Rapid Microwave-Only Characterization and Readout of Quantum Dots Using Multiplexed Gigahertz-Frequency Resonators

Damaz de Jong,1,*, Christian G. Prosko,1 Daan M. A. Waardenburg,1 Lin Han,1 Filip K. Malinowski,1 Peter Krostrup,2 Leo P. Kouwenhoven,1,3 Jonne V. Koski,3 and Wolfgang Pfaff3,4,†

1 QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands
2 Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen & Microsoft Quantum Materials Lab, Copenhagen, Denmark
3 Microsoft Quantum Lab Delft, Delft University of Technology, 2600 GA Delft, The Netherlands
4 Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 9 March 2021; accepted 19 May 2021; published 2 July 2021)

Superconducting resonators enable fast characterization and readout of mesoscopic quantum devices. Finding ways to perform measurements of interest on such devices using resonators only is therefore of great practical relevance. We report an experimental investigation of an InAs nanowire multiquantum dot device by probing gigahertz resonators connected to the device. First, we demonstrate accurate extraction of the dc conductance from measurements of the high-frequency admittance. Because our technique does not rely on dc calibration, it could potentially obviate the need for dc measurements in semiconductor qubit devices. Second, we demonstrate multiplexed gate sensing and the detection of charge tunneling on microsecond timescales. The gigahertz detection of dispersive resonator shifts allows rapid acquisition of charge stability diagrams, as well as resolving charge tunneling in the device with a signal-to-noise ratio of up to 15 in 1 μs. Our measurements show that gigahertz-frequency resonators may serve as a universal tool for fast tuneup and high-fidelity readout of semiconductor qubits.

DOI: 10.1103/PhysRevApplied.16.014007

I. INTRODUCTION

Microwave resonators in the few-gigahertz range are well known as a powerful means to increase the speed with which properties of mesoscopic quantum devices can be read out [1]. In the field of quantum information, resonators in this so-called superhigh-frequency (SHF) band have thus enabled the fast and high-fidelity nondemolition readout of quantum bits (qubits)[2–5], as well as mediating interactions between qubits [6–9]. SHF resonators are also an attractive tool for the fast characterization of quantum devices, because the required tuneup routines are generally time-consuming. Additionally, frequency multiplexing using many high-Q resonators has been established for hardware-efficient mass-characterization of devices [10,11].

Efficient characterization is particularly relevant for semiconductor quantum devices where many gate electrodes result in a large parameter space. In recent years there have been numerous efforts to utilize SHF resonators for this purpose [12–16] as well as reading out qubit degrees of freedom [17–26]. Despite these successes, however, experiments are still often supplemented with dc or low-frequency measurements to quantitatively extract the dc conductance [27]. As larger-scale devices are developed [28,29], it is interesting to direct focus to readout and tuneup schemes utilizing SHF resonators only, thus allowing a single framework for all measurements performed on a device.

Here, we present experiments using multiplexed resonators in the range 3–7 GHz coupled to a multiqubit dot (multi-QD) system. Using the resonator response only, we are able to infer quantitatively the dc conductance of the system, and detect single-electron tunneling with high signal-to-noise ratio (SNR) on submicrosecond timescales. The remainder of this paper is organized as follows. In Sec. III, we determine the dc (i.e., zero-frequency) conductance from SHF measurements without any dc calibration data and find agreement with conductance obtained from a dc transport control measurement. In Sec. IV,
we demonstrate fast multiplexed dispersive gate sensing (DGS) at gigahertz frequencies in a double quantum dot (DQD). This local measurement of charge transitions facilitates fast tuneup of multi-QD systems [29]. Finally, in Sec. V, we attain high SNRs in the detection of charge tunneling in the DQD. State-dependent charge tunneling is a key mechanism for qubit readout in semiconductor qubits [30]. Our optimized resonator design [31], combined with the use of a near-quantum-limited amplifier [32], results in a maximum SNR of 15 in an integration time of 1 μs.

II. EXPERIMENTAL SETUP

The device comprises an InAs nanowire with a gigahertz-bandwidth coplanar waveguide resonator [33] coupled to every QD to sense the electronic compressibility of each individual dot. An additional resonator that is galvanically connected to the source of the nanowire is used to probe the admittance of the nanowire. Figures 1(a) and 1(b) show images of the resonators and the multi-QD device, respectively. An approximate lumped-element schematic of the device is shown in Fig. 1(c). Each resonator is coupled to a central feedline in a hanger geometry and is individually addressable using frequency multiplexing [Fig. 1(d)]. The obtained SNR is set by the high resonator bandwidth, optimized resonator coupling quality factors, and a traveling-wave parametric amplifier (TWPA) [32] at the base temperature stage of 20 mK of our dilution refrigerator. For further details, see the Supplemental Material [34].

