kalman filter is to combine the lead time Kalman
filter with the MA as well. The last post-processing
method, MAþ KFLT , is therefore a superposition of the
MA and the lead time Kalman filter.

4 | RESULTS

The six post-processing methods described in Section 3
are applied to both GFS and HARMONIET2m forecast
data for the period 1 October 2019 to 31 May 2020. The
Kalman filter tends to converge relatively fast towards its
“ true” Kalman estimates (Welch & Bishop, 2002). The
MA-type post-processing methods, however, have a win-
dow size of 30 days. Therefore, the month of October is
considered as training period forall post-processing
methods and is discarded in the statistical analysis. To
assess the performance of the post-processing methods,
the following verification scores are used

Mean error MEð Þ=Bias¼
1
N

XN

i¼1

yi � oið Þ, ð13Þ

Mean absolute error: MAE ¼
1
N

XN

i¼1

yi � oij j , ð14Þ

Standard deviation: STD¼

���������������������������������������������
1
N

XN

i¼1

yi � oið Þ � MEð Þ2

vu
u
t ,

ð15Þ

Root mean square error: RMSE¼

�����������������������������
1
N

XN

i¼1

yi � oið Þ2

vu
u
t ,

ð16Þ

where N is the number of observation–forecast data
pairs, y denotes NWP forecast data ando denotes obser-
vational data, which are assumed to represent the ground
truth. It should be noted that we do not consider any
eventual instrument bias at all in the very local observa-
tions, and validate the results against the actual recorded
2 m temperatures. Furthermore, skill scores based on the
above-mentioned verification metrics are used to evaluate
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the performance of the post-processed forecast relative to
the performance of the raw NWP model output

SSX ¼1�
XPP

XNWP
, ð17Þ

where XPP refers to verification metric X for post-
processing methodPP, XNWP refers to the corresponding
verification metric for the raw NWP model output and
SSX refers to the skill score for the same verification
metric.

The post-processing methods were applied to observa-
tional data from 100 weather stations; however, detailed
statistics are only showed for four selected stations,
namely Ringsted, Langeland, Faaborg and Tørring sta-
tions. The location of these four stations is marked with a
blue star in Figure 1. The statistics have been calculated
for the whole time period (excluding October), using all
forecast cycles and all updated forecasts.

Figures 2–4 show the bias, mean absolute error
(MAE) and standard deviation (STD) of the post-
processed GFS forecast for the four example stations. The
raw GFS forecast shows a positive bias for all four sta-
tions, with Tørring station having the largest overall bias,
0.85� C. It should be noted that the bias of the raw GFS
data decreases slightly with lead time for all stations,
which indicates a small cold drift for the GFS model. Tør-
ring station also exhibits the largest overall MAE, 1.21� C.

However, the largest overall STD of the raw GFS forecast
is seen for Langeland station, 1.70� C. Both Langeland
and Faaborg stations exhibit small biases, whereas the
MAE shows larger absolute errors. For the post-
processing methods, application of KFLT results in a
decrease in bias for mostly the shorter lead times for all
four stations. The lead time Kalman filter also reduces
both the MAE and STD mostly for the shorter lead times.
KFDBC and KFX2 reduce the bias close to zero for almost
all lead times. However, the biases of these two post-
processing methods decrease slightly with lead time, sim-
ilar to the behaviour of the raw GFS model bias. The
MAE and STD are reduced for all stations and lead times
when using KFDBC and KFX2. The other three post-
processing methods, MAþ KFLT , MA and WMA, reduce
the bias of the forecast close to zero for most lead times.
They also reduce the MAE and STD for all stations and
all lead times. KFX2 and MA þ KFLT perform best for the
shorter lead times, whereas the performance of KFDBC ,
MA and WMA are comparable to the two combined post-
processing methods for the longer lead times.

The corresponding results for post-processing of
HARMONIE forecast data are shown in Figures 5–7. The
raw HARMONIE forecast has small biases for Ringsted,
Langeland and Faaborg stations, whereas the bias for
Tørring station is higher: 0.50� C on average. The raw
HARMONIE forecast exhibits a more pronounced
decrease in bias with forecast lead time for all stations:

