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Study of Variability of Waste Wood
Samples Collected in a Panel Board
Industry
Manuela Mancini and Åsmund Rinnan*

Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark

Waste wood is becoming an appealing alternative material to virgin wood, and the main
drivers are the increased demand for waste wood by the panel industry, the introduction of
renewable energy policies, and the waste framework directive. In fact, the use of waste
wood as a secondary resource is favored over both land�lls and combustion. The best
reuse and cascading use of the material are linked to its characteristics. That is why it is
important to know the chemical composition and the variation in the properties of such a
heterogeneous material. In this article, a sampling study was carried out in a panel board
company located in the northern part of Italy. In order to investigate the heterogeneity of
waste wood, all samples have been analyzed by near-infrared spectroscopy. Nested
analysis of variance and principal component analysis have been used to evaluate the
heterogeneity and the variation in sample properties. The approach gives information
about how to ensure representative measurements and ef�ciently describe the variability of
the material. The results suggest that it is important to have replicates or at least two
subsamples for each lot and then measure each of these with at least 100 scans, in order
to get representative measurements and describe the variability of the material. The
determination of waste wood composition and variability is the focal point for improving the
sorting process and increasing the reuse of waste wood, avoiding expensive land�lls and
risks for human health and the environment.
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INTRODUCTION

Wood is one of the oldest and highly exploited resources in several sectors (e.g., pulp, construction,
and energy), but it is also a limited resource (Rettenmaier et al., 2008). Since the 1970s, wood
consumption has increased continuously, and it is expected to do so in the future (FAO/ECE,
2012). At the end of the life cycle, wood utilization produces waste wood (WW). The term indicates
wood or wood-containing post-consumer and post-use products from different sectors
(packaging, furniture, construction and demolition, and industrial and commercial sectors)
(Edo et al., 2016). A study has estimated that the European Union generates 50 million cubic
meters of wood waste each year (Mantau, 2012), and nowadays, a large amount remains unused
(Hakala, 2012).

The most relevant drivers of the growth of the waste wood trade are related to the increased
demand for waste wood by the panel board industry (Mazzanti and Zoboli, 2013) (Bergeron, 2016).
The European Union is promoting the reuse and recycling of the materials over the land�ll (Waste
Framework Directive, 2008/98/EC, European Parliament 2008) (Commission of the European
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Communities, 2008) and has introduced European renewable
energy policies for mitigating greenhouse gas emissions (Röder
and Thornley, 2018).

Because of the various sources of origin, WW composition
presents high heterogeneity (Huron et al., 2017). In addition, it
should be taken into account that its chemical composition,
quality classes de�nition, and degree of contamination also
change according to the countries and their different laws
(Edo et al., 2016). Consequently, identifying the best-suited
application and possible end-users is related to the assessment
of the WW composition and quality characteristics.

Some studies have already examined the characterization of
waste wood materials. Edo et al. have investigated the waste wood
variability across time (Edo et al., 2016). They collected �ve
hundred samples from an industrial heating plant during nine
years and performed lab analysis to assess the material
heterogeneity. The concentrations of the examined
contaminants varied according to the sampling method,
demonstrating the variability of the material. In another study,
Moreno and Font have carried out a complete characterization of
furniture waste wood and studied the differences in
thermochemical conversion by performing pyrolysis tests
(Moreno and Font, 2015). Huron et al. have performed an
extensive characterization of various treated waste wood to
evaluate their heterogeneity and assessment of suitability with
combustion processes. Different samples were collected,
including waste wood mixtures, speci�c waste wood classes,
and untreated wood for comparison. Some parameters, such
as heating value and composition in C, H, and O, did not
vary signi�cantly compared to those of untreated wood, while
minor elements showed differences in relation to the chemical
treatments of waste wood (Huron et al., 2017). Faraca et al. have
investigated the quality of wood waste and pointed out the
importance of physical and chemical impurities in waste wood
to improve recyclability (Faraca et al., 2019). In some other
studies, waste wood has been extensively characterized for
properties relevant to combustion, and the suitability of waste
wood as feedstock in combustion units has also been tested
(Tatàno et al., 2009) (Gehrmann et al., 2020). It was
demonstrated that waste wood contained higher ash content
and metals than natural virgin wood and that the chemical
and physical characteristics of the different types of waste
wood play a role in choosing the best use of the material as a
feedstock for energy recovery. To the best of our knowledge, there
are no studies examining the variability of waste wood samples
using fast analytical technologies, such as Near-Infrared
Spectroscopy (NIRS). In fact, Vrancken et al. have listed and
reviewed different studies where sensors and modern sorting
technologies were developed for recycling plants to improve/
optimize the material sorting and/or measure critical waste
characteristics (Vrancken et al., 2017). The optical sensors
could be used to obtain real-time information about waste
characteristics, which helps in selecting the best waste
processes, proving to be a useful tool for stakeholders.