III. HIGH-FREQUENCY CONDUCTANCE MEASUREMENTS

We begin by investigating the SHF response of the resonator coupled to the lead in response to changing nanowire conductance [12–14,27,35,36]. By tuning the gate voltage T2 and keeping the other gates at 0 V we alter the nanowire conductance. This modulates the resonator response, shown in Figs. 2(a) and 2(b), through changes in its load admittance. The dc conductance can be extracted from the load admittance either by building a calibration map of load admittance and dc conductance or by quantitatively modeling the resonator circuit [27]. We take the latter approach to maintain independence from dc calibration measurements. To quantify the modulation of the resonator response, we fit the response to a hanger input-output model [37–39]. The relevant parameters for extracting load admittance are the change in the resonance frequency Δω0 and the additional photon decay rate Δκd with respect to the pinchedoff regime, which is reached by decreasing the gate voltages until κd saturates. Representative fits are plotted in Fig. 2(a) and the extracted κd and Δω0 are shown in Fig. 2(c). The load admittance, Y, can then be calculated by

\[Y = \frac{\pi}{Z_0\Delta\omega_0} \left(\frac{1}{2} \Delta\kappa_d - i \Delta\omega_0 \right), \]

which holds for a transmission line resonator of characteristic impedance Z0 coupled to a high impedance load 1/|Y| ≫ Z0. We estimate Z0 = 116 Ω from the resonator design. See the Supplemental Material for more details of the procedure outlined above [34].

Importantly, the load admittance at finite frequency does not directly translate to the dc conductance of the coupled device (i.e., the nanowire). The nanowire itself has an inductive component and the gates surrounding the nanowire add additional shunting capacitive paths to ground, contributing to the load admittance especially for higher frequencies. Our device design with high lever-arm gates necessitates compensating for these contributions explicitly, in contrast to the experiments in Refs. [13,14,27]. To account for these effects, we model the load admittance Y as in Fig. 2(d), describing an effective transmission line formed by the nanowire split by a tunnel junction. We denote the series resistance, inductance, and parallel capacitance per unit length of this transmission

![Image](image-url)
The constants Z_{nw} and $\gamma \ell$ are determined from two SHF calibration measurements. For the first calibration measurement, the load impedance Y_o is measured when all gates are open at 0 V, corresponding to the limit that $Z_T = 0$. For the second calibration measurement, the load impedance Y_p as $|Z_T| \rightarrow \infty$ and $\lambda = 1$ is measured by tuning the rightmost gate voltage T_6 into pinchoff. Solving the resulting two equations for $\gamma \ell$ and Z_{nw} yields

$$\gamma \ell = \text{arctanh} \left(\frac{Y_p}{Y_o} \right)$$

and

$$Z_{nw} = \frac{\gamma \ell}{\sqrt{Y_p Y_o}}.$$ \hspace{1cm} (3)

See the Supplemental Material for more information [34]. Using Eqs. (2) and (3), we then extract Z_T from the admittance Y. We model the junction as a resistor R_T and capacitor C_T in parallel such that $Z_T^{-1} = 1/R_T + i\omega C_T$ [40], and then determine the dc-equivalent conductance as

$$G_{rf}^{-1} = \text{Re}(Z_{nw}) + 1/\text{Re}(Z_T^{-1}).$$ \hspace{1cm} (4)

To validate our method to infer the conductance, we compare it with the conductance obtained from a control experiment using conventional dc detection. Figure 2(e) shows the conductance extracted from dc measurements G_{dc} and the dc conductance extracted from the resonator response G_{rf}. Excellent agreement is observed between G_{rf} and G_{dc} for data from pinchoff traces of T1 through T6, changing λ according to the position of the gate, shown in the inset of Fig. 2(e).

FIG. 2. Pinchoff measurements. (a),(b) Response of the conductance resonator to the tunnel gate voltage T_2 and linecuts at the indicated gate voltages in (b) offset for clarity. The quantity $|A_S/A_0|$ denotes the ratio of measured signal to input signal. (c) Frequency shift $\Delta \omega_0$ and internal resonator decay κ_d extracted from individual resonator line traces of (b). (d) Schematic of the nanowire for the experiment in (b) with the corresponding lumped-element model used to convert between resonator admittance and conductance G_{rf}. (e) Conductance G_{dc}, measured with standard voltage-biased current measurements, together with the conductance G_{rf} extracted from (c). The inset shows the conductance G_{rf} as a function of conductance G_{dc}, for the gate response of all tunnel gate voltages T1 through T6. The dashed line indicates $G_{dc} = G_{rf}$. The individual traces are included in the Supplemental Material [34]. All measurements in this figure are taken at $V_B = 10$ mV while unused gates are held at 0 V such that only the active tunnel gate can deplete the nanowire.

