Elliptic Flow of Electrons from Beauty-Hadron Decays in Pb-Pb Collisions at root s(NN)=5.02 TeV

Acharya, S.; Adamova, D.; Adler, A.; Adolfsson, J; Aggarwal, MM.; Rinella, G.A.; Agnello, Maria; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Bearden, Ian; bsm989, bsm989; Gaardhøje, Jens Jørgen; rtc312, rtc312; Nielsen, Børge Svane; Moravcova, Zuzana; Thoresen, Freja; Pacik, Vojtech; Schukraft, Jürgen; Vislavicius, Vytautas; Zhou, You; Alice Collaboration

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.126.162001

Publication date:
2021

Document version:
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Elliptic Flow of Electrons from Beauty-Hadron Decays in Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

S. Acharya et al.*
(Alice Collaboration)

(Received 23 June 2020; revised 27 January 2021; accepted 9 March 2021; published 19 April 2021)

The elliptic flow of electrons from beauty hadron decays at midrapidity ($|y| < 0.8$) is measured in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE detector at the LHC. The azimuthal distribution of the particles produced in the collisions can be parametrized with a Fourier expansion, in which the second harmonic coefficient represents the elliptic flow, v_2. The v_2 coefficient of electrons from beauty hadron decays is measured for the first time in the transverse momentum (p_T) range $1.3–6$ GeV/c in the centrality class $30\%–50\%$. The measurement of electrons from beauty-hadron decays exploits their larger mean proper decay length $\tau \approx 500$ μm compared to that of charm hadrons and most of the other background sources. The v_2 of electrons from beauty hadron decays is found to be positive with a significance of 3.75 σ. The results provide insights into the degree of thermalization of beauty quarks in the medium. A model assuming full thermalization of beauty quarks is strongly disfavored by the measurement at high p_T, but is in agreement with the results at low p_T. Transport models including substantial interactions of beauty quarks with an expanding strongly interacting medium describe the measurement within uncertainties.

DOI: 10.1103/PhysRevLett.126.162001

The main goal of the ALICE experiment [1] is the study of strongly interacting matter at the high energy density and temperature reached in ultrarelativistic heavy-ion collisions at the Large Hadron Collider (LHC). In these collisions, the formation of a deconfined state of quarks and gluons, the quark-gluon plasma (QGP), is predicted by quantum chromodynamic (QCD) calculations on the lattice [2–6]. Because of their large masses, heavy quarks [charm (c) and beauty (b)] are mainly produced in hard scattering processes at the initial stage of the collision, before the formation of the QGP. Subsequently, they interact with the QGP, losing energy via radiative [7,8] and collisional scattering [9–11] processes. Heavy-flavor hadrons and their decay products are thus effective probes to study the properties of the medium created in heavy-ion collisions. In non-central collisions, interactions among the medium constituents translate the initial spatial anisotropy in the coordinate space of nucleons participating in the collision into a momentum space anisotropy of produced particles in the final state [12]. The momentum anisotropies are characterized by the flow harmonic coefficients v_n from the Fourier expansion of the particle azimuthal distribution with respect to the azimuthal angle of the symmetry plane for the nth harmonic. The dominant flow harmonic is the elliptic flow v_2 [13]. At low transverse momentum, $p_T < 3$ GeV/c, the measurements of positive v_2 are considered a manifestation of the collective hydrodynamical expansion of the medium [14–17]. At high p_T ($p_T > 3$ GeV/c), v_2 measurements give insight into the path-length dependence of the in-medium parton energy loss [18–20].

The measurements of D meson and J/ψ v_2 in heavy-ion collisions, performed at RHIC in Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV [21] and at the LHC in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV [22–28], suggest that the interaction of charm quarks with the medium is sufficiently strong to make them thermalize and thereby take part in the collective flow of the medium [29–35]. Additional mechanisms, like coalescence of charm quarks with the lighter quarks produced in the medium, can contribute to the flow of heavy-flavor particles [36]. Models consistent with the flow measurements of charm quarks have charm quark thermalization times of the order of the system lifetime (≈ 10 fm/c) [29]. This indicates that low-p_T charm quarks may be fully thermalized in the QGP due to their interactions with the medium. A nonthermalized probe is required to assess the interaction with the medium more thoroughly, with the heavier beauty quarks being a natural candidate. It has been predicted by transport models that beauty quarks may experience sufficient scattering in the medium to produce positive v_2 values [34,37,38].