As it can be seen by the references cited above regarding the
heterogeneity of WW, the assessment of waste wood variability is
of utter importance for improving the waste management in

terms of sorting and related best reuse of the material and
avoiding health and environmental issues at the end of the life
cycle of wood utilization. Consequently, in the current study,
WW samples have been collected during a sampling in a panel
board industry located in the northern part of Italy. All of the
samples have been analyzed using NIRS following strict sampling
protocols. Our aim is to show how the variability of WW can be
characterized, both within and between each sample.
Furthermore, we will show how this information can directly
be implemented and used for the increased reuse of WW.
Throughout the manuscript, we have decided to include
information about the bound water content. This is a very
important quality attribute for waste wood and is one of the
most important parameters in�uencing the NIR analysis.

To address this issue, the following data analyses have been
carried out: 1) nested analysis of variance for investigating the
variability at each sampling level; 2) Principal Component
Analysis (PCA) as a rapid tool for the assessment of the
material variability; 3) repeated nested analysis of variance
considering a subset of the original data. The �rst two give a
good overview of the variability in and between the lots, while the
latter is a good procedure for �nding the most suitable sampling
procedure. Obtaining information about the number of samples
and replicates to be performed during sampling is fundamental to
guarantee an accurate and successful application of a NIR sensor
classi�cation tool, especially when dealing with heterogeneous
material. In fact, ef�cient quality control with a high degree of
accuracy is imperative for its use in the industry. In order to meet
these requirements, it is essential to have detailed information on
how to perform the sampling procedure in practice, out in
the �eld.

MATERIALS AND METHODS

Collection of Waste Wood Samples
Waste wood samples were collected in a large panel board
company located in the northern part of Italy (Lombardy
region) over two days of sampling (February 18–19, 2020).
The material was collected in the earliest phases of the
production stream, precisely after the �rst step of cleaning
(removal of stone, iron, and other heavy materials by washing)
and grinding (reducing the particle size of the material to
around 5 cm).

In order to get representative samples, a sampling plan has
been de�ned based on the EN-15442:2011 standard (CEN, 2011).
The sampling was carried out from a static lot. The material was
taken every hour from the production stream in an external
unloading tank for a total of 16 lots. As the incoming material is of
variable quality, it is also assumed that the quality and variability
within the 16 lots are different. For each lot, four representative
samples were randomly taken from different locations in the lot
(Mancini and Rinnan, 2021). The samples were collected using a
sampling scoop for a total volume of 10 L; afterward, they were
sent to the lab for the next lab and near-infrared analyses. In
short, a total of 64 samples (16 lots x 4 samples from each lot)
were obtained.
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The hierarchical sampling procedure from lot level down the
individual NIR scans is presented in Figure 1A.

Sample Preparation
The samples have been prepared for the successive lab analysis
using the technical standard UNI 15443. The sample preparation
consists of a combination of sample division and particle size
reduction, carefully avoiding loss in representativeness and
sample composition during each step of the preparation.

Firstly, the sample has been stabilized by drying for at
least 24 h not exceeding 40°C. The dried samples have been
divided using a quartering process. The quartering process
means that the sample is piled, divided into four, and the two
opposite fractions are combined. The process of piling,
dividing, and combining is repeated until the wanted
sample size is achieved. Subsequently, the sample particle
size has been reduced to below 5 mm using a cutting mill
(mod. SM 2000; RETSCH). This material has been used for the
near-infrared analysis. Finally, part of the material was further
reduced to under 1 mm for the bound water content analysis.
Before the NIR and lab analyses, the samples have been stored
in hermetically closed plastic bags in a room with controlled
temperature and humidity.

Bound Water Content
The analytical methodology adopted for the determination of
bound water content (BWC) follows the standard ISO 18122:
2015. The parameter has been determined using a thermo-
gravimetric analyzer (mod. 701 Leco). In detail, the sample
has been air-dried to a controlled temperature (105 ± 10°C)
using a muf�e furnace and has been weighted until constant mass
is achieved. The loss in mass has been used to calculate BWC.

