A tale of two rhythms
Locked clocks and chaos in biology
Heltberg, Mathias L.; Krishna, Sandeep; Kadanoff, Leo P.; Jensen, Mogens H.

Published in:
Cell Systems

DOI:
10.1016/j.cels.2021.03.003

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Modeling the complete kinetics of coxsackievirus B3 reveals human determinants of host-cell feedback

Highlights

- A complete kinetic model of acute infection by the coxsackievirus B3 enterovirus

- Enteroviral replication organelles accelerate biochemistry on membrane surfaces

- Type I interferon exaggerates different enteroviral susceptibilities of host cells

- A common polymorphism in MAVS alters host-cell susceptibility to coxsackievirus B3

In brief

Enteroviruses have compact genomes and infect host cells rapidly but variably. Lopacinski et al. build a stoichiometrically balanced kinetic model for the complete life cycle of the coxsackievirus B3 (CVB3) enterovirus. The encoded host-cell feedbacks reveal human-specific differences in the antiviral transducer MAVS that affect CVB3 susceptibility.
Modeling the complete kinetics of coxsackievirus B3 reveals human determinants of host-cell feedback

Aaron B. Lopacinski,1,4 Andrew J. Sweatt,1,4 Christian M. Smolko,1 Elise Gray-Gaillard,1,2 Cheryl A. Borgman,1 Millie Shah,1,* and Kevin A. Janes1,3,5,*

1Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
2Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
3Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
4These authors contributed equally
5Lead contact
*Correspondence: ms2kf@virginia.edu (M.S.), kjanes@virginia.edu (K.A.J.)
https://doi.org/10.1016/j.cels.2021.02.004

SUMMARY
Complete kinetic models are pervasive in chemistry but lacking in biological systems. We encoded the complete kinetics of infection for coxsackievirus B3 (CVB3), a compact and fast-acting RNA virus. The model consists of separable, detailed modules describing viral binding-delivery, translation-replication, and encapsidation. Specific module activities are dampened by the type I interferon response to viral double-stranded RNAs (dsRNAs), which is itself disrupted by viral proteinases. The experimentally validated kinetics uncovered that cleavability of the dsRNA transducer mitochondrial antiviral signaling protein (MAVS) becomes a stronger determinant of viral outcomes when cells receive supplemental interferon after infection. Cleavability is naturally altered in humans by a common MAVS polymorphism, which removes a proteinase-targeted site but paradoxically elevates CVB3 infectivity. These observations are reconciled with a simple nonlinear model of MAVS regulation. Modeling complete kinetics is an attainable goal for small, rapidly infecting viruses and perhaps viral pathogens more broadly. A record of this paper’s transparent peer review process is included in the Supplemental information.

INTRODUCTION
In chemistry, a complete kinetic model specifies products and reactants, their stoichiometry, any catalysts, and the step-by-step sequence of key elementary reactions from start to finish (Moore et al., 1981). Direct analogies in biological systems are hard to identify because the steps are uncertain and the definition of “start” or “finish” is often arbitrary. Not so for picornaviruses, a family of non-enveloped, positive-strand RNA viruses that infect, rapidly amplify their genetic material and capsid proteins, and lyse the host cell marking termination. Steps in the picornaviral life cycle are fully delineated (Racaniello, 2013). The translation of the coding RNA genome as a single polypeptide ensures an equal proportion of each viral protein during synthesis. From the standpoint of products and reactants, picornaviruses present an opportunity to construct complete kinetic models.

The power of kinetic mechanisms lies in the explanatory and predictive models that they generate (Moore et al., 1981). Mathematical models of viral translation-replication have a rich history, but they are formally incomplete in omitting the details of early binding-entry, intermediate antiviral pathways, and late self-assembly of viral particles (Yin and Redovich, 2018). Some omissions are for simplicity and scope, but others are for lack of biological parameters or quantities. As human disease agents, picornaviruses within the Enterovirus genus—which includes rhinovirus, poliovirus, and coxsackievirus—have been parameterized extensively (Racaniello, 2013). Enteroviruses thus represent the best-case testbed for proposing a complete kinetic model of a biological process if one can be defined.

Here, we drafted the complete kinetics for coxsackievirus B3 (CVB3), an enterovirus that infects the heart and drives viral myocarditis (Esfandiarei and McManus, 2008). With attention to molecular detail, we encoded interacting modules for viral delivery, translation-replication, and encapsidation, overlaying a prototypical antiviral response along with viral antagonism of that response (Figure 1A). Each component presented its own challenges, which we tackled module-by-module before simulating the complete kinetics of CVB3 infection. In a cardiomyocyte-derived cell line, the integrated modules captured host-cell susceptibility and viral RNA-protein dynamics with
little-to-no parameter fitting of specific mechanisms. The
generalized antiviral and antagonistic feedbacks were screened
combinatorially to identify time-dependent interactions later
verified experimentally. Host and viral feedbacks converged
on an important role for MAVS, a polymorphic host-cell trans-
ducer of the antiviral response to double-stranded RNAs
(dsRNAs) that is cleaved by an enterovirus-encoded proteinase
(Mukherjee et al., 2011). The centrality of MAVS led to the dis-
covery of a common variant in humans (MAVS Q93E), which
reroutes cleavage during CVB3 infection and favors viral prop-
gagation. The net effect of this polymorphism on feedback arises
from nonlinearities in MAVS regulation, as illustrated by a
standalone model of its provisional activation mechanism. For
virology, complete kinetics provide a systems-level end goal
for decades of research and possibly an aid to prioritizing sci-
cientific activity during viral outbreaks.

Figure 1. A modular encoding of the CVB3 life cycle elaborated with antiviral responses and
viral antagonism of host-cell processes
(A) Overview of the CVB3 model architecture. CVB3
enters through a module of receptors and trafficking
states that delivers its positive-strand RNA genome
(R_{p}) to the cytoplasm. R_{p} is translated into a poly-
protein (CVB3pp) that matures into capsid subunits
contributing one-fifth of a subunit (pentamer) in a
12-subunit assembly, enteroviral proteinases (2Apro
and 3Cpro), hydrophobic proteins (2CATPase), and RNA-dependent RNA polymerase (3Dpol)
replicates R_{p} through a negative-strand intermedi-
ate in a module that gives rise to excess R_{p}, which
joins with pentamer in an encapsidation module that
self-assembles pentamer around R_{p} and leads to
virion release. Interferon-stimulated genes (ISGs)
are induced as a consequence of the dsRNA asso-
ciated with CVB3 replication and impede viral pro-
gression where indicated; viral sensing is also
antagonized by 3Dpol (Mukherjee et al., 2011).
Expanded descriptions of the delivery, replication,
and encapsidation modules are shown in Figures
2A, 3A, 4A, and 4D, and model parameters are
available in Table S1.
(B) Transfected dsCVB3 elicits a robust type I inter-
feron response. AC16-CAR cells were lipofected with
n = 5 doses of the indicated dsRNAs for 4 h and
analyzed for the indicated ISGs with PROX1, HINT1,
and GUSB used for loading normalization. Differ-
ences between conditions were assessed by Sida-
corrected, log-transformed three-way ANOVA.
Uninduced target genes (EIF2AK2 and GAPDH)
are analyzed in Figure S1A.
(C) ISGs are long lived when translated. 293T/17
cells were lipofected with V5 epitope-tagged plas-
mids, treated with 50 μM cycloheximide for the
indicated times, and lysed for quantitative immu-
noblotting. Half-lives for the ISGs MX1, OAS1,
OAS2, OASL, and FPcontrol (a fast-degrading protein
fragment used as a positive control) were estimated
by nonlinear least-squares curve fitting. Data are
shown as the mean ± range of biological duplicates
at n = 6 different time points. Representative immu-
noblotts are shown in Figure S1B.
(D) CVB3 polyprotein maturation coincides with
cleavage of host-cell targets. AC16-CAR cells
were infected with CVB3 at MOI = 10 for the indicated
times and immunoblotted for VP1 capsid protein
(also present in the full-length polyprotein [CVB3pp])
and eIF4G (a host protein cleaved by 2Apro [Ha-
ghihat et al., 1996]) with ectopic CAR-V5, vinculin,
tubulin, and p38 used as loading controls. The im-
age gamma correction was adjusted for poly-
protein–VP1 (gamma = 20) and eIF4G (gamma = 2)
to show band pairs at the same exposure.
See also Figure S1; Table S1.
RESULTS

Modular draft of a complete kinetic model for the CVB3 life cycle

We pursued a complete kinetic model for acute CVB3 infection by deconstructing its life cycle into separable modules that could be developed independently (Figure 1A). The cellular tropism of CVB3 is determined by specific cell-surface receptors (Bergelson et al., 1997; Shafren et al., 1995), which internalize the virus before endosomal escape of its positive-strand RNA genome (Rp) into the cytoplasm. From here, the intracellular steps generalize to all enteroviruses: (1) translation of Rp into polyprotein (CVB3pp), (2) maturation of CVB3pp into capsid subunits and nonstructural proteins for the virus, (3) cis replication of Rp through a negative-strand intermediate by RNA-dependent RNA polymerase (3DP) localized to host-cell membranes hijacked by the virus, and (4) encapsidation of Rp around 12 capsid pentamers aided by hydrophobic proteins (2CATPase) and concluding with lytic release from the host (Baggen et al., 2018). In contrast to cell-signaling pathways (Friedman and Perrimon, 2007), the viral conduits to and from these modules are clearly defined, and an acute infection usually completes within hours if unimpeded.

At the nexus of the enteroviral life cycle is the type I interferon response. Viral replication is associated with long, double-stranded replicative intermediates of CVB3 (dsCVB3) that are sensed by innate antiviral pathways like other dsRNAs (e.g., poly(I:C)) (Wang et al., 2010). Cytosolic dsCVB3 gives rise to induction of IFNB, autocrine-paracrine signaling, and the induction of interferon-stimulated genes (ISGs) (Feng et al., 2012), such as oligoadenylate synthetases and Mx-family GTPases (Figures 1B and S1A). There are hundreds of different ISGs, several of which inhibit core enteroviral processes at multiple points (Figure 1A) (Schoggins et al., 2011). ISGs are predicted to persist for the duration of an infection (Figures 1C and S1B), and active type I interferon signaling is a potent inhibitor of enteroviral replication in vivo (Deonarain et al., 2004; Liu et al., 2005). The enteroviral proteases (2APpro and 3CPpro)—which mature the CVB3pp polyprotein and steal host-cell ribosomes for cap-independent viral translation—interfere with activation of the interferon response by cleavage of dsRNAs and transducers (Figure 1A) (Feng et al., 2014; Haghighat et al., 1996; Mukherjee et al., 2011). Cleavage of host-cell proteins occurs on the same timescale as polyprotein maturation (Figure 1D) (Etchison et al., 1982; Mukherjee et al., 2011), requiring us to overlay a network of ISG-related negative feedbacks on the CVB3 life cycle (Figure 1A, purple).

The viral life cycle modules and antiviral-antagonistic feedbacks were encoded as a system of 54 differential equations that are derived in the STAR Methods. Experimental evidence for 91% of the 92 parameters is provided in Table S1. In general engineering design, modules are appealing because they enable individual components to be developed and characterized before integration (Janes et al., 2017). Accordingly, our results are communicated to retain the modular organization of the CVB3 model. For individual modules, we expand biochemical mechanisms, describe critical assumptions or considerations, compare with experiments, and conclude with nonobvious computational predictions.