Measurements of the anisotropic flow of leptons from combined charm and beauty hadron decays also showed

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

0031-9007/21/126(16)/162001(13) 162001-1 © 2021 CERN, for the ALICE Collaboration
that heavy quarks undergo significant rescattering in the medium and thus participate in its expansion [39–42]. However, strong conclusions about the dynamics of the beauty quark alone cannot be drawn from those measurements, and separation of the charm and beauty contribution is necessary. Some anisotropic flow measurements of open-beauty do exist. The measured \(v_2 \) coefficient of the non-prompt \(J/\psi \), which is dominated by \(B \rightarrow J/\psi \) carried out by the CMS Collaboration is consistent with zero within large experimental uncertainties for \(p_T > 0 \) GeV/c [43].

Recent measurements of the \(v_2 \) coefficient for \(\Upsilon(1S) \) by ALICE [44], for \(p_T > 15 \) GeV/c, are consistent both with zero and with the small value predicted by transport models [45,46] within uncertainties. Studies based on the Blast-Wave model show that, due to the large \(\Upsilon(1S) \) mass, even with full thermalization a sizable elliptic flow would only be expected at \(p_T > 10 \) GeV/c [47]. Hence lighter beauty hadrons, and their decay particles, would provide important additional information for the study of the interaction of beauty quarks with the medium. Recent ATLAS measurement of \(v_2 \) of muons from heavy-flavor hadron decays, including the separation of charm and beauty quark contributions, in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV for \(p_T > 4 \) GeV/c revealed smaller flow coefficients for muons from beauty hadron decays compared to those from charm hadrons [48].

In this Letter, the measurement of the \(v_2 \) of electrons (and positrons) from beauty hadron decays at midrapidity (\(|y| < 0.8\)) in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV recorded in 2018 with the ALICE detector is reported. The measurement is performed for the first time in the \(p_T \) interval \(1.3 < p_T < 6 \) GeV/c. The measurement is based on \(77 \times 10^8 \) minimum bias Pb-Pb collisions with a primary vertex reconstructed within \(\pm 10 \) cm from the detector center [49] in the 30%–50% centrality interval. Two forward and backward scintillator arrays (VOA and VOC) are used to determine the collision centrality [50,51].

Electron candidate tracks, reconstructed with up to 159 measurement points in the Time Projection Chamber (TPC) and up to 6 in the Inner Tracking System (ITS), are required to fulfill standard track selection criteria as listed in Refs. [22,52]. To minimize the contribution of electrons from photon conversions in the detector material of the ITS and the fraction of tracks with misassociated hits, tracks are required to have associated hits in both Silicon-Pixel-Detector (SPD) layers, which constitute the two innermost layers of the ITS. This requirement removes most electrons from photon conversion produced outside the first SPD layer from the track sample. However, in the high-multiplicity environment of heavy-ion collisions, some of these can be misassociated with hits in the SPD layers produced by other particles. Electron identification is done using the TPC and the Time Of Flight detector (TOF) [22,52]. Electrons are identified by requiring the measured time-of-flight up to the TOF radius of 3.8 m on average to be within \(3\sigma \) of the expected value for electrons and their specific energy loss \(dE/dx \) in the TPC to be within \(-1\sigma \) and \(+3\sigma \) with respect to the expected \(dE/dx \) of electrons.