Each BWC value was estimated twice per sample, and the average
of these estimates was used in the subsequent data analysis.

The BWC parameter has been chosen because it is easy to
determine and it is important for investigating the in�uence of
moisture in the variability of waste wood material.

Near-Infrared Data
All waste wood samples were analyzed using a Quant FT-NIR
spectrophotometer (Q-Interline A/S, Tølløse, Denmark)
provided with the patented spiral sampler (Spiral Sampler,
Q-Interline A/S, Tølløse, Denmark). The spiral sampler scans
a total of 375 cm2 surface, improving the representativeness of
heterogeneous samples.

The instrument is equipped with a quartz halogen lamp as a
light source and an InGaAs detector. The samples were acquired
in diffuse re�ectance mode and were kept in rotation during the
acquisition by means of the spiral sampler. Near-infrared spectra
were recorded in the range from 14,885 to 3,700 cm�1 (equals to
670–2,700 nm) with a maximum of 210 scans per sample/tube
and a spectral resolution of 8 cm�1. Instead of averaging all scans,
each scan was stored individually, meaning that we get a good
estimate of the heterogeneous nature of each sample. It is
important to note that the start of each measurement had to
be performed manually for each sample. Thus, some of the scans
at the beginning of one series had air/plastic lids instead of the
wood sample, which needed to be removed before data analysis.
Random effects associated with the instrument or environment
were removed by acquiring a blank spectrum, by measuring
Spectralon, at the beginning of the analysis session. (However,
we later realized that we should have measured this Spectralon
sample several times during the measurement session, despite the
whole process only taking approximately 6 h; see Nested Analysis

FIGURE 1 | A) Schematic representation of the hierarchical sampling procedure. Please note that there “only” are 126 samples at level 3 due to some unfortunate
problems during the NIR analysis. (B) Schematic representation of the data analysis procedure (n is the number of random scans selected). Level A, each subsample and
replicate are represented equally; level B, each subsample is represented equally; level C, groups of two subsamples are represented equally; level D, groups of three
subsamples are represented equally; level E scans are selected freely among all subsamples and replicates.
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of Variance.) Spectra were collected at room temperature and in
duplicate for each sample in random order. The resulting dataset
consists of 26,192 observations at 1,091 wavenumbers, as two
tubes were only measured once due to an unfortunate computer
error1 only realized after arriving back at the University.
Consequently, level 3 of the replicate consists of 126 objects
instead of 128 (see Figure 1A). The measurements were
completed on the same day, taking a total of approximately 6 h.

Nested Analysis of Variance
Considering the multi-stage approach of the sampling procedure,
a nested analysis of variance (ANOVA) was computed in order to
investigate the statistical differences between 1) the different lots
(level 1); 2) the subsamples within each lot (level 2); 3) the two
replicates within each subsample (level 3); 4) the scans within
each subsample replicate (level 4).

For each sampling level, the sum of squares (SSQ) and the
average of the sum of squares (MSQ) were computed (Sahai and
Ageel, 2000). In detail, SSQ was computed as follows:

SSQlvl � �
Nlvl

n�1
�xn,lvl � xlvl�1�

2.

Moreover, MSQ was computed as follows:

MSQlvl � SSQlvl�(Nlvl � Nlvl�1),

where lvl is the current level, xn,lvl corresponds to the
observations/average at the current level, and Nlvl is the
number of unique measurement points at each level (e.g.,
number of lots for the uppermost level). The term (Nlvl–Nlvl-1)
thus corresponds to the degrees of freedom within each level,
where lvl-1 refers to the previous sampling level. In this way, both
SSQ and MSQ are calculated to represent the individual
contributions from each level of the sampling. Table 1
summarizes the computation of the degrees of freedom at
each level. The MSQ was calculated for each wavenumber
independently in order to investigate which wavenumbers are
causing the variability at each level.

Before any variance analysis, the NIR spectra have been
preprocessed by Multiplicative Scatter Correction (MSC)
(Martens et al., 1983) in order to reduce the light scattering
effects (Rinnan et al., 2009).