F I G U R E 2 Bias as a function of lead time for the Global Forecast System (GFS) forecast data. Results are shown for the diurnal bias
correction Kalman filter (KFDBC; blue), the lead time Kalman filter (KFLT; light green), the double Kalman filter (KFX2; magenta), the
combined moving average and lead time Kalman filter post-processing method (MAþ KFLT; red), the 30-day moving average (MA; green),
the 30-day linearly weighted moving average (WMA; orange) and the raw GFS model output (numerical weather prediction [NWP]; black).
The title above each subplot indicates the station
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up to almost 0.5� C over the whole forecast length for Tør-
ring station. The overall MAE and STD for all stations
are similar: 0.76–0.99� C and 1.05–1.43� C, respectively. As
was observed for the GFS forecast data, application of
KFLT mostly affects the shorter lead times also when

applied to the HARMONIE forecast data: up to+ 9 h.
Using KFDBC and KFX2 for post-processing results in a
decrease in the bias with lead time for all stations, with
a shape very similar to that of the raw HARMONIE
model bias. On the other hand, the MAE is increased for

F I G U R E 3 Mean absolute error as a function of lead time for the Global Forecast System (GFS) forecast data. Results are shown for the
diurnal bias correction Kalman filter (KFDBC; blue), the lead time Kalman filter (KFLT; light green), the double Kalman filter (KFX2;
magenta), the combined moving average and lead time Kalman filter post-processing method (MAþ KFLT; red), the 30-day moving average
(MA; green), the 30-day linearly weighted moving average (WMA; orange) and the raw GFS model output (numerical weather prediction
[NWP]; black). The title above each subplot indicates the station

F I G U R E 4 Standard deviation as a function of lead time for the Global Forecast System (GFS) forecast data. Results are shown for the
diurnal bias correction Kalman filter (KFDBC; blue), the lead time Kalman filter (KFLT; light green), the double Kalman filter (KFX2;
magenta), the combined moving average and lead time Kalman filter post-processing method (MAþ KFLT; red), the 30-day moving average
(MA; green), the 30-day linearly weighted moving average (WMA; orange) and the raw GFS model output (numerical weather prediction
[NWP]; black). The title above each subplot indicates the station
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all four stations for the longer lead times when applying
these two post-processing methods. KFX2 does, however,
decrease the MAE for the very short lead times. The stan-
dard deviation is also decreased, mostly for the shorter
lead times. MAþ KFLT, MA and WMA are the only post-
processing methods that do not show the same decrease in
bias as the raw NWP model bias with lead time. Instead,
they reduce the bias closer to zero for all lead times. The
two moving-average type post-processing methods per-
form similar to KFDBC for the shorter lead times, and bet-
ter for the longer lead times. On the other hand, they do
not reduce the STD as much for the shorter lead times.
Overall, MAþ KFLT is the post-processing method that
reduces the MAE and STD the most for the shorter lead
times, whereas it performs comparable to the other post-
processing methods for the longer lead times.

A zigzag type of pattern can be seen for some of the
stations, for both GFS and HARMONIE forecast data
(see, e.g., Figures 3 and 5). The reason for this oscillating
pattern is a difference in diurnal amplitudes between the
forecasts and observations. When the statistics are calcu-
lated and presented as a function of forecast lead time,
the difference in diurnal amplitude between forecasts
and observations for the different forecast cycles will give
rise to the type of zigzag pattern shown here.

The summary statistics—average bias, in abso-
lute values, and average STD—based on all
100 stations are shown in Figures 8 and 9. For

the post-processing methods, it can be seen that
it is a general feature that KFLT reduces the bias
mostly for the shorter lead times, for both GFS and HAR-
MONIE forecast data. However, the reduction in bias is
generally seen for longer lead times for the GFS forecasts.
For KFDBC and KFX2, a slight increase in bias can be seen
for the GFS forecast data. The increase is much more evi-
dent for HARMONIE forecast data, where these two
post-processing methods in general tend to increase the
bias for the longer lead times so that it is higher than that
of the raw HARMONIE forecasts. The two moving-
average type post-processing methods and MAþ KFLT

generally produce forecasts with biases closer to zero for
all lead times. As seen before, the effect of applying KFLT

is seen mostly for the shorter lead times, also for STD.
The other post-processing methods generally reduce the
STD for all lead times for GFS forecast data. For HAR-
MONIE forecast data, however, only the lead time
Kalman filter and the two combined post-processing
methods reduce the STD and only for the short lead
times.

It is often the larger errors that have an impact on the
end-users and therefore, the post-processing methods are
also evaluated based on how well they reduce the fraction
of forecast busts, defined as forecast errors greater than
3� C. Figure 10 shows the fraction of forecast busts as a
function of lead time for all stations. The fraction of fore-
cast busts increases with lead time for the raw GFS

F I G U R E 5 Bias as a function of lead time for the HARMONIE forecast data. Results are shown for the diurnal bias correction Kalman
filter (KF DBC; blue), the lead time Kalman filter (KFLT; light green), the double Kalman filter (KFX2; magenta), the combined moving
average and lead time Kalman filter post-processing method (MAþ KFLT; red), the 30-day moving average (MA; green), the 30-day linearly
weighted moving average (WMA; orange) and the raw HARMONIE model output (numerical weather prediction [NWP]; black). The title
above each subplot indicates the station
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forecast and is in the range 5%–7%. KFLT reduces the
fraction of forecast bust the least and mostly for the
shorter lead times. The other post-processing methods
reduce the fraction of forecast busts for all lead times by