The relation between Z_T and Y depends on the fractional position of the tunnel junction along the nanowire, which we parameterize by λ. Explicitly, the relation is given by

$$Z_T = \frac{Z_{nw}}{\gamma \ell} \frac{\gamma Z_{nw}}{\gamma \ell} \sinh(\gamma \ell) - \cosh(\gamma \ell)\sinh[(1-\lambda)\gamma \ell] \sinh(\gamma \ell) - \frac{Z_{nw}}{\gamma \ell} \cosh(\gamma \ell),$$ \hspace{1cm} (2)

where $\gamma \equiv \sqrt{(R_{nw} + i\omega L_{nw})/2C_{nw}}$ denotes the complex propagation constant.

FIG. 3. Coulomb blockade diamonds measured in a single quantum dot. (a) Single-frequency response of the resonator. (b) G_{dc} measurements obtained with standard lock-in techniques. (c) Frequency shift Δf and resonator decay rate k_d extracted from frequency traces. (d) Conductance G_{rf} extracted from resonator data in (c).
Applications of rf conductance are not limited to measuring the impedance of tunnel gates [16,41–43]. As an example, we probe a quantum dot by tuning T2 and T3 into the tunneling regime and modulating the gate voltage V_G, leaving the other gates at 0 V. We show the amplitude response of the lead resonator on resonance in Fig. 3(a) as a function of bias voltage V_B and gate voltage V_G. Even though the amplitude response is not translated into dc conductance here, it shows all the qualitative features present in the control data measured by dc lock-in conductance [Fig. 3(b)], including the excited states of the quantum dot. The amplitude response of Fig. 3(a) is part of a full frequency trace, measured to also allow for a quantitative comparison between the dc results and the resonator response. From these traces, the frequency shift $\Delta \omega_0$ and photon decay $\Delta \kappa_d$ are extracted and shown in Fig. 3(c). We use the model defined by Eqs. (1)–(4) to obtain G_{R1}, shown in Fig. 3(d). This is the same model used for the tunnel junction scans of Fig. 2. Note that we neglect here the finite width occupied by the quantum dot and its internal structure; nevertheless we observe reasonable agreement between G_{R1} and G_{dc}.

IV. RAPID MULTIPLEXED REFLECTOMETRY

We now move on to the capacitively coupled gate resonators and investigate DGS in the DQD regime [17,25,44–53]. To tune the system into a DQD, the gate voltages T4, T5, and T6 are each decreased into the tunneling regime. Accordingly, two quantum dots are formed under the rightmost two top gates in the nanowire [40]. A resonator is coupled to both dots to sense the electronic compressibility of the individual dots [54,55]. In Fig. 4 we show a charge stability diagram (CSD) using V_L and V_R to change the electron occupation of the DQD. We perform pulsed readout with an integration time of 3 μs per point, constituting a total data acquisition time of 30 ms for the entire CSD [15,56]. The data acquisition is frequency-multiplexed for both resonators such that the data in Figs. 4(a) and 4(b) are measured simultaneously [29,57]. This not only reduces the measurement time, but multiplexing also guarantees that the measurements in Figs. 4(a) and 4(b) correspond to the exact same physical regime, regardless of charge jumps and gate hysteresis. To emphasize the correspondence between Figs. 4(a) and 4(b), the same guides to the eye outlining stable charge configurations are drawn in both panels.

Resonators are only sensitive to charge transitions involving the quantum dots to which they are coupled. Therefore, both resonators detect the interdot transitions; however, transitions from the right dot to the right electrode are detected only by the resonator connected to the right dot. Here, the resonator connected to the left dot does not respond to transitions between the left dot and the left electrode. We attribute this to a mismatched left dot-left electrode tunnel coupling. Hence multiplexing also enables spatial correlation of electron tunneling by comparing the DGS signal from each gate’s resonator, effectively “tracking” the electron through the device.

V. SIGNAL-TO-NOISE RATIO

Finally, we investigate the attainable SNR for resolving charge tunneling with DGS by changing detuning from charge degeneracy in the DQD. This procedure serves as a proxy for different qubit states in schemes where readout is based on state-dependent tunneling [25,36,51,58–60]. Because actual qubit systems will have limitations on the readout power [30] we investigate the SNR both at a fixed “low” excitation voltage in the resonator, $V_e = 5 \mu$V, as well as at an optimized excitation voltage, $V_e = 0.16$ mV. These excitation voltages are calculated from the generator power and line attenuation in addition to the resonator frequency and coupling capacitance to the feedline.