Explanatory modeling of CVB3 tropism requires careful extracellular bookkeeping

A hurdle to modeling the complete kinetics of CVB3 arises even before the virus has encountered a host cell. Stock preparations of enterovirus contain many more RNA-filled viral particles than infectious plaque-forming units (PFUs). Encapsidated RNA genomes often do not reach a host-cell ribosome for translation, and some of those that do contain deleterious mutations from the prior replication. These particles are “defective” from the standpoint of infection, yet they are generally able to bind cell-surface receptors and internalize (Brandenburg et al., 2007). Defective particles thus contribute viral protein and RNA to the system, which must be accounted for at the start of the life cycle.

Particle-to-PFU ratios vary widely within an enterovirus species—the ratio for poliovirus, for example, is reported to be 30:1 to 1,000:1 (Racaniello, 2013). We quantified sedimentable RNA content from separately purified CVB3 preparations of known PFU titer and estimated a particle-to-PFU ratio of 800 ± 200 (n = 4 preparations; STAR Methods). In the model, we assumed an 800-fold excess of defective particles, which traffic identically to PFUs but do not translate upon entering the host-cell cytoplasm (STAR Methods). The assumption creates a kinetic dead-end for defective particles without any additional kinetic parameters (Table S1). More complicated defective-particle fates yielded similar infection outcomes, as shown after the model was fully developed (see below).

A second challenge relates to the front-end model implementation of viral delivery. The early steps of virus binding and internalization are discrete and thus intrinsically stochastic (Ellis and Delbrück, 1939). However, one negative-strand template can yield hundreds of protein-coding positive strands within an hour (Castro et al., 2007), indicating rapid transition to a regime where deterministic modeling is valid. We balanced these trade-offs by postulating that the dominant stochasticity was the Poisson noise from the number of PFUs encountered at a given multiplicity of infection (MOI) describing the average PFU per cell within a population (Ellis and Delbrück, 1939). Cell-to-cell variation in all downstream processes was modeled by lognormal random variables centered around the best estimates from the literature (Table S1) and sampled with a user-defined coefficient of variation. We configured the simulations to run in one of two modes: (1) a “single-cell” mode, in which a discrete number of PFUs is simulated with lognormally distributed downstream parameters, and (2) a “cell-population” mode, in which a lognormal instance of the life cycle is paired with a PFU integer drawn from a Poisson distribution about a continuous MOI representing the average. In either mode, dynamic trajectories were well summarized by ~100 separate iterations. The dual implementation thereby models the average-cell response to an initial condition that is highly stochastic.

Binding and delivery of CVB3 requires decay accelerating factor (DAF, officially named CD55) and coxsackievirus and adenovirus receptor (CAR, officially named CXADR) (Bergelson et al., 1997; Shafren et al., 1995). DAF is a low-affinity receptor (KD ~3 μM) whose transcript is widely expressed at moderate abundance in human tissues (median transcripts per million [TPM] ~25) (GTEx Consortium, 2015; Lea et al., 1998). CAR is the high-affinity receptor (KD ~0.2 μM) that is less abundant overall (median TPM ~3.5) and restricted to the heart, brain, and
Figure 2. Stoichiometric estimation and simulation of CVB3 particles, cargo, and surface receptors

(A) Overview of the CVB3 delivery module. CVB3 binds to DAF and translocates to tight junctions (TJ, beige). In the tight junction, CVB3 unbinds DAF and binds to CAR by two parallel mechanisms (STAR Methods). CAR-bound CVB3 is internalized and DAF is returned to the plasma membrane. At any point, CVB3 may dissociate from its receptors (reverse arrows). After internalization, the viral genome (R_p) escapes the endosome into the cytoplasm.

(B) Ectopic expression of CAR in quiescent AC16 cells causes chronic overexpression of immune response genes. Differentially expressed transcripts between quiescent parental AC16 cells (parental) and quiescent CAR-overexpressing AC16 cells (AC16-CAR) ($q < 0.05$; gray) that also have a log$_2$ fold change (FC) greater than ±1 (green) and are immune-regulated genes (orange). Proteins encoded by IFIH1 and CXADR (blue) are independently measured in (C).

(C) The elevated interferon response of AC16-CAR cells is restricted to the quiescence protocol involving SV40 knockdown. AC16 cells with or without quiescence (shSV40) or CAR overexpression (CAR-V5) were immunoblotted for IFIH1, SV40 T antigen (Tag), and ectopic CAR-V5 with vinculin, tubulin, p38, and GAPDH used as loading controls. Replicated densitometry is shown in Figures S2B–S2D.

(D) DAF protein abundance estimates by coupled transcriptomics and proteomics of HeLa cells (Liu et al., 2019).

(E) CAR protein abundance estimates by coupled CXADR transcriptomics and proteomics of HeLa cells (Liu et al., 2019).

(F) Direct measurement of CAR abundance in AC16-CAR cells. Recombinant V5-containing Multitag was used to calibrate a V5 quantitative immunoblot and estimate the total per-cell abundance of CAR-V5. Data are shown as the mean ± SEM of $n = 4$ biological replicates (red). The best-fit calibration curve (white dashed) is shown ± 90% confidence interval of the fit (gray).

(G) Model predictions of AC16-CAR and AC16 host-cell susceptibility when accounting for defective CVB3 particles.

(H) Model predictions of AC16-CAR and AC16 host-cell susceptibility assuming all CVB3 particles are infectious. The lack of defective particles exaggerates the drop in viral protein associated with endosomal escape (arrows; STAR Methods).

(legend continued on next page)
epithelial tissues that CVB3 infects (STEx Consortium, 2015; Goodfellow et al., 2005). DAF is a GPI-linked surface protein that diffuses freely in cholesterol-rich microdomains on the cell surface, whereas CAR is a cell–cell adhesion protein localized to tight junctions. Binding of CVB3 to DAF enables the CVB3:DAF complex to traffic to tight junctions, where CVB3 is bound by CAR to promote endosomal internalization (Figure 2A) (Coyne and Bergelson, 2006). In the model, we assumed that CAR is instantly degraded upon CVB3 internalization at characteristic rates for endocytosis (Chung et al., 2005). However, results in permissive hosts were unchanged if CAR was instead recycled instantaneously to the surface (Figure S2A). Rates of rapid endosomal escape were estimated from live-cell experiments with labeled poliovirus (Brandenburg et al., 2007). The output of the delivery module is positive-strand RNA (both infectious and defective) in the cytoplasm.

As a representative host cell, we used AC16 cells, which were originally immortalized by cell fusion of adult ventricular cardiomyocytes with SV40-transformed fibroblasts (Davidson et al., 2005). AC16 cells are not very permissive to CVB3 infection, but they become highly susceptible upon ectopic expression of CAR (Shah et al., 2017). We originally intended to use CAR-overexpressing AC16 cells (AC16-CAR) under quiescent conditions in which SV40 was knocked down and serum reduced (Davidson et al., 2005). However, RNA sequencing (RNA-seq) revealed that CAR overexpression in quiescent cells caused a considerable upregulation of ISGs (Figure 2B), which would confound the analysis. Follow-up experiments revealed that ISG upregulation was specific to the quiescence protocol (Figure 2C), enabling the use of proliferating AC16-CAR cells for the study.

The delivery module is composed entirely of low copy-number events and intermediate species that are difficult to assess experimentally. Consequently, we selected DAF and CAR abundance for a validity check on the module, using the other modules to amplify the effect of CVB3 receptors on viral outputs that were measurable. To parametrize initial conditions for DAF and CAR, we derived estimates from the AC16 RNA-seq data by using an RNA-to-protein conversion factor for each receptor estimated from a panel of different HeLa lines profiled by transcriptomics and proteomics (Edfors et al., 2016; Liu et al., 2019). HeLa cells are highly susceptible to CVB3 and are widely used for virus propagation; thus, per-cell receptor abundances should be in the operating range for productive infection. Both conversions were adequately described by a hyperbolic-to-linear fit providing approximate protein estimates for parental AC16 and AC16-CAR cells (Figures 2D and 2E; STAR Methods). However, CAR estimates from corresponding CXADR mRNA in AC16-CAR cells required an enormous extrapolation of the fit (Figure 2E), prompting an independent measurement. Ectopic CAR contains a V5 tag on the C terminus, which prevents the construct from transmitting adhesion signals to PDZ domain-containing proteins (Excoffon et al., 2004) and enables absolute epitope quantification. Using a recombinant multitag protein containing a V5 epitope, we calibrated V5 immunoblotting to protein copies and interpolated CAR-V5 copies for known numbers of AC16-CAR cells (Figures 2F and S2E). The ~5.5 million CAR-V5 molecules per cell falls within the prediction interval for the RNA-to-protein conversion fits, supporting that fit-based estimates for DAF (~61,000 [AC16] and ~44,000 [AC16-CAR] per cell) and endogenous CAR (~2,300 per cell) are realistic.

Taking an average DAF abundance between the two lines, we simulated the quantitative importance of CAR at endogenous and ectopic levels with a CVB3 infection of 10 PFU. When viral particles were fully accounted for, the model predicted a robust infection in CAR-overexpressing cells but not parental AC16 cells, reflected by viral protein 1 (VP1) expression within 10 h (Figures 1D and 2G). Host permissiveness was predicted to occur at ~7,000 CAR copies per cell (Figure S2F), a threshold surpassed by all HeLa variants in the panel (Figure 2E) (Liu et al., 2019). By contrast, when defective particles were ignored and the same host-cell conditions simulated, productive CVB3 infections occurred at both ectopic and endogenous abundances of CAR (Figure 2H). Lack of receptor competition from defective particles enables DAF-bound PFUs to access the small number of CARs, internalize, and replicate. Competition was consequential at particle-to-PFU ratios of 200 or greater (Figure S2G), partially overlapping with the range of ratios documented for enteroviruses (Racaniello, 2013). The results suggest that host-cell permissiveness is conditioned on PFU purity relative to defective interfering particles.

A two-phase encoding of membrane replication predicts quantifiable positive strands, negative strands, and replicative intermediates

After entering the cytoplasm, an infectious positive-strand RNA genome is translated by host-cell ribosomes. In cell-free systems, enteroviral RNA is recognized by 2–5 ribosomes within 15 s (Kempf and Barton, 2008). We conservatively assumed a polysome size of 2–3 ribosomes to account for ribosome competition with host-cell mRNAs early in infection. In the model, polysomes increase the net translation of viral proteins along with the retention of positive strands in translation complexes (STAR Methods). Modeling polysomes was critical for appropriately timing the onset of exponential viral protein synthesis under realistic translation rates (Figure S3A).

Any positive strand released from a translation complex was instantly placed on a 3Dpol-containing surface to capture the cis coupling of enteroviral translation and replication (Figure 3A; STAR Methods) (Goodfellow et al., 2000; Novak and Kirkegaard, 1994). During infection, host-cell membranes are redirected to create molecular factories for genome replication from a negative-strand template (Cuconati et al., 1998). The formation of
concentrating effect on the VRO surface. The concentrating effect in the complete kinetic model is 3,216 (B) VROs are surface accelerants. Translational output from complete kinetics altered to assume zero RNA degradation, zero dsRNA sensing, or limited concentrating effect on the VRO surface. The concentrating effect in the complete kinetic model is 3,216x (see STAR Methods).