3–4 percentage points. The fraction of forecast busts for
the raw HARMONIE forecast also increases with lead
time and is in the range 1.5%–3.5%. A smaller reduction
in forecast busts after post-processing is evident for the

F I G U R E 6 Mean absolute error as a function of lead time for the HARMONIE forecast data. Results are shown for the diurnal bias
correction Kalman filter (KFDBC; blue), the lead time Kalman filter (KFLT; light green), the double Kalman filter (KFX2; magenta), the
combined moving average and lead time Kalman filter post-processing method (MAþ KFLT; red), the 30-day moving average (MA; green),
the 30-day linearly weighted moving average (WMA; orange) and the raw HARMONIE model output (numerical weather prediction [NWP];
black). The title above each subplot indicates the station

F I G U R E 7 Standard deviation as a function of lead time for the HARMONIE forecast data. Results are shown for the diurnal bias
correction Kalman filter (KFDBC; blue), the lead time Kalman filter (KFLT; light green), the double Kalman filter (KFX2; magenta), the
combined moving average and lead time Kalman filter post-processing method (MAþ KFLT; red), the 30-day moving average (MA; green),
the 30-day linearly weighted moving average (WMA; orange) and the raw HARMONIE model output (numerical weather prediction [NWP];
black). The title above each subplot indicates the station
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(a) (b)

F I G U R E 8 Bias summary statistics for all 100 stations as a function of lead time. Results are shown for post-processing of (a) Global
Forecast System (GFS) and (b) HARMONIE forecasts for the diurnal bias correction Kalman filter (KFDBC; blue), the lead time Kalman filter
(KFLT; light green), the double Kalman filter (KFX2; magenta), the combined moving average and lead time Kalman filter post-processing
method (MAþ KFLT; red), the 30-day moving average (MA; green), the 30-day linearly weighted moving average (WMA; orange) and the
raw numerical weather prediction (NWP) model output (NWP; black)

(a) (b)

F I G U R E 9 Standard deviation summary statistics for all 100 stations as a function of lead time. Results are shown for post-processing of
(a) Global Forecast System (GFS) and (b) HARMONIE forecasts for the diurnal bias correction Kalman filter (KFDBC; blue), the lead time
Kalman filter (KFLT; light green), the double Kalman filter (KFX2; magenta), the combined moving average and lead time Kalman filter post-
processing method (MAþ KFLT; red), the 30-day moving average (MA; green), the 30-day linearly weighted moving average (WMA; orange)
and the raw numerical weather prediction (NWP) model output (NWP; black)

(a) (b)

F I G U R E 1 0 Percentage of forecast busts, defined as absolute forecast errors >3� C, as a function of lead time for all stations for the
diurnal bias correction Kalman filter (KFDBC; blue), the lead time Kalman filter (KFLT; light green), the double Kalman filter (KFX2;
magenta), the combined moving average and lead time Kalman filter post-processing method (MAþ KFLT; red), the 30-day moving average
(MA; green), the 30-day linearly weighted moving average (WMA; orange) and the raw numerical weather prediction (NWP) model output
(NWP; black), based on (a) Global Forecast System (GFS) and (b) HARMONIE forecast data
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HARMONIE forecast data; however, all methods reduce
the fraction of forecast busts.

The spatial distribution of overall RMSE for each of
the six post-processing methods and the raw GFS and
HARMONIE forecast data is shown in Figures 11 and 12,
respectively. Each circle indicates the location of the sta-
tion, and the colour represents the overall RMSE, calcu-
lated for the whole forecast period, using data from the
station at that location. The RMSE for the raw GFS fore-
cast data is in the range 0.9–2.6� C. Generally, the post-
processed forecasts show a reduction in RMSE (lighter
colours). However, the difference between the raw GFS
forecast and the post-processed forecast using KFLT is less
evident here. The RMSE of the raw HARMONIE forecast
data is generally smaller compared with the raw GFS
forecast data, as indicated by the lighter colours. Further-
more, the difference between the post-processed forecasts
and the raw HARMONIE forecast is less evident. How-
ever, a decrease in RMSE can be seen, mostly for the

stations at which the RMSE of the raw HARMONIE fore-
cast data is larger to begin with.

