Isolation and structure elucidation of serrulatane diterpenoids from the roots of Eremophila longifolia

Rasmussen, Line Fentz; Anton, Jennifer; Kjaerulff, Louise; Stærk, Dan

Publication date: 2021

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Isolation and structure elucidation of serrulatane diterpenoids from the roots of *Eremophilia longifolia*

Line Fentz Rasmussen, Jennifer Anton, Louise Kjaerulf, Dan Staerk

Abstract

The incidences of type 2 diabetes (T2D) are estimated to increase by 51% by 2045. Aerial parts of the genus *Eremophila* have shown to be a rich source of serrulatane diterpenoids which have shown antihyperglycemic activity. In this study, roots of *Eremophila longifolia* were extracted with dichloromethane and methanol (1:1) and the extract screened for bioactivity against α-glucosidase, α-amylase, and PTP1B. Subsequently, the extract was investigated using LC-PDA-HRMS for dereplication and a combination of analytical-scale HPLC and NMR spectroscopy for structure elucidation. Eight serrulatane diterpenoids were identified, of which six were previously unreported. This work demonstrates *Eremophila longifolia* root material to be a rich source of structurally diverse serrulatane diterpenoids.

Background

The global prevalence of diabetes mellitus is estimated to rise from 463 million incidences in 2019 to 700 million incidences in 2045, i.e., an increase of 51%. Type 2 diabetes (T2D) accounts for 90% of all diabetes worldwide [1]. T2D is characterized by a combination of resistance to insulin action and reduced pancreatic insulin production. Current treatments constitute a combination of lifestyle changes and the use of antihyperglycemic drugs to control blood glucose levels [2]. α-Glucosidase and α-amylase belong to the carbohydrate-degrading enzymes which break down polysaccharides into monosaccharides after a meal [3]. Another target-enzyme, protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signalling pathway by dephosphorylating the insulin receptor [4]. *Eremophila* is an endemic genus to Australia and consist of approximately 230 species [5]. Some *Eremophila* species contain longifolia (R.B. F.Muell. (Figure 2) were used by the Australian Aboriginal peoples for medicinal and cultural purposes [6]. Aerial parts of *Eremophila* have shown to be a rich source of serrulatane diterpenoids with antioxidant, anticancer, and antihyperglycemic activity [7-9].

Method

The root bark was extracted with dichloromethane and methanol (1:1) and screened for α-glucosidase, α-amylase, and PTP1B inhibitory activity after separating the extract into microfractions from analytical-scale high performance liquid chromatography (HPLC). The results (percentage inhibition) from bioassaying of each fraction were plotted at their respective time result, resulting in a triple high-resolution inhibition profile. The extract was investigated using liquid chromatography – photo diode array high-resolution mass spectroscopy (LC-PDA-HRMS) for dereplication and a combination of HPLC and NMR spectroscopy for structure elucidation.

Findings

The constructed biocompatible graph (Figure 3) displays inhibitory activity against the targeted enzymes for some of the peaks, and HPLC-PDA-HRMS-based dereplication indicated the presence of previously unreported compounds. Repeated analytical-scale HPLC separation of the material eluted with peak 2, 4, 9-13, 16, and 18 led to isolation of six previously unreported serrulatane diterpenoids (Figure 1) and two previously reported. UV, HRMS and ‘H NMR led to identification of 9 as Elisabatin A and 11 as Elisabatin B, respectively. Compounds 2, 4, 9, 12, 16, and 18 are all serrulatane diterpenoids. In addition to having the same skeleton, all compounds have an oxygen-atom in degrading position 3, 7, and 8. Compound 2 is the only compound with a ketone on the sidechain, and 4 is the only compound to have a ketone at position 3. 10 has an exocyclic ring system, which too our knowledge have not been isolated from *Eremophila* before. Compound 12 shows structural similarity with 2, but has an additional oxygen-atom instead of a ketone at position 14. 16 is the only compound with a tetrahydropyran and 18 has a tetrahydropyranylen together with a cyclopentane.

Conclusion

This work demonstrates *Eremophila longifolia* root material to be a rich source of structurally diverse serrulatane diterpenoids, some of which appear to have inhibitory activity against diabetes target-enzymes. This needs to be tested with concentration-dependent inhibition of the respective enzymes.

Contact information

Line Fentz Rasmussen, master student
E-mail: rnk483@alumni.ku.dk
Dan Staerk, research group leader
E-mail: ds@sunl.ku.dk

References

[7] https://keys.kuodkoor.nl/keysA/v/0/ds@sunl.ku.dk/129999919263720240030.png.