Deciding the Best Sampling Procedure
In order to �nd the best sampling procedure to describe the
variability of waste wood material, the nested analysis of
variance was computed again considering the setup
reported in Table 2. Based on the total number of scans for
each of the tested levels, the nested analysis of variance was
computed again, taking n random selected scans, and the
procedure was repeated one hundred times for each of the
new levels.

This is important, as how to perform the sampling procedure
in the real world is of utter importance for the usefulness of
applying advanced sensors to the system of WW reuse. Here, we
investigated how the variability of the lot is described by
increasing the number of subsamples and/or scans. We have
decided to perform this at different levels of constraints,
ef�ciently showing the effect of each of these constraints on
the subsequent sampling conclusion. In detail, at level A, each
subsample and replicate are represented with the same number
of scans; at level B, each subsample is represented with the same
number of scans; at level C, two subsamples are grouped
together; at level D, three subsamples are grouped, while
level E picks scans at random across all subsamples and
replicates. Differences and similarities between these different
approaches will aid in �nding the optimal sampling procedure,
with regard to both the number of subsamples and replicates
and number of scans necessary to cover the variability. A
schematic representation of the data analysis procedure is
displayed in Figure 1B.

Multivariate Data Analysis
Principal Component Analysis (PCA) (Wold et al., 1987) has
been computed using two different datasets: the mean-centered
MSQ values of the nested analysis of variance and the
preprocessed NIR absorbance values of the waste wood samples.

The former was performed in order to investigate similarities
in the variability among the lots at the different sampling levels.
We are well aware that this is an untraditional use of PCA, but it
gives a nice and quick overview of how the variability varies
between the lots. The latter was performed in order to explore
the variability of waste wood and search for differences/
groupings among the lots at each sampling level. In this
latter case, the computation was carried out on the MSC
pretreated and mean-centered data. In order to search for
differences among the lots and investigate the variability
within each lot, a con�dence ellipse is drawn around each
lot. This ellipse is calculated based on a local PCA on the
scores, indicating the direction and extent of variability for
each lot individually. Each ellipse was calculated using the mean
score values as the center, and the standard error of each
variability direction as the radius of the ellipse. The loading
plot of the two �rst PCs was investigated to identify the
compounds associated with the variability of the waste wood
samples and the variability within the lots.

Both the multivariate data analysis and the nested analysis of
variance have been computed using Matlab software (ver.
MATLAB R2019b, The MathWorks) with in-house functions
based on existing algorithms.

TABLE 1 | The degree of freedom computation for the nested ANOVA. N4 is the
total number of scans.

Levels Degrees
of freedom (D)

Computed
degrees of freedom

Lot D1 � N1�N0 D1 � 16�1
Subsample D2 � N2�N1 D2 � 64�16
Replicate D3 � N3�N2 D3 � 126�64
Scan D4 � N4�N3 D4 � 26,192�126
Total DTot � N4�N0 DTot � 26,192�1

1For two sample replicates, the computer froze without saving the collected data.
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RESULTS AND DISCUSSION

Spectra
A total of 55 spectra was detected as either being due to the plastic
lid or air, and was deleted before any further data analysis.

Furthermore, wavenumbers lower than 3,880 cm�1 and greater
than 9,000 cm�1 were removed as the data were either deemed
noisy or containing very limited information. The new dataset thus
consists of 26,192 scans measured at 664 wavenumbers.
Figure 2 illustrates the plot of all the spectra of waste
wood samples and their mean spectrum highlighted with a
solid black line. Because of the light scattering, all the spectra
have been preprocessed with MSC before any further data
analysis. In addition, in order to investigate the differences
between waste wood and virgin wood, the mean spectrum of
virgin wood samples was added to Figure 2 as a dotted black
line. The virgin wood samples have been acquired during a
previous study (Toscano et al., 2017). The most relevant
wavenumbers in the two spectra are marked with vertical
dotted lines and reported in Table 3. As it can be noted, the
same spectral wavenumbers selected for the mean spectrum
of waste wood samples can also be found in the mean
spectrum of virgin wood samples, demonstrating similar
chemical composition. By inspecting the waste wood
spectra, we can clearly see that some spectral areas include
observations with deviating trends: 6,070–5,640 cm�1,
4,730–4,560 cm�1, and 4,370–4,160 cm�1, strongly
indicating that it will be possible later to classify the
samples between virgin wood and treated wood. These
spectral areas are probably associated with glue
compounds related to the composite wood materials or
plastic materials contained in the waste wood.