To assess how well the different post-processing
methods improve upon the raw NWP forecast for all
100 stations included in the study, the bias (in absolute
values), STD and RMSE skill scores were calculated
(Equation (17)). The fraction of stations for which post-
processing reduced the bias, STD and RMSE by 5% or
more (i.e., a skill score of 0.05 or higher) was then calcu-
lated as a function of lead time. The results are shown in
Tables 1–6. For clarity, and in order to match the results
obtained from post-processing of GFS forecasts, the
results from the post-processing of HARMONIE forecasts
are shown for every third forecast hour.

The results for post-processing of GFS forecasts show
that KFLT reduces the bias, STD and RMSE for the fewest
stations. For the very short lead times it reduces the bias,
STD and RMSE for almost all stations. However, for the
longer lead times, less than 50% of the stations benefit

(a) (b) (c)

(d) (e) (f)

(g)

F I G U R E 1 1 Spatial distribution of RMSE. The circles show the location for each of the 100 stations and the colormap indicates the
overall RMSE, calculated for the whole forecast period. The results are based on post-processing of Global Forecast System (GFS) forecast
data. The different post-processing methods, as well as the raw numerical weather prediction (NWP) model output are shown in individual
subplots; (a) the diurnal bias correction Kalman filter (KFDBC); (b) the lead time Kalman filter (KFLT); (c) the double Kalman filter (KFX2);
(d) the combined moving average and lead time Kalman filter post-processing method (MAþ KFLT); (e) the 30-day moving average (MA); (f)
the 30-day linearly weighted moving average (WMA); and (g) the raw GFS forecast
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from post-processing using KFLT with respect to bias,
whereas less than 20% benefit from the post-processing with
respect to STD and RMSE. The other five post-processing
methods perform similar to each other. They all reduce the
bias and improve the STD of at least 75% of the stations for
all lead times. The RMSE values for at least 90% of the sta-
tions are improved by at least 5% or more (compared with
the raw GFS forecast) for alllead times. Calculating the
fraction of stations for which the bias, STD and RMSE
increaseby 5% or more (not shown) shows that a maximum
of 36% of the stations have a bias that is larger than the raw
GFS forecast data for a few of the longer lead times when
using the KFLT post-processing method. The other five
post-processing methods have an increase in bias for
maximum 20% of the stations, which can be seen only for
the longest lead times. The corresponding results for STD
and RMSE show that only 1% of the stations have an
STD or RMSE that is 5% or higher compared with the
raw GFS forecast, for all post-processing methods.

The corresponding results for the post-processing of
HARMONIE forecast data show slightly different results.
KFLT is the post-processing method which reduces the
bias, STD and RMSE for the fewest stations here as well:
less than 9% of the stations for bias and 0% of the stations
for STD and RMSE, for some of the longer lead times.
The largest difference compared with the results obtained
from post-processing GFS forecast data can be seen for
how KFDBC and KFX2 perform with respect to bias. Less
than 40% of the stations benefit from these post-
processing methods for the longer lead times. MAþ KFLT,
MA and WMA, on the other hand, reduce the bias for
more than 90% of the stations for all lead times. The frac-
tion of stations for which the STD is reduced is much
smaller than the corresponding fraction for the GFS fore-
cast data. Most of the stations still benefit from the post-
processing for the very short lead times; however, only
10% of the stations benefit from the post-processing for
the longer lead times. The corresponding results based on

(a) (b) (c)

(d) (e) (f)

(g)

F I G U R E 1 2 Spatial distribution of RMSE. The circles show the location for each of the 100 stations and the colormap indicates the
overall RMSE, calculated for the whole forecast period. The results are based on post-processing of HARMONIE forecast data. The different
post-processing methods, as well as the raw numerical weather prediction model output, are shown in individual subplots; (a) the diurnal
bias correction Kalman filter (KFDBC); (b) the lead time Kalman filter (KFLT); (c) the double Kalman filter (KFX2); (d) the combined moving
average and lead time Kalman filter post-processing method (MAþ KFLT); (e) the 30-day moving average (MA); (f) the 30-day linearly
weighted moving average (WMA); and (g) the raw HARMONIE forecast
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T A B L E 1 Percentage of weather stations improved by 5% or more from the post-processing of GFS forecast data for each lead time for
each of the six post-processing (PP) methods tested. The results are based on the percentage of stations for which the abs(bias) skill score was
5% or higher.