Electrons passing the track and identification selection criteria originate, besides from beauty-hadron decays, from Dalitz and dielectron decays of prompt light neutral mesons and charmonium states, photon conversions in the detector material, semileptonic decays of prompt-charm hadrons and decay chains of hadrons carrying a strange (or anti-strange) quark. Measurements of electrons from beauty-hadron decays exploit their larger average impact parameter \((d_0) \), defined as distance of closest approach to the primary vertex in the plane transverse to the beam line, compared to that of charm hadrons and most other background sources. The sign of the impact parameter value is determined from the relative position of the track to the primary vertex, i.e., if the primary vertex is on the left- or right-hand side of the track with respect to the particle momentum direction in the transverse plane. The impact parameter is multiplied with the sign of the particle charge and the magnetic field configuration [52]. Electrons from photon conversions in the detector material are created at some distance from the primary vertex and in the direction of the photon. Their tracks bend away from the primary vertex, leading to an asymmetry with a mean impact parameter \(d_0 < 0 \). This asymmetric impact parameter distribution allows for a better separation from the other electron sources, which are mostly symmetric around 0.

The momentum anisotropies are characterized by the flow harmonic coefficients \(v_n \) and azimuthal angle of the symmetry plane of the \(n \)th harmonic \(\Psi_n \) from the Fourier expansion of particle azimuthal distribution in the plane transverse to the beam direction [53]. The experimental estimate of the symmetry plane for the 2nd harmonic of the collision geometry in the azimuthal direction, the event plane \(\Psi_2 \), is determined using the signals produced by charged particles in the eight azimuthal sectors of each V0 array. Nonuniformities in the V0 acceptance and efficiency are corrected for using the procedure described in Ref. [54].

The \(v_2 \{\text{EP}\} \) is given by

\[
v_2 \{\text{EP}\} = \frac{1}{R_2} \frac{\pi N_{\text{in}} - N_{\text{out}}}{4 N_{\text{in}} + N_{\text{out}}},
\]

where \(N_{\text{in}} \) and \(N_{\text{out}} \) are the number of beauty-decay electrons in two 90°-wide intervals of \(\Delta \varphi = \varphi - \Psi_2 \): in plane \((-\pi/4 < \Delta \varphi < \pi/4 \) and \(3\pi/4 < \Delta \varphi < 5\pi/4 \) \) and out of plane \((\pi/4 < \Delta \varphi < 3\pi/4 \) and \(5\pi/4 < \Delta \varphi < 7\pi/4 \) \), respectively. The resolution \((R_2) \) of the event plane is measured with the three subevents method [25]. The subevents are defined according to the signals in the V0 detectors (both A and C sides) and the tracks in positive \((0 < \eta < 0.8)\) and negative \((-0.8 < \eta < 0)\) pseudorapidity regions of the TPC. \(R_2 \) is calculated in 1% centrality intervals and a weighted average for the 30%–50% interval...
is obtained using the number of binary nucleon-nucleon collisions as weights [25]. The average R_2 value in the 30%–50% centrality class is 0.77 [24].

The N_{in} and N_{out} yields of electrons from beauty-hadron decays are extracted by fitting the impact parameter distribution of all electron candidates in data with Monte Carlo (MC) templates for different electron sources [52]. A MC sample of minimum-bias (MB) Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, generated with HIJING v1.36 [55], is used to obtain the impact parameter distributions of photon conversions and Dalitz decays. To increase the sample of electrons from charm- and beauty-hadron decays, a sample of charm and beauty quarks generated with PYTHIA6 [56] is embedded into each Hijing MC event. The generated particles are propagated through the ALICE apparatus using GEANT3 [57]. Four classes of electron sources are used: electrons from beauty-hadron decays, from charm-hadron decays, from photon conversions, and from all other processes, the latter being dominated by Dalitz decays of light neutral mesons. The Dalitz decays of light neutral mesons happen essentially at the interaction vertex as does the production of most of the remaining hadron contamination. Thus, the impact parameter distributions of the reconstructed tracks are very similar within the applied granularity smaller than the detector components and recentered prior to fitting. Depending on p_T, the d_0 resolution in the MC simulations is about 11%–13% better than in data [59,60], so this amount of smearing is added to make the MC simulations and data match. Primary pions and kaons are used for the comparison. It is observed that the resolution of the impact parameter does not depend significantly on the local track density.