We fix the total charge in the system by pinching off gates on either side of the DQD. The only remaining transitions are interdot transitions occurring through a tunnel coupling denoted by t_C. The resonator response as a function of the energy detuning δ from the interdot transition is shown in Fig. 5(a). We determine t_C by fitting the resonator response to an input-output model [18], discussed in the Supplemental Material [34]. Linecuts of the fit results and measurement data are shown in Fig. 5(b).
We define SNR as the change in signal between charge degeneracy and Coulomb blockade divided by the noise. To measure it, we perform a series of pulsed measurements of \(I \) and \(Q \) with a pulse time of \(t_{\text{int}} \) at both Coulomb blockade and charge degeneracy, and show the obtained histograms for an integration time of \(t_{\text{int}} = 1 \mu s \) in Fig. 5(c). These histograms are fit with a Gaussian to extract the separation between the Gaussian peaks \(\Delta \) in the \(IQ \) plane as well as their average standard deviation \(\sigma \) representing the width. The SNR is given by \(\Delta/(2\sigma) \). More details are given in the Supplemental Material [34].

In Fig. 5(d) we plot the dependence of SNR on \(t_{\text{int}} \), which approaches a square-root dependence for longer times. We attribute the discrepancy between attained SNR and a square-root dependence for pulse times shorter than \(1 \mu s \) to the finite bandwidth of the resonators. For these pulse lengths, the resonator cannot reach a steady-state photon population, limiting the signal available for readout.

Next, we compare the observed SNR with expected theoretical limits. The change in signal at the feedline level \(\Delta_f = \Delta/G_{\text{sys}} \)—with \(G_{\text{sys}} \) the gain of the amplification chain in the system—can never exceed the total voltage swing in the feedline \(V_f \). The fit to the data in Fig. 5(a), used to extract \(t_c \), also provides a direct measurement of the ratio \(\Delta_f/V_f = 0.89 \), close to the absolute maximum. In other words, the resonator is coupled near optimally for this tunnel coupling, such that its external coupling rate is nearly equal to the dispersive shift.

The achievable SNR is then set by \(\Delta_f \) together with noise temperature, \(T_N \), and readout time, \(t_{\text{int}} \), as

\[
\text{SNR} = \frac{\Delta_f \sqrt{t_{\text{int}}}}{2\sqrt{Zk_B T_N}} ,
\]

where \(Z = 50 \, \Omega \) is the impedance of the feedline [34,61]. The SNR \(\approx 2.6 \) found in Fig. 5(c) together with the readout time \(t_{\text{int}} = 1 \mu s \) and the deduced approximate voltage swing in the feedline \(V_f = 0.15 \, \mu V \) corresponds to a noise temperature estimate of \(T_N = 1 \, K \). Without the use of a TWPA, we expect that the noise temperature would increase to \(T_N \approx 4 \, K \). To improve the SNR, one can increase either the readout time or readout power in accordance with Eq. (5), as shown in Fig. 5(d). In practice, limits to these two parameters will be determined by the specific qubit implementation. Specifically, by optimizing the excitation voltage and tunnel coupling together, a SNR of 15 is achieved at \(V_e = 0.16 \, mV \).

VI. CONCLUSIONS

We show the characterization of an InAs nanowire multi-QD system using gigahertz-frequency sensing. Probing the finite frequency admittance of the nanowire allows us to infer the low-frequency conductance with good accuracy, even without calibration from dc measurements. Further, we show high-SNR dispersive sensing on timescales near the bandwidth limit set by the \(Q \) factor...
of the resonators. Besides the use for qubit devices, we envision that fast multiplexed readout of quantum devices may be used for more complex sensing schemes. In particular, rapid simultaneous conduction of multiple local measurements could facilitate unique quantum transport experiments because they provide spatial information about tunneling processes. For example, probing two quantum dots at either end of a central charge island, tunneling events into the outer dots may be correlated [62,63]. We conclude that multiplexed SHF resonators may serve as a complete toolset for characterization and readout of semiconductor quantum devices, and present intriguing opportunities for developing high-speed quantum transport measurement schemes. Original data are available via the online data repository [64].

ACKNOWLEDGMENTS

We thank D. Bouman and J.D. Mensingh for nanowire deposition and A. Bargerbos for valuable comments on the manuscript. We further thank N.P. Alberts, O.W.B. Benningshof, R.N. Schouten, M.J. Tiggelman, and R.F.L. Vermeulen for valuable technical assistance. This work is supported by the Netherlands Organization for Scientific Research (NWO) and Microsoft.