(C) Complete kinetics captures the absolute viral RNA dynamics of positive and negative strands. Predictions (purple) were compared with data (green) obtained by strand-specific tagged quantitative PCR (qPCR) with purified standards. Data are shown as the geometric mean ± log-transformed standard error of n = 4 biological replicates of AC16-CAR cells infected at MOI = 10 for the indicated times. Population-level simulations are shown in Figure S3D. (D) Strand competition between sense and antisense CVB3 genomes in vitro. Strand-specific tagged qPCR of \(10^5\) positive copies (left) or negative copies (right) amidst the indicated abundance of complementary strand on the x axis (measured in blue). Data (black [with outliers highlighted in red] and blue) are shown as the mean log2 relative abundance (40—qPCR quantification cycle [Cq]) (Singh et al., 2019) ± range of assay duplicates at n = 6 separate positive-negative strand mixtures. (E) Observed positive-negative strand ratio depends critically on the detection efficiency of dsRNA replicative intermediates. The complete kinetic model was simulated and inventoried with different fractional contributions of dsRNA to the positive- and negative-strand totals. For (B), (C), and (E), predictions are shown as the median simulation ± 90% nonparametric confidence interval from n = 100 simulations of single-cell infections at 10 PFU with a parameter coefficient of variation of 5%.

Figure 3. Explosive genome replication requires intracellular membranes and hides negative-strand templates from quantitation

(A) Overview of the replication module. After dissociating from polysomes, the positive-strand RNA genome is released to associate with the surface of VROs, where translated RNA-dependent RNA polymerase (3Dpol) resides bound to 3AB (white box). Replication proceeds on the VRO surface, releasing one positive strand (\(R_\text{p}\)) and one negative strand (\(R_\text{n}\)). The reciprocal process occurs with \(R_\text{n}\) as template, except that \(R_\text{p}\) is not released from 3Dpol (STAR Methods).

(B) VROs are surface accelerants. Translational output from complete kinetics altered to assume zero RNA degradation, zero dsRNA sensing, or limited concentrating effect on the VRO surface. The concentrating effect in the complete kinetic model is 3,216x (see STAR Methods).

(C) Complete kinetics captures the absolute viral RNA dynamics of positive and negative strands. Predictions (purple) were compared with data (green) obtained by strand-specific tagged quantitative PCR (qPCR) with purified standards. Data are shown as the geometric mean ± log-transformed standard error of n = 4 biological replicates of AC16-CAR cells infected at MOI = 10 for the indicated times. Population-level simulations are shown in Figure S3D.

(D) Strand competition between sense and antisense CVB3 genomes in vitro. Strand-specific tagged qPCR of \(10^5\) positive copies (left) or negative copies (right) amidst the indicated abundance of complementary strand on the x axis (measured in blue). Data (black [with outliers highlighted in red] and blue) are shown as the mean log2 relative abundance (40—qPCR quantification cycle [Cq]) (Singh et al., 2019) ± range of assay duplicates at n = 6 separate positive-negative strand mixtures.

(E) Observed positive-negative strand ratio depends critically on the detection efficiency of dsRNA replicative intermediates. The complete kinetic model was simulated and inventoried with different fractional contributions of dsRNA to the positive- and negative-strand totals.

For (B), (C), and (E), predictions are shown as the median simulation ± 90% nonparametric confidence interval from n = 100 simulations of single-cell infections at 10 PFU with a parameter coefficient of variation of 5%.

See also Figure S3.

such “viral replication organelles” (VROs) is widely documented in positive-strand RNA viruses and may serve multiple functions (Miller and Krijnse-Locker, 2008). Using the model, we considered three functions for VROs: (1) shield viral RNAs from degradation, (2) shield viral replicative intermediates from dsRNA sensing, and (3) accelerate replicative processes by concentrating species on a surface. Recent ultrastructural studies suggest a per-cell VRO surface area of 160–185 \(\mu\text{m}^2\) (Melia et al., 2019), which roughly agrees with our own brightfield estimates of 120 \(\mu\text{m}^2\) (STAR Methods). These numbers and the ~7 nm height of a 3Dpol enzyme (PDB ID: 3CDW) yield a >2,000-fold concentrating effect of associating cytoplasmic viral molecules in the local volume of a VRO surface. Whereas setting either viral RNA degradation or dsRNA sensing on VROs to zero had a negligible impact on the timing of acute infection, reducing the VRO-concentrating effect to less than 100-fold yielded no net output (Figure 3B). Other VRO functions might be important for RNA viruses that replicate more slowly and organize VROs differently (Binder et al., 2013), but these computational results strongly suggest that the dominant role for entervoiral VROs is to accelerate biochemistry.

Next, we needed to define when the VRO acceleration was triggered kinetically. One 3Dpol enzyme by itself is dilute whether in the cytoplasm or on a membrane, but local surface patches of enzyme and positive strand could exhibit acceleration even though the whole-cell concentration is low. Guided by measurements of positive and negative strands in CVB3-infected cells (STAR Methods), we selected a threshold of 25 3Dpol molecules, which triggers at ~2.5 h after infection with 10 PFU and coincides with the first translational burst of an infectious virion (Boersma et al., 2020). This threshold marks the early onset of the deterministic, continuous regime (3Dpol counting noise = 20%) and precedes the 4–5-h time point when VROs become ultrastructurally observable (Limpens et al., 2011).

To validate the parameterization of the replication module, we sought robust, sensitive, and accurate measurements of positive and negative strands during infection. We devised a tagged quantitative PCR (qPCR) assay, which avoids false priming within the CVB3 genome by using a biotinylated strand-specific primer and streptavidin pull-down before quantification (STAR Methods) (Bessaud et al., 2008; Singh et al., 2019). Using purified standards, the assay was sensitive to ~1,000 CVB3 copies...
Figure 4. A Goldilocks zone for enteroviral encapsidation

(A) Overview schematic of the CVB3 encapsidation module on the viral replication organelle (VRO). After viral protein translation (aided by 2Apro cleavage of eIF4G), viral capsid pentamers are recruited to VROs by binding 2CATPase (white box). At the VRO, pentamers associate with one another and with positive-strand genomes to form RNA-pentamer assemblies (RNAPent). Rate parameters investigated by perturbation are shown.

(B) Prediction and measurement of viral protein VP1 dynamics during CVB3 infection. Population-level simulations are shown in Figure S4C.

(C) Accessible ribosomes

(D) Pentamer species

(E) Mature virions

(F) Mature virions

(G) Mature virions

(H) +ssRNA:VRO

(I) Translation complexes

(J) Mature virions

(K) Pentamer species

(legend continued on next page)
per 250-cell reaction and linear over at least five decades (Figures S3B and S3C). After specifying a VRO transition consistent with these data, the model achieved excellent quantitative agreement with the absolute estimates of positive and negative strands (Figures 3C and S3D), and the module was deemed valid. Results were comparable if defective RNA genomes assembled as bound polysomes in the model or were additionally subject to nonsense-mediated decay (Figures S3E and S3F). Future iterations will consider the de novo generation of defective genomes during replication (Schulte et al., 2015).

Model-experiment concordance required the particle-to-PFU ratio described earlier and a quantification of the positive-to-negative strand ratio in released particles (1,790; Figure S3B). Notably, we also assumed that replicative intermediates—positive RNA–RNA hybrids of positive and negative strands—were not detected by the tagged qPCR method. Upon cell lysis, collapsed replicative intermediates would be difficult to denote fully for biotinylated priming without thermally degrading the RNA itself. We tested the assumption by mixing 10⁵ copies of purified strand with increasing amounts of the complementary strand per 250-cell reaction and measuring both with the stranded assay (STAR Methods). Although copy numbers were accurate for many mixtures, some limiting ratios were irreproducible or grossly underestimated (Figure 3D). Such strand competition is probably even more severe in cells, where replicating strands are already nearby their complementary template (Novak and Kirkegaard, 1991).

There are experimental workarounds to accessing collapsed replicative intermediates, but their detection efficiency is difficult to determine (Hohenadl et al., 1991; Novak and Kirkegaard, 1991; Tam and Messner, 1999). Using the model at 10 PFU, we simulated the positive-to-negative strand ratio predicted when replicative intermediates were incorporated in the calculation at different efficiencies (STAR Methods). Replicative intermediates, even at 10% detection efficiency, profoundly altered the calculated ratio and its dynamic trajectory (Figure 3E). Literature-derived ratios of 50:1 to 100:1 were recapitulated in the model with detection efficiencies of 10%–30% (Hohenadl et al., 1991; Lévéque et al., 2012; Novak and Kirkegaard, 1991). At 100% detection efficiency, the model predicted lower ratios near 15:1. Lower positive-to-negative strand ratios have been observed in single-cell enterovirus assays involving large dilutions of a cell extract after lysis that may disfavor collapse of replicative intermediates (Schulte and Andino, 2014). Taken together, we conclude that the replication module is consistent with internal measurements as well as a range of observations in the literature.

Encapsidation must coordinate the kinetics of enteroviral protein synthesis, recruitment, and self-assembly

Besides 3Dpol, positive-strand translation also yields equal numbers of enteroviral proteinases, hydrophobic membrane-interacting proteins, and structural proteins that form the viral capsid (Figure 1A). We simplified by defining a single, lumped protease with the substrate specificity of both 2Apro and 3Cpro (STAR Methods). Likewise, membrane-associated 3Dpol in the model considers 3Dpol together with the tightly interacting hydrophobic protein, 3AB (Figure 3A) (Xiang et al., 1998). We grouped the remaining hydrophobic proteins into a single exemplar, 2C AtPase, because of its direct interaction with the VP3 structural protein (Liu et al., 2010). VP3 assemblies instantaneously with VP0 and VP1 to form a VP0–VP1–VP3 protomer (Jiang et al., 2014). We balanced molecular detail and complexity by modeling structural proteins as the 14S intermediate pentamer (VP0–VP1–VP3)(10), one-fifth of which was generated with each polyprotein matured (Figure 4A). Together, these simplifications decompose the mature CVB3 polypeptide into four species—protease (2Apro and 3Cpro), 3Dpol, 2C ATPase, and pentamer—that should balance stoichiometrically under limiting conditions (Figures S4A and S4B).

One of the earliest consequences of enteroviral proteinase maturation is the cleavage of the host-cell eukaryotic initiation
factor, eIF4G, by 2A^{pro} (Etchison et al., 1982), eIF4G cleavage prevents ribosomes from initiating cap-dependent translation, thereby favoring the cap-independent translation of the virus (Figure 4A) (Darnell and Levintow, 1960; Fernandez-Munoz and Darnell, 1976). We modeled the shutoff of host-cell translation and theft of ribosomes by incorporating a protease-catalyzed conversion of ribosomes from inaccessible (cap-dependent) to accessible for CVB3 (STAR Methods). The full model showed good agreement with the relative dynamics of eIF4G cleavage and the synthesis of VP1 capsid protein (Figures 4B, 4C, S4C, and S4D), suggesting accurate encoding of the precursors to encapsidation.

Viral pentamers were not placed immediately on VROs like 3D^{pol} but instead were recruited to membranes by their interaction with available 2CATPase (Figure 4A; STAR Methods) (Liu et al., 2010). As neither kinetic nor equilibrium constants are available for the VP3–2CATPase interaction, we began with rate parameters that were realistic and consistent with a nominal affinity of 100 nM (Table S1). For viral RNA of either strand, there are multiple possible binding partners (Lyle et al., 2002), and thus, we modeled VRO recruitment as a passive exchange between cytoplasmic and VRO compartments (STAR Methods). Considering the VRO-concentrating effect and assuming a representative RNA-protein association rate of 25 nM^{−1}h^{−1} (Gleitsman et al., 2017), an exchange rate of 1 h^{−1} equates to an effective membrane affinity of ~125 nM. Sensitivity of the model to these approximations would be analyzed after defining the encapsidation steps that yield mature virions.