The correct template shape of electrons from photon conversions depends on the production vertex and on the track multiplicity. In-plane and out-of-plane events have different local track densities, requiring separate corrections for the respective templates. This is achieved by choosing different centrality ranges for each template in the simulations. The ranges are defined based on how well they describe either the in-plane or out-of-plane reconstruction efficiencies of pions from K^0 decays, as the production vertex of these decays is more accurately reconstructed. The systematic uncertainties are estimated by varying the nominal centrality classes in the simulations and are estimated to be 0.006 at low p_T and decreases to 0.001 with increasing p_T.

Because electrons of a given momentum from heavy-flavor hadron decays may originate from parent particles that have a broader momentum range, their d_0 distributions depend on the p_T distributions of these parent particles. Hence it is necessary to correct for any difference in the p_T distribution of particles that decay to electrons between hadrons in in plane and out of plane, and (iv) baryon-to-charm hadron ratio of charm and beauty hadrons. A detailed description of these corrections are described below.

To ensure angular isotropy of the d_0 reconstruction in data, the mean d_0 of primary particles is compared in different regions in azimuth, z position, and p_T with a granularity smaller than the detector components and recentered prior to fitting. Depending on p_T, the d_0 resolution in the MC simulations is about 11%–13% better than in data [59,60], so this amount of smearing is added to make the MC simulations and data match. Primary pions and kaons are used for the comparison. It is observed that the resolution of the impact parameter does not depend significantly on the local track density.

Detailed corrections to the MC templates are applied in order to take into account effects not simulated in MC simulations. Special care is taken to assess differences in the in-plane and out-of-plane templates as the effects of the corrections do not cancel in the computation of the v_2. The main corrections applied in the MC simulations are (i) resolution of the d_0 distribution, (ii) misassociated electrons from photon conversions and their multiplicity dependence, (iii) p_T distribution of charm and beauty electrons from photon conversions and their multiplicity dependence, (iv) d_0 distribution of charm and beauty electrons from beauty-hadron decays, (v) charm and beauty quark production in in-plane and out-of-plane, and (vi) d_0 distribution of charm and beauty electrons from beauty-hadron decays.

FIG. 1. Examples of the electron transverse impact parameter fits in plane (left) and out of plane (right) for 2.5 < p_T < 3 GeV/c. Distributions from data and the four MC templates, electrons from beauty ($b \to c + e$) and charm ($c \to e$) hadron decays, electrons from photon conversions (conversion electrons) and from other sources (Dalitz electrons) used in the fit are shown.
data and MC simulations. For the charm case, this can be done by making use of the measured charm mesons p_T spectral shape and v_2 at the same collision energy [26,61]. From these measurements, separate p_T distributions and thus corrections are used for the in-plane and out-of-plane templates. To conservatively assess the uncertainty in the extracted v_2, the result is compared to a case where the assumed D meson v_2 is halved. An absolute systematic uncertainty of 0.004 is assigned from this comparison to the v_2 of electron from beauty hadron decay.

As there is no available measurement of the low-p_T beauty hadron v_2, the corrections for the beauty template are determined by using FONLL calculations [62] multiplied by p_T-dependent corrections that are estimated using a range of R_{AA} and v_2 values. The upper limit of the estimated R_{AA} value is the case of no suppression, $R_{AA} = 1$, while the lower limit is obtained by interpolating the TAMU prediction [38], which is consistent with measurements of $R_{AA} \approx 0.4$ at high p_T [52]. The arithmetic mean of the resulting v_2 values is used for the central points of the measurement, with the two limits used to estimate the systematic uncertainty. An absolute systematic variation of 0.0023 at low p_T and of 0.011 at high p_T is found and assigned as an uncertainty. A significant effect arises from the modification of the p_T spectra due to beauty-hadron v_2 since it gives a different correction for the in-plane and out-of-plane templates. For the central value of the measurement, the assumption of $v_2 = 0.014 \times p_T^{-2} e^{-1/3x_{pT}}$ (with p_T in units of GeV/c) is chosen as a generic function inspired by the prediction of the TAMU model [38]. The systematic uncertainty is conservatively evaluated by varying the v_2 value from zero to two times as large, the latter giving a peak of 0.14. For these variations, the change in the measured beauty hadron decay electron v_2 is much smaller than the variation of the assumed hadron v_2. This gives a flat systematic uncertainty of 0.006 up to $p_T = 4$ GeV/c and of 0.012 in the last p_T interval.