As reported by Lian et al., the band at 5,911 cm�1 corresponds
to the characteristic absorption peak of C-H in methyl glycol,

TABLE 2 | Setup for the computation of the nested analysis of variance for deciding the best sampling procedure.

Setup Total n. of scans n. of randomly
selected scans (n)

Level A A single subsample with replicates as two different subsamples 210 25, 50, 75, 100, 125, 150
Level B A single subsamples with replicates together 420 25, 50, 75, 100, 150, 200, 250, 300
Level C Two subsamples 840 25, 50, 100, 150, 200, 300, 400, 600
Level D Three subsamples 1,260 25, 50, 100, 150, 250, 400, 600, 900
Level E All 4 subsamples 1,680 25, 50, 100, 150, 250, 500, 750, 1,000

FIGURE 2 | All the spectra of waste wood samples with the mean
spectrum of all the waste wood samples highlighted with a solid black line, and
the mean spectrum of virgin wood samples highlighted with a dotted black
line. Vertical dotted lines refer to the most relevant wavenumbers and are
also reported in Table 3. The grey areas highlight the spectral areas mostly
associated with glue compounds.

TABLE 3 | Near-infrared absorption band assignment associated with the most important wavenumbers (str.: stretching; def.: deformation; OT: overtone; L: lignin; H:
hemicellulose; C: cellulose).

Measured wavenumber (cm�1) Bibliography
wavenumber (cm�1)

Compound Assignment

6,797 6,790 C 1st OT O-H str. Schwanninger et al. (2011)
6,800 H 1st OT O-H str. Schwanninger et al. (2011)

5,189 5,220–5,150 Water O-H asymmetric str. + O-H def. Of H2O Schwanninger et al. (2011)
4,760 4,762 C O-H and C-H def. + O-H str. Sandak et al. (2010)

4,780–4,760 C O-H and C-H def. + O-H str. Schwanninger et al. (2011)
4,890–4,620 C O-H str. + C-H def. Schwanninger et al. (2011)

4,397 4,392 C O-H str. + C-C str. and/or C-H str. + C-H def. Schwanninger et al. (2011)
4,281 4,288 H C-H str. + C-H def. Schwanninger et al. (2011)

4,280 C C-H str. + C-H def. Schwanninger et al. (2011)
4,280 L C-H str. + C-H2 def. Schwanninger et al. (2011)
4,282 C C-H str. + C-H2 def. combination band (and 2nd OT of C-H2 str.) Hein et al. (2011)

4,004 4,014 L C-H str. + C-C str. Schwanninger et al. (2011)
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while the peak at 5,996 cm�1 corresponds to C-H on the benzene
ring (Lian et al., 2020). In general, the spectral range between
6,700 and 6,330 cm�1 corresponds to the characteristic
absorption of methyl glycol, indicating that it is related to
glue/plastic compounds. Furthermore, these results were
con�rmed in a study by Workman and Weyer, where the
assigned peaks at 5,847 and 5,975 cm�1 are attributed to C-H
from methyl of glue, while the band at 5,624 cm�1 was assigned as
the second overtone of CH methylene of glue (Workman and
Weyer, 2007). The band at 5,805 cm�1 was assigned to the 1st
overtone of C–H stretching of methyl and methylene structures of
glue (Tomlinson et al., 2006). Regarding the second spectral area,
the absorption band at 4,440 cm�1 is related to the CH2
combination of methylol group (Dessipri et al., 2003). In
another study, Hein et al. have investigated the physical and
mechanical properties of agro-based particleboards by NIR
spectroscopy and assigned the peak at 4,587 cm�1 to
symmetric NH stretching and NH2 rocking and/or 2nd
overtone of amide I and amide III (Hein et al., 2011).
Moreover, the relationship between this spectral region and
wood composite materials is con�rmed by the peak at
4,617 cm�1, associated with NH2 species from urea (Dessipri
et al., 2003), and 4,550 cm�1 assigned to NH symmetrical
stretching and NH bending combination bands (Henriques
et al., 2012). Lastly, the region from 4,370 to 4,160 cm�1 is
assigned to the combination band of NH2 and CH bonds.

The knowledge of the chemical composition of the waste wood
and the inspection of the spectra are important steps for de�ning
the waste wood quality and, accordingly, the best reuse of the
material. The difference between the mean spectra of virgin wood
and waste wood indicates that some absorption bands of the two
materials are not exactly the same, suggesting that a classi�cation
model for separating the material according to its best reuse
would perform well.