Encapsidation of enteroviral RNA arises from a series of individually weak interactions (~1 mM contact affinity) that multiplicatively contribute to the final "closed" virion (Li et al., 2012), which we assumed to be irreversible (Figure 4D; Table S1; STAR Methods). Capsid self-assembly can also take place without viral RNA. We simplified the combinatorics by assuming that assembly occurs one pentamer at a time through reversible additions of pentamers that are either unbound or bound to RNA (STAR Methods). In this formalism, intermediate pentamer states can arise from multiple paths. For example, an empty state of five pentamers (P5Empty) can result from the addition of a pentamer to P4Empty, the loss of a pentamer from P6Filled, or the loss of RNA-bound pentamer from P6Filled. The disassembly of filled intermediates was assumed to release RNA with decreasing probability as the number of pentamers in the intermediate increased. P6Filled, for instance, disassembles to P5Filled + free pentamer[−]₅₀ of the time and P5Empty + RNA-containing pentamer[−]₅₀ of the time. The detailed encoding of encapsidation enables the module to keep track of the discrete steps to virion production and identify stoichiometric depletions of precursors or pentamer states if they occur.

To illustrate the importance of weak and balanced interactions for encapsidation, we increased the contact affinity between RNA and pentamer from 1 mM to 100 μM and found that the slight imbalance completely blocked encapsidation (Figure 4E). Pentamers recruited to the VRO were fully sequestered by the increasing abundance of positive strands, depleting the free pentamer pool available for higher-order assembly of capsids. Similar kinetic-trapping mechanisms dominated when pentamer contact affinities were tighter than 10 μM. By comparison, the module was not as sensitive to the VP3–2CATPase interaction strength that recruits pentamer to VROs, with virtually no change observed when the affinity was altered 10-fold (Figure 4F; Table S1). Unrealistic delays in encapsidation did not occur until the affinity was reduced from 100 nM to 1–10 nM, suggesting that alanine mutants of 2CATPase disrupting encapsidation must severely hinder interactions with pentamer (Wang et al., 2012).

In contrast to pentamer recruitment, we found that kinetic interactions between viral RNA and the VRO surface were critical. Increasing the effective membrane affinity (10-fold decrease in k_{off} and thus K_D; Figure 4A) largely blocked capsid formation by driving RNA prematurely to the VRO at the expense of translation complexes needed to generate sufficient 3D^{pol} for replication (Figures 4G–4I). Even with the same equilibrium affinity, faster exchange was problematic for effective encapsidation. We noted virion production tailed away when on-off rates were both increased 10-fold (Figure 4J). The shorter residence time at the VRO led to large increases in early pentamer species (P1Filled to P6Filled) at the expense of later filled pentamers needed for sustained virion production (P9Filled to P11Filled; Figure 4K). The model thus provides a quantitative rationale for the multiple RNA-binding interactions at the membrane surface (Jiang et al., 2014). Overall, the encapsidation module finishes the viral life cycle in a stoichiometrically consistent way and makes specific predictions about the critical kinetic and thermodynamic steps of self-assembly.

Loss of type I interferon signaling coincides with degradation of MAVS during CVB3 infection

With the viral life cycle modules encoded, we returned to host-cell signaling responses in search of pathways engaged during an acute CVB3 infection. The CVB3 proteinase 3C^{pro} can block inflammatory signaling by cleaving the NF-κB inhibitor, IκBα, and converting it to a stably associated, non-degradable form (Zaragoza et al., 2006). In AC16-CAR cells, however, we detected canonical degradation of IκBα and induction of NF-κB target genes a few hours after CVB3 infection (Figures 5A and 5B). We next considered the type I interferon signaling pathway, which is robustly triggered by cytosolic dsCVB3 in these cells (Figure 1B). Although phosphorylation of the effector kinase TBK1 was detected transiently after infection, the antiviral signal was not reliably propagated to IRF3 or interferon signaling through phosphorylated STATs (Figures 5C and 5D). There was no induction of the IFNA locus, nor did we observe upregulation of any ISG profiled in cells infected with live virus (Figures 5E and S5A–S5E). The results suggested that CVB3 actively severs signal transmission from its dsRNA replicative intermediate to a productive type I interferon response.

Both 3C^{pro} and 2A^{pro} are reported to target components of the innate dsRNA sensing and signal-transduction machinery (Feng et al., 2014; Mukherjee et al., 2011). Normally, long dsRNA is detected by MDA5, which associates with the mitochondrial transducer MAVS to drive surface polymerization that signals through the adaptor TRAF, the kinase TBK1, and the transcription factor IRF3 (Tan et al., 2018). Although MDA5 was not significantly altered in AC16-CAR cells during CVB3 infection, we noted a mid-infection dip in proteoforms of the mitochondrial transducer, MAVS (Figure 5F). Later post-infection times revealed a C-terminal fragment at 35 kDa (MAVS₃₅), which comprised up to 20% of the endogenous MAVS protein at 24 h; MDA5 was not clearly
(A) Acute CVB3 infection activates NF-κB signaling. AC16-CAR cells were infected with CVB3 at MOI = 10 for the indicated times and immunoblotted for IκBα (A, upper) with ectopic CAR-V5, p38 (A, lower), vinculin, and tubulin used as loading controls.

(B) Acute CVB3 infection induces NF-κB-mediated gene expression. Total RNA was collected at the indicated times and measured for the indicated NF-κB target genes with HINT1, PRDX6, and GUSB used as loading controls.

(C) Acute CVB3 infection triggers TBK1 phosphorylation but not IRF3 phosphorylation. AC16-CAR cells were infected with CVB3 at MOI = 10 for the indicated times and immunoblotted for phosphorylated TBK1 (Ser172) relative to total TBK1 (Relative pTBK1) (C, upper) or phosphorylated IRF3 (Ser396) relative to total IRF3 (Relative pIRF3) (C, lower) with ectopic CAR-V5, p38, vinculin, and tubulin used as loading controls.

(D) STAT phosphorylation is not induced by acute CVB3 infection. AC16-CAR cells were infected with CVB3 at MOI = 10 for 24 hours or treated with 30 ng/ml IFNβ for 30 minutes as a positive control and immunoblotted for phosphorylated STAT1 (pTyr701) and total STAT1 (D, left) or phosphorylated STAT3 (pTyr705) and total STAT3 (D, right) with vinculin, tubulin, and GAPDH (± CVB3) or actin, tubulin, and p38 (± IFNβ) used as loading controls.

(E) Type I interferon and interferon-stimulated genes (ISGs) are not induced by acute CVB3 infection. Total RNA was collected at the indicated times and measured for the indicated ISGs with HINT1, PRDX6, and GUSB used as loading controls.

(F) MAVS, but not MDA5, is detectably reduced during CVB3 infection. AC16-CAR cells were infected with CVB3 at MOI = 10 for the indicated times and immunoblotted for MDA5 (F, upper) or the full-length (FL) and mini-MAVS (mini; translated by leaky ribosomal scanning at Met142 Brubaker et al., 2014) upper) or the full-length (FL) and mini-MAVS (mini) with ectopic CAR-V5, p38, vinculin, and tubulin used as loading controls.

(G) MAVS is cleaved during CVB3 infection. AC16-CAR cells were infected with CVB3 at MOI = 10 for 24 h and immunoblotted for MDA5 or MAVS with vinculin, tubulin, and GAPDH used as loading controls. A 35 kDa MAVS cleavage product (MAVS35) is visible 24 h after infection.

(H) Immunoblot densitometry of replicated experiments described in (G).

(i) Mature virion formation predicted by complete kinetics with or without innate antiviral sensing (antiviral), viral antagonism of antiviral sensing (antagonism), or supplemental interferon (IFN) added at the indicated times. Predictions are shown as the median simulation ± 90% nonparametric confidence interval from n = 100 simulations of single-cell infections at 10 PFU with a parameter coefficient of variation of 5%.

Data are shown as the mean ± SEM (A, C, D, F, and H) or geometric mean ± log-transformed standard error (B and E) of n = 4 biological replicates. For (A–C), (E), and (F), time courses with significant alterations were assessed by one-way ANOVA (or, for MAVS35 and MAVSmini, two-way ANOVA) with replication, and a single asterisk indicates p < 0.05 for individual time points compared with t = 0 h (gray band) after Tukey’s post-hoc correction. For (D) and (H), a double asterisk indicates p < 10^-4 by Student’s unpaired t test.

See also Figure S5.
affected over the same time frame (Figures 5G and 5H). The mid-infection decrease in full-length MAVS (MAVSFL) was concurrent with the loss of TBK1 phosphorylation and the explosive increase in CVB3 protein (Figures 4B, 5C, and 5F). A MAVSFL fragment implied that MAVSFL was split in half, separating its N-terminal oligomerization domain from the C-terminal mitochondrial-microsomal transmembrane domain (Esser-Nobis et al., 2020; Seth et al., 2005). Even slight abundance shifts in MAVS proteoforms can alter the propensity of the pathway to activate (Bubaker et al., 2014; Qi et al., 2017). Together, the data suggested that a CVB3-derived protein antagonizes the dsRNA-mediated interferon response by cleaving an essential transducer (Sun et al., 2006).

We elaborated the infection model with a lumped interferon response, which pairs a CVB3 sensing-and-transduction mechanism with a single, pleiotropic ISG effector (ISGs, Figure 1A; STAR Methods). The joint sensor-transducer recognizes dsRNA and sigmoidally induces the ISG effector, streamlining the native regulation by the MDA5–MAVS–TRAF–TBK1–IRF3 pathway (Wu and Chen, 2014). The ISG effector impedes CVB3 infection at three points in the life cycle. First, the effector accelerates CVB3 RNA turnover, modeling the activity of oligoadenylate synthetases and RNase L (Figures 1A and 1B) (Schwartz and Conn, 2019). Second, the effector blocks CVB3 polyprotein synthesis to capture dsRNA recognition and translational inhibition by the PKR pathway (STAR Methods) (Pindel and Sadler, 2011). Third, the effector incorporates interferon-stimulated mechanisms for disabling CVB3 proteases, such as ISGylation of 2Apro and PARP9–DTX3L-mediated ubiquitylation of 3Cpro (Rahnefeld et al., 2014; Zhang et al., 2015). The three antiviral effects were encoded as hyperbolic feedbacks on the CVB3 RNA degradation rates, the formation rate of CVB3 translation complexes, and the effective production rate of active protease (2Apro and 3Cpro), respectively (Figure 1A; STAR Methods). The active protease pool reciprocally feeds back on the sensor-transducer in the model to hyperbolically limit the maximum induction rate of the ISG effector in response to dsRNA (Figure 1A; STAR Methods). The interlinking of these four negative feedbacks provides a compact abstraction of the multifaceted regulation by the ISG effector in response to dsRNA (Figure 1A; STAR Methods) (Pindel and Sadler, 2011). Such potency could be achieved if the relevant protease is locally complexed with the dsRNA sensor-transducer that is cleaved. For MAVS cleavage, a plausible candidate is the precursor to 3Cpro and 3Dpol, 3CDpro, which has both protease activity and nucleotide-binding activity for replication (Franco et al., 2005). The importance of potently antagonizing ISG induction is corroborated by a recent computational model of Dengue virus (Zitzmann et al., 2020). Combining the entoviral life cycle with host-cell feedbacks created a rich dynamical system to mine for predicted behavior that was non-intuitive and possibly important for pathogenesis.