The impact parameter distribution of electrons from the different charm and beauty hadrons depends on the lifetime of these parent hadrons. Therefore, uncertainty in the relative contributions from different parents will translate into uncertainty in the d_0 distribution. For charm, the largest lifetime difference is in the decays of the baryons with respect to the mesons, while for beauty the lifetime of mesons and baryons are very similar and the effect of their different fractions in MC simulation compared to data is negligible. For the charm case, a p_T-dependent correction is applied to the Λ_c/D^0 fraction based on model predictions [63–65], which describe experimental measurements [66–68]. This is compared to a p_T-independent correction that increases the Λ_c/D^0 by a factor of 3. The comparison shows no difference in v_2 for the two scenarios due to the effects canceling out in the computation of the v_2.

The multiplicity dependence of the efficiency of the particle identification from the TOF detector is evaluated as in Ref. [52]. The efficiencies in plane and out of plane are found to be within 0.5% of each other, which results in an uncertainty of 0.0014 on the v_2. No multiplicity dependence is found for the efficiency of particle identification from the TPC.

Figure 2 shows the measured v_2 of electrons from beauty hadron decays at midrapidity ($|y| < 0.8$) as a function of p_T in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in the 30%–50% centrality interval. A positive v_2 of electrons from beauty hadron decays with a significance of 3.75σ is observed for the first time in this low p_T range (1.3–6 GeV/c) using the average v_2 divided by the uncertainty as a test statistic. The systematic uncertainties are assumed to be fully correlated for this purpose. No significant p_T dependence of the v_2 is observed.

The measured v_2 of beauty decay electrons is compared to the predictions from several transport models which include significant interaction of beauty quarks with a hydrodynamically expanding QGP [30–32,69]. These models are observed to well describe the D meson anisotropy and suppression in heavy-ion collisions at the LHC [23–27,70–72]. The MC@sHQ + EPOS [30] is a perturbative QCD model which includes radiative and collisional energy losses. The uncertainties of the model calculations are evaluated by varying from pure collisional to pure radiative energy losses, including also different scattering rates and different rescaling factors. Modification of nuclear parton distribution functions, due to effects from shadowing, for example, is not considered for b quarks. The LIDO model [32,69] also includes both radiative and collisional energy loss. This model uses experimental data to calibrate a Langevin-based transport model and extracts the transport coefficients directly from data via a Bayesian analysis. In the case of LIDO, the reported model...
uncertainties are purely statistical. Within this model, the v_2 for beauty hadrons is much smaller than for charm hadrons. The PHSD model [31] is a microscopic off-shell transport model based on a Boltzmann approach which includes only collisional energy loss. Initial-state event-by-event fluctuations are included in all transport models described here. Even though the models differ in several aspects related to the interactions both in the QGP and in the hadronic phase as well as to the medium expansion, they all provide a fair description of the measurement. Similar agreement among these models was previously observed when compared to the R_{AA} of electrons from beauty-hadron decays [52]. With the current experimental uncertainties, no model is clearly favored or disfavored. A model calculation based on an extension of the blast-wave model [47] is also compared with the measurement. The calculation shown is based on B^0 mesons, and the PYTHIA8 decayer is used for their decays into electrons [73]. Assuming full thermalization, this model predicts a v_2 of $\Upsilon(1S)$ close to zero in the range measured by ALICE, which is consistent with the measurement. The results for beauty hadron decay electrons give a much larger v_2 than that of $\Upsilon(1S)$ due to the mass ordering effect. This shows that the measurement presented here is suitable to assess the degree of thermalization of beauty quarks at low p_T. The error band represents purely the statistical uncertainty. This simple model is qualitatively in agreement with the measurement within the uncertainties for $p_T < 3$ GeV/c, while it significantly diverges from the data at higher p_T.