PP method + 3 h + 6 h + 9 h + 12 h + 15 h + 18 h + 21 h + 24 h + 27 h + 30 h + 33 h + 36 h + 39 h + 42 h + 45 h

KFDBC 96 92 95 91 94 90 91 83 81 79 81 76 79 74 76

KFLT 96 98 88 79 64 71 80 79 82 62 37 27 24 37 67

KFX2 99 93 94 90 95 90 96 85 83 79 80 75 79 75 80

MA þ KFLT 97 89 92 87 92 83 90 84 85 82 81 80 83 81 85

MA 91 87 92 85 92 82 86 82 83 82 85 80 83 80 84

WMA 94 89 93 89 93 84 93 84 86 82 85 82 87 82 87

T A B L E 2 Percentage of weather stations improved by 5% or more from the post-processing of GFS forecast data for each lead time for
each of the six post-processing (PP) methods tested. The results are based on the percentage of stations for which the STD skill score was 5%
or higher.

PP method + 3 h + 6 h + 9 h + 12 h + 15 h + 18 h + 21 h + 24 h + 27 h + 30 h + 33 h + 36 h + 39 h + 42 h + 45 h

KFDBC 99 99 98 99 95 98 95 99 94 98 83 96 80 95 79

KFLT 100 100 56 22 30 21 48 70 50 13 15 11 16 6 26

KFX2 100 100 99 98 96 98 93 99 94 97 83 94 78 92 77

MA þ KFLT 100 100 97 98 88 97 86 99 87 95 81 93 72 89 75

MA 91 99 90 98 86 98 86 99 85 97 82 95 78 91 76

WMA 97 99 93 98 91 99 92 99 88 96 83 96 80 94 80

T A B L E 3 Percentage of weather stations improved by 5% or more from the post-processing of GFS forecast data for each lead time for
each of the six post-processing (PP) methods tested. The results are based on the percentage of stations for which the RMSE skill score was
5% or higher.

PP method + 3 h + 6 h + 9 h + 12 h + 15 h + 18 h + 21 h + 24 h + 27 h + 30 h + 33 h + 36 h + 39 h + 42 h + 45 h

KFDBC 100 100 100 100 100 99 100 99 99 98 95 96 92 97 90

KFLT 100 100 70 36 36 32 66 79 58 22 19 11 13 9 28

KFX2 100 100 100 100 100 99 100 99 98 97 93 96 90 96 90

MA þ KFLT 100 100 100 100 98 99 97 99 96 97 93 97 90 96 89

MA 99 100 98 100 98 100 97 99 96 98 94 97 92 97 90

WMA 100 100 99 100 99 99 100 99 98 98 94 97 94 97 92

T A B L E 4 Percentage of weather stations improved by 5% or more from the post-processing of HARMONIE forecast data for each lead
time for each of the six post-processing (PP) methods tested. The results are based on the percentage of stations for which the abs(bias) skill
score was 5% or higher.

PP method + 3 h + 6 h + 9 h + 12 h + 15 h + 18 h + 21 h + 24 h + 27 h + 30 h + 33 h + 36 h + 39 h + 42 h + 45 h

KFDBC 98 100 98 92 89 83 77 69 66 58 53 47 44 37 35

KFLT 99 92 57 26 22 32 51 70 46 15 8 9 11 20 31

KFX2 98 100 96 91 89 83 77 69 65 58 53 47 44 37 35

MA þ KFLT 98 98 97 96 95 95 95 95 95 95 91 91 92 92 91

MA 95 96 97 96 95 95 93 95 94 95 91 91 92 93 91

WMA 96 98 98 97 96 95 95 95 95 95 93 93 92 95 93
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RMSE show that more than half of the stations benefit
from post-processing for the first forecast day, when
using MAþ KFLT, MA or WMA and a little less than 40%
for the longest lead times. The corresponding percentages
for the other post-processing methods are in general
lower. The fraction of stations for which the bias, STD
and RMSEincreaseby 5% or more compared with the raw
HARMONIE forecast was also calculated (not shown). The
bias is the metric showing the largest degradation, with up
to 64% of the stations for the longest lead times using
KFDBC and KFX2. No stations show an increase in STD,
whereas up to 15% of the stations show an increase in
RMSE for the longest lead times, using KFDBC and KFX2.

5 | DISCUSSION

The presented results show that all six post-processing
methods successfully correct the raw NWP forecasts.
Comparing the results from the example stations
(Figures 2–7), it can be seen that the lead time Kalman
filter, KFLT , reduces the bias, MAE and STD mostly for
the very short lead times for both GFS and HARMONIE
forecasts, as it was constructed to do. This is an effect
from the strong correlation between the current real-time
bias and the near-future bias.