Bound Water Content Analysis
A descriptive statistic of the BWC has been carried out. The 64
waste wood samples analyzed have a mean � 8.0%, standard
deviation � 0.7%, max value � 11.1%, and min value � 7.0%.
Thus, the parameter has a range of 4.1%. An outlier sample in
BWC values has been detected using Tukey’s test. The test
identi�es the possible outliers of the samples falling outside the
Q1 - 1.5 • IQR (interquartile range) or the Q3 + 1.5 • IQR limits;
Q1 and Q3 are �rst and third quartiles, respectively. For this
study, limits that are more conservative have been used: Q1 - 3.0
• IQR or Q3 + 3.0 • IQR. The lot with the highest variability in
BWC was lot 12 (range of 2.92%), and the one with the lowest
was lot 15 (range of 0.24%). The average lot variability in BWC
was 0.79%. The reported results are useful for the discussion of
the successive outcomes (see Nested Analysis of Variance
and PCA).

A nested analysis of variance was also computed. The MSQ
value is higher at lot level (MSQ � 3.20), decreases considerably at
subsample level (MSQ � 0.39), and drops even further at the
replicate level (MSQ � 7.11 e-4). The results con�rm that by
increasing the number of samples, the variability in their moisture
content also decreases.

Nested Analysis of Variance
The nested ANOVA was computed on the dataset consisting of
26,192 observations and 664 wavenumbers. The analysis of
variance has been computed on the spectra preprocessed with
MSC on all the sampling levels. Figure 3 (A, B, and C) shows the
plot of the MSQ values plotted against the wavenumbers at the
different sampling levels. As expected, the variability is higher at
the lot level (Figure 3A) and lowest at the scan level (Figure 3C).
Unexpectedly, the variability at the subsample level is lower than
at the replicate level (Figure 3B) and will therefore be investigated
further. The subsample and lot lines have a similar trend
indicating that the variability is affected by the same
wavenumbers. To better investigate this, Figure 3D shows the
normalized MSQ values at the lot and subsample levels. The two
lines differ for some wavenumbers. In detail, the lot level has two
higher and sharper peaks at 5,609 cm�1 and 4,791 cm�1. The
former is assigned to 1st overtone of CH2 stretching of cellulose,
while the latter is related to OH stretching + OH and CH
deformation of cellulose and hemicellulose (Schwanninger
et al., 2011). Both lines have a high absorption band at
5,177 cm�1 (O-H stretching and O-H deformation of H2O)
and 6,943 cm�1 (�rst overtone O-H stretching of water),
indicating that the bound water content plays a role in the
variability of the waste wood material, as also con�rmed by
the results reported in Bound Water Content. The subsample
level has two noisy areas: between 7,400 and 7,050 cm�1 and
between 5,500 and 5,200 cm�1. Finally, we can observe small
“vibrations” in the areas 6,070–5,640 cm�1 and 4,370–4,160 cm�1,
con�rming our previous conclusions (see Figure 2).

Figure 4 shows the plot of the MSQ values for each of the 16
lots at the subsample and replicate levels, respectively. Basically,
the nested ANOVA has been computed again for each of the 16
lots individually, and the MSQ values have been estimated at both
the subsample and replicate levels of sampling. This gives an
indication about the variability among the different lots. In
Figure 4A, it can be noted that the lots with higher variability
are lots 12, 14, and 11. In detail, lot 12 has a higher variability at
wavenumber 5146 cm�1, while MSQ values of lots 14 and 11 are
higher on all the other wavenumbers. The band at 5,146 cm�1 is
assigned to O-H asymmetric stretching and O-H deformation of
H2O (Schwanninger et al., 2011), indicating that the higher
variability of the lot is probably related to a higher BWC in
some samples. In fact, lot 12 contains the sample with the highest
BWC value (11.1%) (see Bound Water Content).

Figure 4B reports the variability between the two replicates of
the subsamples within each lot. Lots 16, 10, and 7 (in descending
order) have higher MSQ values. The MSQ values of lot 11 are
quite different, resulting in a particular shape/trend of the
variance line, more similar to a spectrum. All the other lots
show higher variability in the wavenumbers between 7,400 and
7,050 cm�1 and between 5,500 and 5,200 cm�1. The two spectral
regions are quite noisy and the peaks do not probably contain
relevant information. However, they could be related to the
detector drift since, unfortunately, only one reference
spectrum at the very beginning of the analysis was acquired
(see Bound Water Content). The differences in the variability
among the lots could be explained by calculating the distance in
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the PCA score plot (see PCA section) between the two replicates
at the subsample level. Figure 4C shows the lots colored
according to the replicates distance and we can conclude that
the longer the distance between the two replicates in the PCA
score plot, the higher the MSQ values and, consequently, the
variability at the replicate level.

PCA
In order to get a quick overview of how the variability changes
between the different lots, a PCA was carried out using the MSQ
values of the nested analysis of variance, computed individually
for each lot, at both subsample and replicate levels of sampling.
The score plot con�rms the results of the nested ANOVA, but
with increased clarity. At the subsample level (Figure 5A), the lots
with the most deviating scores are 11, 12, and 14, while at the
replicate level (Figure 5B), lots 7, 10, 11, and 16 deviate the most
compared to the remaining lots.

The loadings were investigated to understand what variables
are responsible for the separation of the lots in the PCA scores
plots. At the subsample level (Figure 5C), both the �rst and

second PCA loadings show two main bands at around 6,950 cm�1

and 5,150 cm�1. Both bands are related to the overtone of O-H
stretching bonds (Schwanninger et al., 2011), con�rming the
results of the nested analysis of variance and what already was
stated during the discussion of Figure 4. At the replicate level
(Figure 5D), the �rst loading shows the same noisy areas
(i.e., between 7,400 and 7,050 cm�1 and between 5,500 and
5,200 cm�1), as shown in Figure 4. The second loading
contains information related to the variability of lot 11. It is
important to note that the PCA analysis on MSQ values
con�rmed the outcomes of the nested analysis of variance and
is an ef�cient alternative, giving a nice and quick overview of how
the variability varies among the different lots.

To explain why some replicates/subsamples present a higher
variability than others, the average spectra at the subsample level,
after preprocessing with MSC, have been taken into account. A
PCA was computed based on these 16 x 8 spectra, and as it can be
noted in the PCA score plot (Figure 6A), the samples seem to be
spread across the whole score space without any clear groupings
between them. However, by closer inspection, there is some trend

FIGURE 3 | The MSQ values of the nested ANOVA: (A) all sampling levels, (B) only subsample and replicate levels, (C) only scan level, and (D) the normalized MSQ
values at the lot and subsample sampling levels (the grey areas highlight the spectral areas mostly associated with glue compounds).
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in the distribution of the samples according to the lot; i.e., the
samples with higher BWC are located in the bottom right part of
the score plot (i.e., lots 4 and 5 and some samples of lot 12).

In order to get a clearer picture of the differences among the
lots, con�dence ellipses were computed using the standard error

for each lot. The score plot of the two �rst PCs clearly shows some
groupings among the lots (Figure 6B, please note that this is the
same plot as Figure 6A, but now with con�dence ellipses instead
of each individual subsample being plotted). Lot 15 is clearly
different from the others (lower range in BWC). Lots 7, 13, 14,

FIGURE 4 | The MSQ values of the nested analysis of variance computed within each lot (A) at subsample level and (B) replicate sampling level. MSQ values at the
replicate sampling level are also colored according to the distance in the PCA score plot between the two replicates of a sample (C).

FIGURE 5 | PCA score plot of MSQ values of the nested analysis of variance at (A) subsample level and (B) replicate level. PCA loading plot of MSQ values of the
analysis of variance (C) at subsample level and (D) replicate level.
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and 16 are located at the bottom left part of the PCA score plot.
All the other lots are close to each other and located in the central
part of the score plot, indicating that their composition/variability

is very similar. The size of the ellipses con�rms that the lots with
the highest variability are lots 8, 11, and 12, and 14. Lots 4 and 9
have the lowest variability, con�rming once again the results of
the nested ANOVA.

Deciding the Best Sampling Procedure
For the practical implementation of a NIR sensor classi�cation
tool in the WW industry, it is imperative to know how to actually
perform the NIR measurements in order to ensure representative
and reliable measurements of the heterogeneous WW material. In
this section, we will give strong indications in this regard by
describing the variability of waste wood material with a nested
ANOVA with resampling. The analysis was performed on all the
16 lots and all showed similar results. However, in order to
simplify the discussions, we will focus our analysis on one lot
only. We have decided to report lot 12 as an example because our
earlier results indicated that this is the one with the highest
variability. Figure 7 shows the variability in the MSQ values of
nested ANOVA at each of the aforementioned levels (see
Deciding the Best Sampling Procedure). As noted, the variation
decreases with increasing number of scans, as expected. This
trend is the same in all �ve levels.