In summary, the measurement of the elliptic flow of electrons originating from beauty hadron decays at mid-rapidity in semicentral Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV is presented for the first time in this low p_T interval 1.3–6 GeV/c. The measurement is important for the understanding of the degree of thermalization of beauty quarks in the QGP. The v_2 of electrons from beauty hadron decays is found to be positive with a significance of 3.7σ. The measurement provides new insights and constraints to theoretical models of beauty quark interactions in the QGP.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF); [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinky Institute of Physics (HIP), Finland; Commissariat à l’Énergie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of

S. Acharya et al. (ALICE Collaboration), Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, Phys. Lett. B 804, 135377 (2020).

B. Abelev et al. (ALICE Collaboration), Azimuthal anisotropy of D meson production in Pb-Pb collisions at energy $\sqrt{s_{NN}}$ = 2.76 TeV, Phys. Rev. C 90, 034904 (2014).

S. Acharya et al. (ALICE Collaboration), D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, Phys. Rev. Lett. 120, 102301 (2018).

A. M. Sirunyan et al. (CMS Collaboration), Measurement of Prompt D^0 Meson Azimuthal Anisotropy in Pb-Pb Collisions at $\sqrt{s_{NN}}$ = 5.02 TeV, Phys. Rev. Lett. 120, 202301 (2018).

[68] A.M. Sirunyan et al. (CMS Collaboration), Production of Λ_c^+ baryons in proton-proton and lead-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Lett. B 803, 135328 (2020).
[70] B. Abelev et al. (ALICE Collaboration), Suppression of high transverse momentum D mesons in central Pb-Pb collisions at energy $\sqrt{s_{NN}} = 2.76$ TeV, J. High Energy Phys. 09 (2012) 112.

1A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

2Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

3aBose Institute, Department of Physics, Kolkata, India

3bCentre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

4Budker Institute for Nuclear Physics, Novosibirsk, Russia

5California Polytechnic State University, San Luis Obispo, California, USA

6Central China Normal University, Wuhan, China

7Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France

8Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

9Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

10Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Rome, Italy

11Chicago State University, Chicago, Illinois, USA

12China Institute of Atomic Energy, Beijing, China

13Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia

14COMSATS University Islamabad, Islamabad, Pakistan

15Creighton University, Omaha, Nebraska, USA

16Department of Physics, Aligarh Muslim University, Aligarh, India

17Department of Physics, Pusan National University, Pusan, Republic of Korea

18Department of Physics, Sejong University, Seoul, Republic of Korea

19Department of Physics, University of California, Berkeley, California, USA

20Department of Physics, University of Oslo, Oslo, Norway

21Department of Physics and Technology, University of Bergen, Bergen, Norway

22aDipartimento di Fisica dell’Università ‘La Sapienza’, Rome, Italy

22bSezione INFN, Rome, Italy

23aDipartimento di Fisica dell’Università, Cagliari, Italy

23bSezione INFN, Cagliari, Italy

24aDipartimento di Fisica dell’Università, Trieste, Italy

24bSezione INFN, Trieste, Italy

25aDipartimento di Fisica dell’Università, Turin, Italy

25bSezione INFN, Turin, Italy

26aDipartimento di Fisica e Astronomia dell’Università, Bologna, Italy

26bSezione INFN, Bologna, Italy

27aDipartimento di Fisica e Astronomia dell’Università, Catania, Italy

27bSezione INFN, Catania, Italy

28aDipartimento di Fisica e Astronomia dell’Università, Padova, Italy

28bSezione INFN, Padova, Italy

29aDipartimento di Fisica ‘E.R. Caianiello’ dell’Università, Salerno, Italy

29bGruppo Collegato INFN, Salerno, Italy

30Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

31Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy

32Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy

33aDipartimento Interateneo di Fisica ‘M. Merlin’, Bari, Italy

33bSezione INFN, Bari, Italy

34European Organization for Nuclear Research (CERN), Geneva, Switzerland

35Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia

36Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway

37Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic