Mammuthus sp. (Early and Middle Pleistocene Mammoths)

Pecnerová, Patricía; Díez-del-Molino, David; van der Valk, Tom; Dehasque, Marianne; Götherström, Anders; Dalén, Love

Published in: Trends in Genetics

DOI: 10.1016/j.tig.2021.04.006

Publication date: 2021

Document version: Publisher's PDF, also known as Version of record

Document license: CC BY

Mammuthus sp. (Early and Middle Pleistocene Mammoths)

Patrícia Pečnerová1,2,3, David Díez-del-Molino1,2,4, Tom van der Valk1,4,5, Marianne Dehasque1,2,4, Anders Götherström4,6 and Love Dalén1,2,4,*

1Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
2Department of Zoology, Stockholm University, Stockholm, Sweden
3Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
4Centre for Palaeogenetics, Stockholm, Sweden
5Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
6Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden

Lessons Learned

Mammoths, Mammuthus sp., are iconic megafauna species that came to symbolize the Ice Age. However, the typical Late Pleistocene forms, which we know as the woolly and Columbian mammoths, were only the youngest offshoots on the mammoth evolutionary tree. The time window during which mammoths acquired traits that made them adapted to the cold environment has now become clearer thanks to genomic data from three Early and Middle Pleistocene mammoths. Two of these, identified as steppe-mammoths and called Krestovka and Adycha, lived >1 million years ago (Mya) and represent two independent genetic lineages. The third mammoth, Chukochya, is a 650,000-year-old early representative of the woolly mammoth, which descended from the Adycha lineage. Analyses of gene variants, previously identified as underlying cold adaptation in the woolly mammoth, showed that more than 80% of these were already present in the Adycha genome, that is, before woolly mammoths evolved. This includes genes potentially involved in thermal sensation, hair growth, and circadian rhythms.

Fun fact about the Genome

One of the key genes in the evolution of the mammoth lineage is TRPV3, which encodes a temperature-sensitive transient receptor channel. The TRPV3 gene was essential for cold adaptation due to its pleiotropic action, affecting at the same time thermosensation, hair growth, and build-up of fat deposits. Previous studies showed that mice...
with TRPV3 knockout prefer colder temperatures. Interestingly, of the four substitutions observed in the TRPV3 gene in the Late Pleistocene woolly mammoths, we observed only two in the early woolly mammoth (Chukochya) and its ancestor (Adycha).

Declaration of Interests
There are no interests to declare.

Literature

Figure 2. A visual interpretation of the Adycha steppe-like mammoth (© Beth Zaiken) and a list of gene functions that were previously identified as woolly mammoth adaptations to the cold Pleistocene conditions, that were found to be present already in the Adycha and Chukochya mammoth genomes.