The feedback parameters of the lumped interferon response are phenomenological and not directly measurable. Nevertheless, the feedback architecture places strong qualitative constraints on their relative potencies:

1. AC16-CAR cells are capable of mounting an interferon response to CVB3 dsRNA (Figure 1B). However, the response is blocked during an active infection, presumably through protease-mediated antagonism of dsRNA sensing and cleavage of MAVS (Figures 5E–5H). The feedback potency of the protease pool must therefore be potent enough to degrade dsRNA sensing in the model during an active infection.

2. Early stimulation of AC16-CAR cells with interferons significantly impedes CVB3 propagation (Shah et al., 2017), suggesting that an endogenous interferon response would be sufficient if it were fully mobilized and not disrupted by viral proteases. Thus, the modeled type I interferon response should thwart the virus in simulations where dsRNA sensing-transduction is fully intact. (3) At later times during CVB3 infection, the addition of interferons becomes ineffective (Figure 5F). The 6–8 h time window indicates that antiviral mechanisms become ineffective after the virus has passed a critical “point of no return” in its life cycle.

Using these constraints, we identified feedback weights with half-maximal effective concentrations (EC50s) that conferred the specified qualitative behavior (Figure 5I; STAR Methods). The outcome of infection was robust when these heuristic EC50 values were varied individually over a severalfold range (Figure 5G). Most EC50 values were in the nM range (5–20 nM) except for protease antagonism of dsRNA sensing-transduction, which needed to be much lower (1 pM). Such potency could be achieved if the relevant protease is locally complexed with the dsRNA sensor-transducer that is cleaved. For MAVS cleavage, a plausible candidate is the precursor to 3Cpro and 3Dpol, 3CDpro, which has both protease activity and nucleotide-binding activity for replication (Franco et al., 2005). The importance of potently antagonizing ISG induction is corroborated by a recent computational model of Dengue virus (Zitzmann et al., 2020). Combining the entoviral life cycle with host-cell feedbacks created a rich dynamical system for predicting behavior that was non-intuitive and possibly important for pathogenesis.

A cleavage-resistant MAVS mutant shows enhanced antiviral activity upon delayed stimulation with paracrine interferon

We used the model to examine viral outcomes to delayed addition of interferon (Figure 5F). The scenario mimics a setting of paracrine antiviral signaling, where an infected cell is warned of a local infection by an interferon-secreting cell nearby. The earlier this paracrine warning signal is received, the more effective the stimulated interferon response can be at inhibiting viral propagation. We reasoned that the timed addition of interferon would uncover nonobvious combinatorial sensitivities in the network that could be tested experimentally. Using mature virions as the readout, we screened a five-tiered range of potencies for the three interferon feedbacks and viral-protease antagonism (54 = 625 simulations), and each simulation was run with or without interferon at five different times after infection (54(1 + 5) = 3,750 simulations). Many of the perturbations affected mature virions monotonically with effects that superposed when combined. However, the computational screen revealed a sensitivity to viral-protease antagonism that was dependent on delayed addition of interferons at intermediate times post-infection (Figures 6A and 6B). If interferon was supplemented early (~4 h), viral propagation was damped to a basal level regardless of the extent of antagonism. However, when viral-protease antagonism was reduced 5-fold, the damping persisted even when interferon was supplemented later (~6 h). At this time, the base model cannot maintain peak ISG production because of excess viral protease but the resistant variant is still maximally fighting the infection (Figures S6A and S6B). The testable prediction was that perturbing sensor-transducer degradation by viral proteases would have analogous...
Figure 6. MAVS is a sensitive locus for CVB3 susceptibility in the host-cell network

(A) CVB3 virion production is modulated nonlinearly by host-cell resistance and time-delayed supplementation of interferon. Virion output from complete kinetics with (blue) or without (red) 5-fold altered resistance to viral proteinases. Negative feedback from the viral proteinases on the viral dsRNA sensor-transducer was decreased to mimic an increase in host-cell resistance. Supplemental interferon (IFN) was simulated at the indicated times. (B) Summary of the 24-h terminal endpoint of the simulations in (A).

(C) AC16-CAR cells stably transduced with doxycycline (Dox)-regulated 3xFLAG-tagged Gln271 MAVS or Ala271 MAVS were treated with 1 μg/mL Dox for 24 h and immunoblotted for FLAG and MAVS with actin used as a loading control. The image gamma correction was adjusted for MAVS (gamma = 4) to show the endogenous full-length MAVS (MAVSFL) and mini-MAVS (MAVSmini) at the same exposure as the induced constructs.

(D) Immunoblot densitometry of induced ectopic MAVS relative to endogenous MAVSFL + MAVSmini in AC16-CAR cells treated with or without Dox. Data are shown as mean ± SD of n = 6 different MAVS alleles used in this work (see also Figure 7; STAR Methods).

(E) CVB3-induced MAVS cleavage is reduced in cells expressing the Ala271 mutant. AC16-CAR cells stably transduced with inducible Gln271 MAVS or Ala271 MAVS were induced with Dox for 24 h, then infected with CVB3 at MOI = 5 for 24 hours and immunoblotted for FLAG or MAVS with actin and tubulin used as loading controls. MAVSFL, MAVSmini, and the 35 kDa MAVS cleavage product (MAVS35) are indicated.

(F) Immunoblot densitometry of replicated experiments described in (E) using n = 3 different CVB3 batches and 1–4 biological replicates per batch.

(G) CVB3-induced virion release is reduced in cells expressing the Ala271 MAVS. Representative plaque assay for infectious virion release in the conditioned medium from AC16-CAR cells after induction of Gln271 MAVS or Ala271 MAVS and infection with CVB3 at MOI = 5 for 24 h.

(H) Quantification of PFU from n = 3 different CVB3 batches and 1–4 biological replicates per batch. Data are summarized as PFU/mL ± 95% Poisson confidence intervals based on the mean or the observation.

(I) Ala271 MAVS sustains its antiviral potency upon delayed addition of beta-interferon (IFNβ). After induction of Gln271 MAVS or Ala271 MAVS, AC16-CAR cells were infected with CVB3 at MOI = 10 for 24 h, with 30 ng/mL IFNβ added at the indicated times after the start of CVB3 infection. Data are shown as the mean ± SEM of n = 4 biological replicates, and differences across conditions were assessed by one-way ANOVA (pANOVA) with Tukey’s post-hoc test for individual differences: *p < 0.05, **p < 0.01, ***p < 0.001. The indicated reductions in viral titers between the two genotypes are qualitatively similar to a second Ala277-harboring MAVS allele (Ala148Ala277) shown in Figure S6D.
time-dependent effects when infected cells received supplemental interferons.

To test this prediction, we returned to the CVB3-induced cleavage of MAVS observed earlier (Figures 5G and 5H). MAVS can be cleaved by 3Cpro at a Gln-Ala cleavage site between positions 148 and 149 (Mukherjee et al., 2011). However, such a cleavage product would be electrophoretically indistinguishable from MAVS_{mini}, an oligomerization-deficient proteoform that is translated by leaky ribosomal scanning at Met¹⁴² (Brubaker et al., 2014). The site’s importance for CVB3 infectivity is also unclear because Ala¹⁴⁹ in MAVS is undergoing rapid positive selection in primates (Patel et al., 2012). Chimpanzees (Val¹⁴⁹) and African green monkeys (Arg¹⁴⁹) both have substitutions that should prevent cleavage by 3Cpro (Blom et al., 1996), but coxsackievirus infections have been documented in both species (Nielsen et al., 2012; Takada et al., 1968). We considered alternative sites that would be more consistent with the observed MAVS_{mini} product and identified a Gln-Gly cleavage site between positions 271 and 272. The site is included in a 6-amino-acid insertion distinguishing old-world monkeys/hominoids from new-world monkeys, which are seronegative for coxsackievirus (Deinhardt et al., 1967). The phylogenetics and observed cleavage pattern of MAVS built a stronger case for Gln²⁷¹ as an important site for sensor-transducer degradation during CVB3 infection.

Using a human MAVS template derived from a widely cited IMAGE clone (Meylan et al., 2005; Seth et al., 2005), we cloned a doxycycline-inducible, FLAG-tagged MAVS with or without Gln²⁷¹ substituted for alanine (Ala²⁷¹; STAR Methods). Lentiviral transduction and selection of AC16-CAR cells yielded lines with comparably inducible ectopic MAVS alleles, which could be compared with one another (Figures 6C and 6D). When cells were induced and then infected with CVB3, we found that the generation of MAVS₃₅ was significantly reduced in the Ala²⁷¹ line compared with the Gln²⁷¹ line for multiple viral stocks (Figures 6C–6I), we reasoned that position 93 might represent a naturally occurring interface for CVB3 antagonism (Figure 7A) (Blom et al., 1996). Similar to Gln²⁷¹, cleavage at Gln⁹³ would separate the oligomerization domain (CARD) of MAVS and thereby prevent signal transmission from MAVS to TRAFs on the mitochondrial surface (Figure 7A).

To evaluate the impact of MAVS cleavage on viral propagation, we collected media from cells treated with CVB3 for 24 h and titrated infectious virions by plaque assay (STAR Methods). Titers from the Ala²⁷¹ line were significantly lower than those from the Gln²⁷¹ line even more closely with model predictions when using an inducible, cleavage-resistant MAVS allele containing a compound mutation at the other site reportedley cleaved by 3C^{pro} (Ala¹⁴⁸Ala²⁷¹; Figure S6E) (Mukherjee et al., 2011). We conclude from these experiments that the overall importance of CVB3-proteinase susceptibility for MAVS is strongly modulated by paracrine interferon, consistent with the predictions of complete kinetics.

Enteroxiral proteinase cleavage of MAVS is redirected by a prevalent human polymorphism

The IMAGE clone used to construct the MAVS alleles is valid but contains three common polymorphisms that deviate from the reference protein sequence of humans and other mammals: Q93E (rs17857295; 25% aggregated allele frequency), Q198K (rs726930; 16%), and S409F (rs7269320; 16%) (Phan et al., 2020). The Q198K polymorphism is considered functionally neutral (Pothlichet et al., 2011), and none of these variants alter the mitochondrial localization of MAVS (Xing et al., 2016). However, the substitution at position 93 was relevant, because Gin⁹³ in the reference sequence creates the possibility of an additional site for cleavage by 3C^{pro} (Figure 7A) (Blom et al., 1996). Similar to Gln²⁷¹, cleavage at Gin⁹³ would separate the oligomerization domain (CARD) of MAVS and thereby prevent signal transmission from MAVS to TRAFs on the mitochondrial surface (Figure 7A).