The two MAs, MA and WMA, behave similar with
respect to bias when applied to GFS and HARMONIE
forecast data; they reduce the bias close to zero for all lead
times. However, the two MAs hardly reduce the MAE and
STD for the HARMONIE forecast data. A reduction in
MAE is observed only for Tørring station. For the GFS
forecast data, the two MAs can be seen to reduce both the
MAE and STD for all four example stations. An explana-
tion for this is that the bias, MAE and STD of the raw GFS
forecast data for the four example stations are larger than
for the raw HARMONIE forecast data—an expected fea-
ture due to the coarser resolution of the GFS forecast. The
larger the systematic errors in the raw forecast, the larger
improvements can be obtained from post-processing.
Hence, the reason for the observed improvement for the
GFS forecast and the lack of similar improvement for the
HARMONIE forecasts when applying the MAs is a differ-
ence in systematic errors for the raw forecasts.

The combined MA and lead time Kalman filter,
MA þ KFLT , showed improvements for both longer and
shorter lead times in the presence of larger systematic
errors, and only improvements in the shorter range for
smaller systematic errors. The larger improvement
for the shorter lead times is attributed to KFLT , which
corrects for the real-time bias, whereas the MA corrects
for the systematic biases for the longer lead times.

T A B L E 5 Percentage of weather stations improved by 5% or more from the post-processing of HARMONIE forecast data for each lead
time for each of the six post-processing (PP) methods tested. The results are based on the percentage of stations for which the STD skill score
was 5% or higher.

PP method + 3 h + 6 h + 9 h + 12 h + 15 h + 18 h + 21 h + 24 h + 27 h + 30 h + 33 h + 36 h + 39 h + 42 h + 45 h

KFDBC 40 21 19 15 15 14 14 14 12 12 11 11 11 11 11

KFLT 100 10 3 3 3 0 4 6 5 0 1 3 2 0 3

KFX2 100 37 19 13 15 14 13 13 12 12 11 11 9 10 8

MA þ KFLT 100 40 21 19 19 19 18 18 16 13 12 11 11 11 10

MA 23 22 22 21 20 18 17 16 13 13 13 13 12 12 11

WMA 25 22 22 23 22 21 20 18 13 15 13 14 12 12 11

T A B L E 6 Percentage of weather stations improved by 5% or more from the post-processing of HARMONIE forecast data for each lead
time for each of the six post-processing (PP) methods tested. The results are based on the percentage of stations for which the RMSE skill
score was 5% or higher.

PP method + 3 h + 6 h + 9 h + 12 h + 15 h + 18 h + 21 h + 24 h + 27 h + 30 h + 33 h + 36 h + 39 h + 42 h + 45 h

KFDBC 79 67 63 60 56 46 44 42 38 31 29 26 25 26 25

KFLT 100 45 5 4 3 0 5 10 5 0 1 3 2 0 3

KFX2 100 76 63 57 55 46 43 41 36 30 27 26 25 24 23

MA þ KFLT 100 79 65 63 63 59 56 55 51 44 41 40 38 37 37

MA 71 68 65 66 65 61 58 56 49 45 43 41 42 40 38

WMA 71 69 67 69 66 60 58 56 49 46 43 42 44 41 39
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It could be seen that the bias obtained after post-
processing both the GFS and HARMONIE forecast data
using the diurnal bias correction Kalman filter, KFDBC,
and the double Kalman filter, KFX2, follows the shape of
the raw NWP forecast. The tendency of KFDBC to produce
bias results as a function of forecast lead time that follow
the shape of the bias for the raw NWP forecast was also
noted by Homleid (1995).

From the verification of bias for the example stations
it can be seen that the raw HARMONIE model output
exhibits a cold drift with lead time (Figure 5). This is a
feature that could be seen for the majority of stations.
The drift of the HARMONIE forecast bias with lead time
of up to about half a degree for individual stations during
the 2-day forecast is quite normal, and for the current
version of DMI-HARMONIE (v. 40 h1) it has recently
mainly been a negative trend (Yang, 2020). A similar cold
drift, however not as pronounced, is observed for GFS
forecasts for some stations. The identified drifts are with
respect to the observed 2 m temperatures as measured by
the FieldSense stations, which may not represent the
actual “ truth ” , only the actual temperature recorded.

The percentage of forecast busts (Figure 10) high-
lights the difference in systematic errors between the raw
GFS and HARMONIE forecasts. Overall, the GFS fore-
casts have a higher fraction of forecast busts compared
with the HARMONIE forecasts. It is interesting to note
that the post-processing of the GFS forecast data gives
comparable fractions of forecast busts to the raw HAR-
MONIE forecasts. This shows that post-processing of a
coarse-resolution model can improve the model with
respect to large errors so that the performance is compa-
rable to a high-resolution model.

The summary statistics over all 100 stations (Figures 8
and 9) showed that for the GFS forecasts, the two combined
post-processing methods, KFX2 and MA þ KFLT , are supe-
rior. Application of KFDBC and KFX2 tends to result in a
reduction in bias for GFS forecast data. The results
obtained here are comparable to the results obtained by
Doeswijk and Keesman (2005). However, for HAR-
MONIE forecast data, these two post-processing methods
tend to increase the bias for the longer lead times. The
diurnal bias correction Kalman filter uses the same cor-
rection for the first and second forecast days. Therefore,
any systematic difference in forecast errors between the
first and second forecast days will lead to an inaccurate
correction for the last forecast day. This might be the
explanation for the unsatisfactory performance observed
for KFDBC and KFX2 when applied to HARMONIE fore-
casts. Furthermore, the systematic errors in the HAR-
MONIE forecasts are expected to be smaller compared
with the GFS forecasts. Hence, the linear correlation
between the current forecast error and the forecast error

at the longer lead times might not be as systematic in the
HARMONIE forecast data. This would also affect the cor-
rections and introduce errors with increasing lead time
since the structure of the system noise covariance matrix,
Qt , is based on the linear correlation between forecast
and observed temperature errors. It is instead MAþ KFLT

that performs the best for HARMONIE forecasts. Overall,
seen to post-processing of both GFS and HARMONIE
forecasts, MAþ KFLT performs the best. It combines the
correction of longer-term systematic biases through the
moving average with the short-term corrections from the
lead time Kalman filter to produce a post-processing
method that works best for short-term forecasts but also
yields satisfactory results for the whole 2-day forecast.

The results for the example stations highlighted differ-
ences in performance among stations, and Figures 11 and
12 showed the spatial distribution of overall RMSE among
the stations. Differences in the spatial distribution of RMSE
between the raw GFS and HARMONIE forecasts can be
seen. The raw GFS forecasts show larger RMSE for stations
in northeastern Jutland and also for coastal stations on
Zealand. However, larger RMSE can also be seen for sta-
tions in central Jutland and no clear relationship between
distance to the coast for stations at Fyn can be seen. Overall,
there does not seem to be any relationship between larger
RMSE and distance to the coast. The results for HAR-
MONIE forecast data also show little correlation between
larger RMSE and distance to the coast; both stations close
to the coast and stations further inland show larger RMSE.

The weather in Denmark is characterized by preva-
lent westerly winds, and westerly weather systems are
frequent (Cappelen, 2020). However, no relationship
between exposure to westerly weather systems and larger
systematic errors can be seen here.

Anadranistakis et al. (2004) and Cheng and Steenburgh
(2007) evaluated the performance of the Kalman filter, and
other post-processing methods, for regions with complex ter-
rain and obtained good performances. The topography for
the selected region in this study is much less complex;
except for land–sea contrasts Denmark is generally flat and
homogeneous. No clear relationship between higher RMSE
and topography was found.

Cheng and Steenburgh (2007) compared MOS,
moving-average bias removal and the Kalman filter post-
processing methods. They showed that the MA and
Kalman filter performed better than MOS for quiescent
cool season patterns when winter-time cold pools exist,
and for quiescent warm season patterns all three methods
performed similarly. However, when there are sudden
changes in the weather conditions, the MA and Kalman
filter do not adapt quickly enough and produce inferior
forecasts compared with MOS. To see if there was any
difference in performance based on month, the monthly
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summary statistics were calculated (not shown). These
show that all six post-processing methods have a ten-
dency to increase the STD for the longer lead times for
weather-wise vivid winter-time months. Similar results
were obtained for the summary statistics of the MAE.
Homleid (1995) also found an increase in standard devia-
tion for winter-time months.

In preliminary runs, the system noise covariance Qt
used in the Kalman filters was time-invariant during the
whole period of interest. However, this led to an increase
in STD and MAE for GFS forecasts for the later half of
the forecast period of interest. This is most probably due
the short period that was initially used to estimate the
system noise covariance matrix. Furthermore, changing
weather regimes likely also affect the correlation between
forecast errors for different lead times. Correlations
obtained for one season is therefore not likely to be a
good fit for another season. However, a sufficiently long
observational record does not exist in order to estimate
the correlations for different seasons. Hence, the current
approach, where the structure of the system noise covari-
ance matrix was updated once every day using forecasts
and observations from the last 30 days, was implemented.
Several different methods for how to either choose or
estimate the system and observation noise covariance matri-
ces have been suggested. Several studies use time-invariant
noise covariances and obtain good results (Doeswijk &
Keesman, 2005; Homleid, 1995). However, in doing so, the
adjustability of the filter decreases since it will not be able to
adjust to changes brought on by, for example, changing
weather regimes. Galanis and Anadranistakis (2002) suggest
that both the system and observation noise covariance matri-
ces are to be calculated based on the difference between the
observed forecast error and the forecast error as estimated
from the Kalman filter from the last 7 days. It might be
worth investigating if such a method might improve upon
the results obtained here. This would also introduce a time-
varying aspect to the magnitude of Qt and Rt, which would
result in different rates of responsiveness to different
weather conditions. However, this method is also based
on past differences and it is not clear how this would
improve the Kalman filter's response to sudden changes.
Another suggestion is to reduce the ratioQ=R with lead
time to limit the larger errors that might occur for the
longer lead times, especially in situations with rapidly
changing weather conditions. In order to obtain a time-
varying aspect to the rate of adaptability of the Kalman
filter, one could use ensemble forecasts to estimate future
uncertainties and base the ratioQ=R on this. Further-
more, analogue forecasting could be used to classify the
weather situations that give rise to the largest errors and
this could then be used to adjust the noise covariances
for these situations. However, analogue forecasting

requires a long historical archive of past forecasts and
observations and would therefore be contradictory to the
reason for choosing the Kalman filter, which was to use a
post-processing method that does not require a long his-
torical archive.

All six post-processing methods tested in this study
are linear. Non-linear post-processing methods based on
machine learning, such as neural networks and random
forests, have shown good results when used to post-
process NWP forecasts (Casaioli et al., 2003; Eccel
et al., 2007; Marzban, 2003). The advantages of these
methods are that they can represent non-linear relation-
ships and that several predictors can be used easily. How-
ever, these post-processing methods require a long
training dataset for optimal performance. Post-processing
methods that require a long historical archive are chal-
lenging and computationally expensive in an operational
set-up since the state-of-the-art NWP models are fre-
quently updated, which requires re-forecasts to be made
to obtain these records for post-processing applications.

6 | CONCLUSIONS

In this paper, we have compared the performance of six
post-processing methods based on results from applica-
tion to 2 m temperature forecasts from the relatively
coarse-resolution global numerical weather prediction
(NWP) model Global Forecast System (GFS) and the
regional high-resolution NWP model HARMONIE. Both
post-processing methods handling the longer-term sys-
tematic errors and post-processing methods focusing on
the shorter-term systematic errors were evaluated. Com-
pared to other studies, which have focused on the post-
processing of 2 m temperature forecasts in areas with
more complex topography (Anadranistakis et al., 2004;
Cheng & Steenburgh, 2007; Crochet, 2004), this study has
focused on Denmark, which is a region with a relatively
homogeneous topography. Here, no clear relationship
between larger systematic errors and topography was
found. Furthermore, no clear connections between the
distance to the coast and larger systematic errors were. In
addition, no connections between stations more prone to
exposure to westerly weather systems and larger system-
atic errors were found.

It was shown that the performance of most of the
post-processing methods were similar for the two NWP
forecasts. However, the performance of the diurnal bias
correction Kalman filter and the double Kalman filter dif-
fered. Both of these post-processing methods have been
successfully applied to 2 m temperature forecasts from
coarser-resolution NWP models before in study areas with
both relatively homogeneous and complex topography,
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and have yielded good results (Doeswijk & Keesman,
2005; Homleid, 1995). Similarly, in this study, both of
these post-processing methods resulted in an improvement
of the 2m temperature GFS forecast. However, we also
showed that for a high-resolution regional NWP model for
a region with relatively homogeneous topography, the
diurnal bias correction Kalman filter and the double
Kalman filter do not perform satisfactory. They performed
worse for the longer lead times with larger mean absolute
errors compared with the raw HARMONIE forecasts. The
reason for this is believed to be a combination of the fact
that the diurnal bias correction Kalman filter applies the
same correction to the first and second forecast days, and
that the errors for the HARMONIE forecast data are gen-
erally smaller and not as systematic as for the GFS
forecast data.

The 30-day moving average followed by the lead time
Kalman filter was shown to perform the best with respect
to both GFS and HARMONIE forecasts. The moving
average was shown to be superior to the diurnal bias cor-
rection Kalman filter at removing the longer-term sys-
tematic errors for HARMONIE forecast data and
comparable for GFS forecast data. Subsequent applica-
tion of the lead time Kalman filter corrects for the
short-term errors using the real-time forecast error. The
post-processing method is adaptive and the structure of
the system noise covariance matrix is updated using the
last 30 days of forecast–observation pairs. Therefore,
there is no need for a long record of observations or a his-
torical archive of forecasts to implement the method. The
combined moving average and lead time Kalman filter
post-processing method reduces the bias of the GFS and
HARMONIE forecasts close to zero for all forecast lead
times and also reduces the standard deviation and RMSE
of the two forecasts for the majority of stations. This
shows that the application of a relatively simple post-
processing method can give good results.
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