These results provide good indications regarding the optimal
sampling procedure to carry out in terms of the number of
subsamples and scans to be performed to describe the
variability in the waste wood materials. In fact, the variability
in the MSQ values reached almost constant values at 125 scans for

FIGURE 6 | PCA on the average spectra at the subsample level. Each lot has been colored in shades of blue, red, and green. The color scheme is based on the
position of the lots in the score space. (A) The �rst two scores colored according to the lot number and (B) PCA score plot of the waste wood sample with standard error
ellipses for each lot.

FIGURE 7 | Variability in the MSQ values of nested analysis of variance
changing the number of randomly selected scans and the number of subsamples.
The dotted horizontal black line represents the estimated overall variability of lot 12.
Level A, each subsample and replicate are represented equally; level B, each
subsample is represented equally; level C, groups of two subsamples are
represented equally; level D, groups of three subsamples are represented equally;
level E scans are selected freely among all subsamples and replicates. For a
detailed description of the different levels, please refer to Figure 1B.
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level A; 250 scans for level B; 400 scans for level C; 600 scans for
level D; around 500 for level E. It means that the same
variability can be obtained by increasing the number of
subsamples and decreasing the number of scans or by
decreasing the number of subsamples and increasing the
number of scans.

As seen from Figure 7, levels A and B give lower variability
than the remaining sampling procedures, clearly indicating
that it is insuf�cient to investigate one subsample only. This
is con�rmed by the MSQ values located slightly below the
horizontal black line, which is the estimated overall
variability of lot 12 and is deemed to be the true estimated
variability of the lot. The three other sampling schemes are all
very similar, giving indications that taking out two
subsamples, splitting them into two replicates, and then
measuring each of them with at least 100 scans seem to
provide reliable and representative variability estimates of
the lots (around 10 m3 of fairly heterogeneous waste wood
material).

CONCLUSION

Waste wood samples were collected in a panel board industry
located in the northern part of Italy. All samples were
analyzed using FT-NIR provided with a spiral sampler to
investigate their variability and heterogeneity. A nested
analysis of variance was computed to investigate the
statistical differences for each level of the sampling
procedure, i.e., lot, subsample, replicate, and scan levels.
According to the results, waste wood has the highest
variability at the lot level and lowest at the scan level.

PCA analysis on the MSQ values of the nested analysis of
variance con�rms the results of the nested ANOVA with
increased clarity and shows how some lots deviate more from
the others. The score plot clearly shows groupings among the lots
and the loading plot displays that the main bands responsible for
such separation are related to the overtone of O-H stretching
bonds, which we also were able to con�rm through reference
analysis.

The knowledge of waste wood variability and composition is
a key point for enhancing the sorting and related best reuse of
the material with related positive effects in terms of economic,
health, and environmental issues. NIRS proves to be a useful
technique for rapidly obtaining this information. The de�nition
of the most appropriate sampling procedure is essential for
improving waste wood management and moving NIRS into real
industrial applications. In fact, having a number of samples,
replicates, and scans able to describe the variability of the
material translates into reliable analytical results and
accurate classi�cation models for sorting the material
based on the best reuse, especially when dealing with
heterogeneous material. This study has proved that by
taking at least two subsamples, splitting them into two
replicates, and measuring each of them with at least 100

NIR scans, it is possible to describe the variability of around
10 m3 of waste wood material. In future studies, this result
can be used as the starting point for developing classi�cation
models, essential for more accurate and sustainable waste
wood management.

These results have a large potential impact on the waste
management sector, representing the �rst steps for
moving NIR sensors to industrial waste management
applications. In fact, the methodology used in this study
can be applied not only to any other NIR
spectrophotometers but also to other waste sources.
When working with waste in general, the big challenge is
the heterogeneity of the material. Thus, having a protocol
that ensures ef�cient and reliable sampling will lead to the
success of the subsequent classi�cation of the waste
according to waste categories, which will improve the
sorting and, as a consequence, the reuse of the material.
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