Considering the effect of the synthetic Ala²⁷¹ mutant (Figures 6C–6I), we reasoned that position 93 might represent a naturally occurring alternative site affecting CVB3 infectivity in the human population. We replaced Gin⁹³ in the IMAGE clone sequence with Gin⁹³ and established AC16-CAR lines with equivalently inducible expression (Figure 6D). Upon CVB3 infection of the Gln⁹³ line, we detected a specific N-terminal MAVS fragment at ~18 kDa, which was consistent with cleavage at position 93 (Figures 7A and 7B). Given that the Gin⁹³ allele of MAVS harbors an additional 3C^{pro} site at Gin²⁷¹, we anticipated that this line would be even more permissive to CVB3 infection than the Gln⁹³ line. Unexpectedly, the opposite was true—the Gin⁹³ line yielded significantly fewer infectious virions than the Gin⁹³ line, despite twice as many 3C^{pro}-targetable sites (Figure 7C). Moreover, the Gin⁹³ allele of MAVS was cleaved much less extensively at position 271 in CVB3-infected cells, as indicated by the formation of MAVS₃₅ (Figure 7D). The results indicated a coupling between Gin⁹³ and Gin²⁷¹, where two cleavage options for 3C^{pro} rendered MAVS more resistant to viral antagonism than one.

There are now detailed models of MAVS activation triggered by dsRNA (Schweinoch et al., 2020). However, before stipulating

For (A) and (B), predictions are shown as the median simulation ± 90% nonparametric confidence interval from n = 100 simulations of single-cell infections at 10 PFU with a parameter coefficient of variation of 5%. For (F) and (H), the difference between MAVS genotypes was assessed by replicated two-way ANOVA with MAVS genotype and CVB3 batch as factors.

See also Figure S6.
hierarchical or otherwise-special properties for different MAVS
cleavages, we asked whether a separate, highly simplified model
of MAVS regulation could be explanatory (Figure 7E). MAVS
signaling occurs on the surface of mitochondria by polymeric
self-assembly into filaments, which are nucleated by MDA5
binding to the dsRNA intermediates of CVB3 (Feng et al., 2012;
Hou et al., 2011). For the model, we assumed that MAVS activa-
tion occurs at a constant rate (k_{act}) and on the same timescale as
the activation of 3C pro (STAR Methods).

Figure 7. MAVS is a sensitive locus for
CVB3 susceptibility in the human population
(A) Sequence and domain architecture of MAVS. Above: predicted molecular weights of MAVS cleaved at the indicated positions—MAVS is
acidic and separates on an SDS-polyacrylamide
gel (PAGE) with an electrophoretic mobility ~25% larger than the predicted molecular weights listed. The oligomerization domain (CARD) and
mitochondrial transmembrane (Mito TM) domains are
indicated along with the recruitment sites for
TRAF2 (T2) and TRAF6 (T6). The N-terminal
epitope tag is indicated as well as the approximate
peptide epitope of the anti-MAVS antibody (yellow).
Below: flanking amino acids around position
93 of human MAVS, which has a Glu/Gln polymorphism. Gln93 is widely conserved in mammals. The sequence logo for entreroviral 3Cpro was re-
derived from the enteroviral cleavage sites
analyzed by NetPicoRNA (STAR Methods) (Blom
et al., 1996).

(B) Ectopic expression of Gln93 MAVS gives rise to
an 18-kDa cleavage fragment. AC16-CAR cells
stably transduced with inducible Glu93 MAVS or
Gln93 MAVS were induced with doxycycline (Dox)
for 24 h, then infected with CVB3 at MOI = 5 for
24 h and immunoblotted for FLAG with actin and
ublin used as loading controls. The image
gamma correction was changed for FLAG (gamma = 4). (bottom) Immunoblot densitometry
of replicated experiments using $n = 3$ different
CVB3 batches and 1–4 biological replicates per
batch. The difference between MAVS genotypes
was assessed by Wilcoxon rank sum test.

(C) Ectopic Gln93 MAVS significantly reduces
virus release compared with ectopic Glu93 MAVS.
AC16-CAR cells stably transduced with inducible
Glu93 MAVS or Gln93 MAVS were induced with Dox
for 24 h, then infected with CVB3 at MOI = 5 for 24
h. Infectious virions in the conditioned medium
were collected at the end of the 24-h CVB3
infection. Quantification of PFU is from $n = 2$
different CVB3 batches and four biological repli-
cates per batch. The difference between MAVS
genotypes was assessed by replicated two-way
ANOVA with MAVS genotype and CVB3 batch as
factors.

(D) Ectopic expression of Gln93 MAVS reduces the
35-kDa cleavage fragment. AC16-CAR cells stably
transduced with inducible Glu93 MAVS or Gln93
MAVS were induced with Dox for 24 h, then im-
munoblotted for FLAG and MAVS with actin and tubulin used as loading controls (left). Immunoblot densitometry of
replicated experiments using $n = 3$ different CVB3 batches and 1–4 biological replicates per batch (right). The difference between MAVS genotypes was assessed
by replicated two-way ANOVA with MAVS genotype and CVB3 batch as factors.

(E) State-based model of MAVS self-assembly and cleavage by 3Cpro. The core model for the Glu93Ala271 mutant (black) is elaborated with one or two 3Cpro-
catalyzed cleavage reactions for the Glu93Gln271 MAVS (green) or the Gln93Gln271 polymorphism (brown), respectively.

(F) Simulated trajectories for the three MAVS alleles: Glu93Ala271 (EA, black), Glu93Gln271 (EQ, green), and Gln93Gln271 (QQ, brown). Single-parameter sensitivity
analysis for the time-integrated ISG profile is shown in Figure S8A, and the effect of MAVS genotypes is shown in Figures S8B–S8D.

See also Figure S8.
kinetic competition between MAVS and 3Cpro is funneled served for a range of parameter sets (Figure S8A). The model sustained to transient, but differences in ISG induction are pre-parameters, the distinction is enough to change ISG kinetics from and troughs twice as quickly, hence, decaying slowly from a Glu93 allele may thus contribute to the individual severity of hu-
mulate (Figure 7F). This trajectory is sustained for the a pseudo-steady state as polyMAVS and ISGs begin to accu-
Glu93Ala271 allele because nothing abates the constant rate of MAVS activation (EA;Figure 7F). For the cleavable alleles, how-
318 allele (EQ; vertical arrows inFigure 7F). In this set of model pa-
merization (Clv1 or Clv2;Figure 7E). Either cleavage will remove
merization domain from MAVS and render it unable to polymerize (Figure 7A). Recognizing that the remaining C-termi-
nal truncations on the mitochondrial surface could further inhibit the polymerization of full-length MAVS (Qi et al., 2017), we al-
we permitted unequal feedback between the two cleavage products for the Gln93Gln271 allele (∂x and γ∂x), even though the simulations were largely insensitive to negative feedback overall (Figures S7 and S8A; STAR Methods). When negative feedbacks are equal (Figure 7F) or absent (Figure S7; STAR Methods), the only difference between the simulations involving cleavage is that the polymerization–competent Gln93Gln271 is removed twice as quickly as Glu93Gln271.

In the filamentation model, all MAVS genotypes rapidly reach a pseudo-steady state as polyMAVS and ISGs begin to accumu-
the kinetic competition between MAVS and 3Cpro is fueled by a surface-polymerization step that is highly nonlinear. If small differences in proteinase susceptibility are amplified by paracrine interferons (Figure 6), the minor-but-prevalent Glu93 allele may thus contribute to the individual severity of hu-

DISCUSSION

This work examines the feasibility of complete kinetics for acute viral infections by leveraging the unsegmented genome of picornaviruses and 70+ years of entervoiral research in cells (Enders et al., 1949). We mathematically encoded the molecular pathways from viral binding and entry through the formation of mature virions. Interference by host-cell signaling was not ignored but superimposed as a set of feedbacks, which them-
selves were subject to increasing antagonism during viral pro-
gression. The resulting draft is consistent with measured param-
eters and other observations in the literature, as well as our own experiments. Collectively, the formalized mechanisms, com-
puter simulations, and experimental results point to MAVS as a critical determinant of the entervoiral response in human cells.

Generalization to other entervoiruses and cellular contexts

Organizing the complete kinetics of CVB3 into modules is advantage-
ous webs or invaginations that shield replication components to form two-dimensional lattices (Lyle et al., 2002). In turn, VROs emerge right at the onset of exponential entervoiral replication (Limpens et al., 2011).

A computational model of flavivirus reached a different conclu-
sion about the role of VROs (Binder et al., 2013). Parameter sensi-
tivity of VROs in this model emphasized the importance of comp-
artmentalizing RNA-dependent RNA polymerase and shielding the positive-strand template from degradation. The apparent discrepancy can be reconciled when considering the different rates of infection and replication between the two RNA-virus genera. Flaviviral polymerase associates >60-fold more slowly and synthesizes at one-third the rate of enteroviruses (Jin et al., 2017). Complete kinetic modeling of CVB3 indicates that the main advantage conferred by entervoiral VROs is to accelerate replication biochemistry on membrane surfaces. The hydropho-
bic 3AB protein binds 3DP2D and supports its intrinsic propensity to form two-dimensional lattices (Lyle et al., 2002). In turn, VROs emerge right at the onset of exponential entervoiral replication (Limpens et al., 2011).
Expanding and revising complete kinetic models
We emphasize that the complete kinetics of CVB3 reported here is a draft that should be subject to future refinements. Many reaction parameters were drawn from literature on poliovirus (Table S1), which is more similar to certain A-type coxsackievirus strains than to CVB3 (Brown et al., 2003). Also, the physical interactions between viral RNA and the VRO surface were not specified with the same detail as elsewhere in the kinetic model. If the longer-lived 3CDpro precursor confers specific RNA-binding properties to the membrane (Herold and Andino, 2001), the stoichiometry of this intermediate may need to be considered explicitly. The threshold for VROs was the one instance where a model parameter was “tuned” to data. Although uncertainty may persist around the switch to VRO-like surface behavior, future alternatives will be easy to vet because VRO initiation is such a critical transition in the simulations.

The feedbacks overlaid on the kinetic model could certainly be elaborated more deeply, but there are also advantages to lumping at this scale. For example, MAVS is cleaved at a different site (Gln428) by the mitochondrially localized 3ABC precursor of hepatitis A picornavirus (Yang et al., 2007). The net result, however, is the same as cleavage at Glu93 or Gln271—separation of the MAVS oligomerization domain from the mitochondrial surface where it can polymerize rapidly. A different challenge relates to incorporating the human MAVS alleles with different cleavage susceptibilities. Although the simplified MAVS regulatory model is intriguing, it is premature to incorporate as part of complete kinetics. The modeled step is but one in a pathway, using parameters that were nominal approximations of fast and slow processes. Even within this step, the true length of polymerized MAVS filaments in cells is actively debated (Hwang et al., 2019). Frankly, cell signaling is not really geared for complete kinetics like fast-acting RNA viruses are. For cell signaling, more appropriate are the abstractions and flexible system boundaries of models that are incomplete but useful (Janes and Lauffenburger, 2013).

Implications for enteroviral disease
The Q93E polymorphism in MAVS occurs with a mutant allele frequency of ~50% among individuals of East Asian ancestry (Phan et al., 2020), indicating a large proportion of homozygous individuals in these populations. Geographically, many Asian countries face widespread cyclical outbreaks of enterovirus infection, and the understanding of risk factors is incomplete (Koh et al., 2016). The MAVS regulatory model suggests that a pure Glu93 context behaves very differently from a mixture of Glu93 and Gln93 (Figures S8B–S8D). Based on the MAVS RNA-seq reads, we gleaned that AC16 cells are heterozygous for the Q93E allele. Our results argue for more-formal studies of CVB3 susceptibility in isogenic lines that investigate different geneticotypes of MAVS expressed at endogenous levels.

Pharmacologically, 3Cpro has long been recognized as a therapeutic target for enteroviral infections, with inhibitors reaching as far as Phase II (Becker et al., 2016; Hayden et al., 2003; Kim et al., 2012). The rationale for such compounds is to block maturation of the enteroviral polypeptide, but it can be challenging to target an intramolecular cleavage with sufficient potency in cells. Intermolecular 3Cpro activity toward MAVS provides a means for reappraisal, especially considering its variable cleavability in humans. According to the encoded viral feedback, a 10–20-fold shift in the EC50 for sensor-transducer degradation is sufficient to block a low-titer CVB3 infection (MOI = 1) entirely.

Complete kinetics is a tangible organizing principle for viruses with a limited gene repertoire and an acute mode of infection. The concept may seem a distant goal for large viruses with multiple unknown gene products. It is nonetheless a goal that can specify where operational paradigms are unsatisfactory. Overall, viruses are much more modular than the host cells they infect. Systems bioengineers should exploit this property to define the integrated parts lists that could one day be mixed and matched to propose complete kinetic models for viruses that have recently recombined (Janes et al., 2017; Li et al., 2020).

STAR METHODS
Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead Contact
 - Materials Availability
 - Data and Code Availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Cell lines
- **METHOD DETAILS**
 - Plasmids
 - Viral Transduction
 - AC16 Quiescence
 - CVB3 Infection
 - Cell Morphometry
 - Cell Lysis
 - Immunoblotting
 - In Vitro Transcription of CVB3 Positive and Negative Strands
 - dsRNA Transfection
 - ISG Transfection and Protein-Synthesis Inhibition
 - RNA-seq and Analysis
 - HeLa Cell Transcriptomic and Proteomic Data
 - Determination of CVB3 Particle-to-PFU Ratio
 - Quantitative PCR (qPCR)
 - Tagged Strand-Specific qPCR
 - Plaque Assay
 - 3Cpro Sequence Logo
 - CVB3 Complete Kinetic Model
 - MAVS Filamentation Model
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
 - dsRNA-Induced Interferon Response
 - ISG Protein Half-Life Determination
 - Plaque Assay Calculations
 - Relative Cleavage of MAVS Genotypes
 - Protein Abundance Estimation From TPM Data
 - Statistics

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.celis.2021.02.004.
ACKNOWLEDGMENTS

We thank Peter Kasson and Cameron Griffiths for comments regarding the manuscript, Emily Farber at the Center for Public Health Genomics for performing the RNA-seq, Matthew Suttle for performing the RNA-seq alignments, Lixin Wang for recognizing the Q93E substitution in the original MAVS IMAGE clone, Karin Klingel for reagents, and Karla Kirkegaard for expert advice on model construction. This work was supported by the David and Lucile Packard Foundation (grant 2009-34710, K.A.J.), a gift from the Salamone Family Foundation (K.A.J.), and the University of Virginia cardiovascular training grant (T32-HL007284, A.J.S. and C.M.S.).

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

REFERENCES

Deinhardt, F., Holmes, A.W., Devine, J., and Deinhardt, J. (1967). Marmosets as laboratory animals. IV. Microbiology of laboratory kept marmosets. Lab Anim Care 17, 48–70.

Etchison, D., Milburn, S.C., Edery, I., Sonenberg, N., and Hershey, J.W. (1982). Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with...

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit polyclonal anti-p38α (C-20)</td>
<td>Santa Cruz Biotechnology</td>
<td>Cat# sc-535; RRID: AB_632138</td>
</tr>
<tr>
<td>Mouse monoclonal anti-B Actin (AC-15)</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# AM4302; RRID: AB_2536382</td>
</tr>
<tr>
<td>Mouse monoclonal anti-CVB3 VP1 (clone 31A2)</td>
<td>Medigast</td>
<td>Cat# M47</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-eIF4G</td>
<td>Cell Signaling Technology</td>
<td>Cat# 2498; RRID: AB_2096025</td>
</tr>
<tr>
<td>Mouse monoclonal anti-FLAG M2</td>
<td>Sigma</td>
<td>Cat# F1804; RRID: AB_262044</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-HSP90 (H-114)</td>
<td>Santa Cruz Biotechnology</td>
<td>Cat# sc-7947; RRID: AB_212135</td>
</tr>
<tr>
<td>Mouse monoclonal anti-IκBα</td>
<td>Cell Signaling Technology</td>
<td>Cat# 4814; RRID: AB_390781</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-IRF-3 (D83B8)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 4302; RRID: AB_1904036</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-Phospho-IRF-3 (Ser396)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 4947; RRID: AB_823547</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-MAVS</td>
<td>Cell Signaling Technology</td>
<td>Cat# 3993; RRID: AB_823565</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-MDA5</td>
<td>Abcam</td>
<td>Cat# ab126630; RRID: AB_11129704</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-TBK1/NAK (D1B4)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 3504; RRID: AB_2255663</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-Phospho-TBK1/NAK (Ser172)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 5483; RRID: AB_10693472</td>
</tr>
<tr>
<td>Chicken polyclonal anti-αTubulin</td>
<td>Abcam</td>
<td>Cat# ab89984; RRID: AB_10672056</td>
</tr>
<tr>
<td>Rabbit monoclonal anti-α/β-Tubulin</td>
<td>Cell Signaling Technology</td>
<td>Cat# 2148; RRID: AB_2288042</td>
</tr>
<tr>
<td>Chicken polyclonal anti-V5</td>
<td>Bethyl Laboratories</td>
<td>Cat# A190-118A; RRID: AB_2556564</td>
</tr>
<tr>
<td>Mouse monoclonal anti-V5</td>
<td>Invitrogen</td>
<td>Cat# A190-118A; RRID: AB_66741</td>
</tr>
<tr>
<td>Mouse monoclonal anti-V5</td>
<td>Invitrogen</td>
<td>Cat# R960-25; RRID: AB_2556564</td>
</tr>
<tr>
<td>Mouse monoclonal anti-Vinculin clone V284</td>
<td>Millipore</td>
<td>Cat# 05-386; RRID: AB_309711</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxsackievirus B3, Randolf strain</td>
<td>Laboratory of Bruce McManus</td>
<td>Genbank #M33854</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agar</td>
<td>Sigma</td>
<td>Cat# CAS 9002-18-0</td>
</tr>
<tr>
<td>Blasticidin</td>
<td>Invitrogen</td>
<td>Cat# R210-01</td>
</tr>
<tr>
<td>Crystal violet</td>
<td>Fisher</td>
<td>Cat# AC40583-0250</td>
</tr>
<tr>
<td>Cycloheximide</td>
<td>Sigma</td>
<td>Cat# C1988</td>
</tr>
<tr>
<td>DMEM</td>
<td>Gibco</td>
<td>Cat# 11965-092</td>
</tr>
<tr>
<td>DMEM/F12</td>
<td>Gibco</td>
<td>Cat# 11330-032</td>
</tr>
<tr>
<td>Doxycycline hyclate</td>
<td>Sigma</td>
<td>Cat# D9891</td>
</tr>
<tr>
<td>DRAQ5</td>
<td>Cell Signaling Technology</td>
<td>Cat# 4084</td>
</tr>
<tr>
<td>Fetal bovine serum</td>
<td>Hyclone</td>
<td>Lot#AAP204951/Cat# SH3039603</td>
</tr>
<tr>
<td>37% Formaldehyde solution</td>
<td>Fisher</td>
<td>Cat# F-79-500</td>
</tr>
<tr>
<td>Hexadimethrine bromide (polybrene)</td>
<td>Sigma</td>
<td>Cat# H9268</td>
</tr>
<tr>
<td>Horse serum</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# 16050-122</td>
</tr>
<tr>
<td>Hygromycin B</td>
<td>Sigma</td>
<td>Cat# H3274</td>
</tr>
<tr>
<td>Insulin–Transferrin–Selenium (100x)</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# 41400-045</td>
</tr>
<tr>
<td>Lipofectamine 3000</td>
<td>Invitrogen</td>
<td>Cat# L3000-008</td>
</tr>
<tr>
<td>Methanol</td>
<td>VWR</td>
<td>Cat# BDH1135-4LP</td>
</tr>
<tr>
<td>Multitag recombinant protein</td>
<td>GenScript</td>
<td>Cat# M0101</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# AM9937</td>
</tr>
<tr>
<td>Penicillin–streptomycin</td>
<td>Gibco</td>
<td>Cat# 15140-122</td>
</tr>
<tr>
<td>QuikChange XL Site-Directed Mutagenesis Kit</td>
<td>Agilent</td>
<td>Cat# 200517</td>
</tr>
<tr>
<td>RNase H</td>
<td>NEB</td>
<td>Cat# M0291</td>
</tr>
<tr>
<td>RNAsin Plus RNase inhibitor</td>
<td>Promega</td>
<td>Cat# N2615</td>
</tr>
</tbody>
</table>

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptavidin magnetic beads</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# 88816</td>
</tr>
<tr>
<td>Superscript III reverse transcriptase</td>
<td>Invitrogen</td>
<td>Cat# 18080085</td>
</tr>
<tr>
<td>TURBO DNAse</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# AM1907</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'ppp-dsRNA control</td>
<td>Invivogen</td>
<td>Cat# tlrl-3prnac</td>
</tr>
<tr>
<td>BCA Protein Assay Kit</td>
<td>Pierce</td>
<td>Cat# 23225</td>
</tr>
<tr>
<td>LIVE/DEAD Fixable Violet Dead Cell Stain Kit</td>
<td>Thermo Fisher Scientific</td>
<td>Cat# L34955</td>
</tr>
<tr>
<td>MAXScript SP6/T7 kit</td>
<td>Ambion</td>
<td>Cat# AM1320</td>
</tr>
<tr>
<td>Poly(C) (HMW)</td>
<td>Invivogen</td>
<td>Cat# tlrl-pic</td>
</tr>
<tr>
<td>RNEasy Mini Plus Kit</td>
<td>Qiagen</td>
<td>Cat# 74134</td>
</tr>
<tr>
<td>TruSeq Stranded mRNA Library Preparation Kit</td>
<td>Illumina</td>
<td>Cat# 20020594</td>
</tr>
</tbody>
</table>

Deposited Data

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA sequencing of HeLa cells</td>
<td>(Liu et al., 2019)</td>
<td>GEO: GSE111485</td>
</tr>
<tr>
<td>RNA sequencing of quiescent AC16 and AC16-CAR cells</td>
<td>This work</td>
<td>GEO: GSE155312</td>
</tr>
</tbody>
</table>

Experimental Models: Cell Lines

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>293T/17 cells</td>
<td>ATCC</td>
<td>Cat# CRL-11268, RRID: CVCL_1926</td>
</tr>
<tr>
<td>AC16 cells</td>
<td>Laboratory of Mercy Davidson</td>
<td>N/A</td>
</tr>
<tr>
<td>AC16-CAR cells</td>
<td>(Shah et al., 2017)</td>
<td>N/A</td>
</tr>
<tr>
<td>CVB3-permissive HeLa cells</td>
<td>Laboratory of Bruce McManus</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Oligonucleotides

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers for quantitative PCR, see Table S2</td>
<td>This work</td>
<td>N/A</td>
</tr>
<tr>
<td>Tagged primer: CVB3 sense 5'biotin-GGGTGTTCTTTGGATCCTTG</td>
<td>This work</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Recombinant DNA

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLX302</td>
<td>(Yang et al., 2011)</td>
<td>Addgene #25896</td>
</tr>
<tr>
<td>pDONR221 EGFP</td>
<td>(Yang et al., 2011)</td>
<td>Addgene #25899</td>
</tr>
<tr>
<td>pLX302 EGFP-V5 puro</td>
<td>(Schaff et al., 2021)</td>
<td>Addgene #141348</td>
</tr>
<tr>
<td>pLX302 MX1-V5 puro</td>
<td>This work</td>
<td>Addgene #158640</td>
</tr>
<tr>
<td>pLX302 OAS1-V5 puro</td>
<td>This work</td>
<td>Addgene #158641</td>
</tr>
<tr>
<td>pLX302 OAS2-V5 puro</td>
<td>This work</td>
<td>Addgene #158642</td>
</tr>
<tr>
<td>pLX302 OASL-V5 puro</td>
<td>This work</td>
<td>Addgene #158643</td>
</tr>
<tr>
<td>pCB3-M1</td>
<td>(Kandolf and Hofschneider, 1985)</td>
<td>Genbank #M33854</td>
</tr>
<tr>
<td>pcDNA3 CVB3</td>
<td>This work</td>
<td>Addgene #158645</td>
</tr>
<tr>
<td>pEN_TT 3xFLAG-MAVS (Glu93Gln148Gln271)</td>
<td>This work</td>
<td>Addgene #158628</td>
</tr>
<tr>
<td>pEN_TT 3xFLAG-MAVS Ala148</td>
<td>This work</td>
<td>Addgene #158630</td>
</tr>
<tr>
<td>pEN_TT 3xFLAG-MAVS Ala271</td>
<td>This work</td>
<td>Addgene #158631</td>
</tr>
<tr>
<td>pEN_TT 3xFLAG-MAVS Ala148Ala271</td>
<td>This work</td>
<td>Addgene #158633</td>
</tr>
<tr>
<td>pEN_TT 3xFLAG-MAVS Gin93</td>
<td>This work</td>
<td>Addgene #158629</td>
</tr>
<tr>
<td>pEN_TT 3xFLAG-MAVS Gin93Ala271</td>
<td>This work</td>
<td>Addgene #158632</td>
</tr>
<tr>
<td>pEN_TT 3xFLAG-LacZ</td>
<td>(Bajikar et al., 2017)</td>
<td>Addgene #83093</td>
</tr>
<tr>
<td>pEN_TT 3xFLAG-Luc</td>
<td>(Pereira et al., 2020)</td>
<td>Addgene #136519</td>
</tr>
<tr>
<td>pSLIK 3xFLAG-MAVS (Glu93Gln148Gln271) hygro</td>
<td>This work</td>
<td>Addgene #158634</td>
</tr>
<tr>
<td>pSLIK 3xFLAG-MAVS Ala148 hygro</td>
<td>This work</td>
<td>Addgene #158636</td>
</tr>
<tr>
<td>pSLIK 3xFLAG-MAVS Ala271 hygro</td>
<td>This work</td>
<td>Addgene #158637</td>
</tr>
<tr>
<td>pSLIK 3xFLAG-MAVS Ala148Ala271 hygro</td>
<td>This work</td>
<td>Addgene #158639</td>
</tr>
<tr>
<td>pSLIK 3xFLAG-MAVS Gin93 hygro,</td>
<td>This work</td>
<td>Addgene #158635</td>
</tr>
</tbody>
</table>

(Continued on next page)
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kevin A. Janes (kjanes@virginia.edu).

Materials Availability
Plasmids related to this work are deposited with Addgene (#158628–158646).

Data and Code Availability
- RNA-seq source data have been deposited at the NCBI Gene Expression Omnibus and are publicly available under the accession number GEO: GSE155312.
- The scripts used to generate the modeling figure subpanels reported in this paper are available at https://github.com/JanesLab/LopacinskiAB-CellSyst2021. Scripts were not used to generate the experimental figure subpanels reported in this paper.
- Any additional information required to reproduce this work is available from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
AC16 (Davidson et al., 2005) and AC16-CAR cells (Shah et al., 2017) were cultured in DMEM/F12 (Gibco) + 12.5% fetal bovine serum (Hyclone) + 1% penicillin/streptomycin (Gibco) and kept at 37°C, 5% CO₂.
METHOD DETAILS

Plasmids

The lentiviral destination vector pLX302 (Addgene #25896) was recombined with pDONR221 EGFP (Addgene #25899) or pDONR223 MX1, OAS1, OAS2, and OASL from the Human ORFeome v5.1 (Yang et al., 2011) to yield pLX302 EGFP-V5 puro (Addgene #158644), pLX302 MX1-V5 puro (Addgene #158640), pLX302 OAS1-V5 puro (Addgene #158641), pLX302 OAS2-V5 puro (Addgene #158642), and pLX302 OASL-V5 puro (Addgene #158643). pDONR223 MAVS Glu93Gln148Gln271 was obtained from the human ORFeome v5.1 (Yang et al., 2011), originally derived from IMAGE clone #5751684. MAVS Glu93Gln148Gln271 ampiclon was prepared with Spel and Mfels restriction sites and cloned into pEN_TTmiRc2 3xFLAG (Addgene #83274) that had been digested with Spel and Mfels (Addgene #158628). pDONR223 MAVS Glu93Ala148Gln271 was obtained by site-directed mutagenesis of pDONR223 MAVS Glu93Gln148Gln271 (Yang et al., 2011). MAVS Glu93Ala148Gln271 ampiclon was prepared with Spel and Mfels restriction sites and cloned into pEN_TTmiRc2 3xFLAG (Addgene #83274) that had been digested with Spel and Mfels (Addgene #158630). pEN_TT-3xFLAG-MAVS Glu93Gln148Ala271 (Addgene #158631) and pEN_TT-3xFLAG-MAVS Gln93Gln148Gln271 (Addgene #158629) were obtained by site-directed mutagenesis of the pEN_TT-3xFLAG-MAVS Glu93Gln148Gln271 plasmid (Addgene #158628). pEN_TT-3xFLAG-MAVS Glu93Ala148Ala271 (Addgene #158633) was obtained by site-directed mutagenesis of the pEN_TT-3xFLAG-MAVS Glu93Ala148Ala271 plasmid (Addgene #158630). pEN_TT-3xFLAG-MAVS Glu93Gln148Ala271 (Addgene #158631) and pEN_TT-3xFLAG-MAVS Glu93Ala148Ala271 (Addgene #158633) were obtained by site-directed mutagenesis of the pEN_TT-3xFLAG-MAVS Glu93Gln148Ala271 plasmid (Addgene #158630). Site-directed mutagenesis of pEN_TT-3xFLAG-MAVS Glu93Gln148Ala271 consistently caused one of two off-target mutations. Two clones with different off-target mutations were digested with Mfels and Nael. The fragments were gel purified, and the fragments with the non-off-target mutations were ligated together to yield pEN_TT-3xFLAG-MAVS Glu93Gln148Ala271 (Addgene #158632). All site-directed mutagenesis was performed with the QuikChange IL X kit (Agilent).

pEN_TT donor vectors were recombined into pSLIK hygro by LR recombination to obtain pSLIK 3xFLAG-MAVS Glu93Gln148Gln271 hygro (Addgene #158634), pSLIK 3xFLAG-MAVS Glu93Ala148Gln271 hygro (Addgene #158636), and pSLIK 3xFLAG-MAVS Glu93Ala148Ala271 hygro (Addgene #158637). pSLIK 3xFLAG-MAVS Glu93Ala148Ala271 hygro (Addgene #158637), pSLIK 3xFLAG-MAVS Glu93Ala148Ala271 hygro (Addgene #158639), and pSLIK 3xFLAG-MAVS Glu93Ala148Ala271 hygro (Addgene #158638). pSLIK 3xFLAG-MAVS Glu93Ala148Ala271 hygro (Addgene #158639), and pSLIK 3xFLAG-MAVS Glu93Ala148Ala271 hygro (Addgene #158638).

DNA for CVB3 was obtained by partial digestion of CVB3-M1 (Kandolf and Hofschneider, 1985) (kindly provided by K. Klingel) with EcoRI, gel purification of the full-length CVB3 insert, and ligation into pcDNA3 digested with EcoRI to obtain pcDNA3 CVB3 (Addgene 158645). The shRNA targeting SV40 T antigen (GCATAGAGTGTCTGCTATTAA) was custom designed through the Genetic Perturbation Platform web portal (https://portals.broadinstitute.org/gpp/public/). The oligos were modified to contain a PstI-containing EcoRI, gel purification of the full-length CVB3 insert, and ligation into pcDNA3 digested with EcoRI to obtain pcDNA3 CVB3 (Addgene 158645). The shRNA targeting SV40 T antigen (GCATAGAGTGTCTGCTATTAA) was custom designed through the Genetic Perturbation Platform web portal (https://portals.broadinstitute.org/gpp/public/). The oligos were modified to contain a PstI-containing EcoRI, gel purification of the full-length CVB3 insert, and ligation into pcDNA3 digested with EcoRI to obtain pcDNA3 CVB3 (Addgene 158645). The shRNA targeting SV40 T antigen (GCATAGAGTGTCTGCTATTAA) was custom designed through the Genetic Perturbation Platform web portal (https://portals.broadinstitute.org/gpp/public/). The oligos were modified to contain a PstI-containing EcoRI, gel purification of the full-length CVB3 insert, and ligation into pcDNA3 digested with EcoRI to obtain pcDNA3 CVB3 (Addgene 158645).

Viral Transduction

pSLIK MAVS alleles, pSLIK LacZ, pSLIK Luc, and pLKO.1 shSV40 were packaged as lentivirus in HEK293T cells by calcium phosphate precipitation with an EGFP-expressing plasmid as a positive control. AC16-CAR cells were transduced with lentivirus + 8 μg/ml polybrene in 6-well dishes and allowed to grow for 48 hours. Transduced pSLIK cells were then transferred to 10-cm dishes and selected with 10 μg/ml blasticidin (to maintain CAR-V5 expression) and 100 μg/ml hygromycin until control plates had cleared. Transduced shSV40 cells were used unselected.

AC16 Quiescence

For studies involving quiescent cells (Figures 2B, 2C, and S2B–S2D only), AC16 or AC16-CAR cells (70,000 per well) were plated on a 12-well dish precoated with 0.02% (w/v) gelatin for 1–2 hours at 37°C. After 24 hours, were washed with PBS and the culture medium was changed to differentiation medium: DMEM/F12 (Gibco) + 2% horse serum (Thermo Fisher) + 1x Insulin–Transferrin–Se- lenum supplement (Thermo Fisher) + 1% penicillin–streptomycin (Gibco). After 24 hours, cells were washed with PBS and transduced with shSV40 lentivirus (125 μl per well) + 8 μg/ml polybrene in a total volume of 500 μl. After 18–21 hours, cells were washed with PBS and refed with differentiation medium. After another 24 hours, cells were washed with PBS and refed with differentiation medium again, and cells were lysed 24 hours after the final refed.

CVB3 Infection

AC16-CAR cells were plated at 50,000 cells/cm² for 24 hours. AC16-CAR cells expressing inducible MAVS Glu93Gln148Gln271, Glu93Gln148Ala271, Glu93Ala148Ala271, or Glu93Gln148Gln271 or LacZ were plated at 25,000 cells/cm² for 24 hours then treated with 1 μg/ml doxycycline for 24 hours. Before CVB3 infection, 75% of the cell culture medium was removed, and cells were infected with CVB3 at the indicated MOI for one hour. During the infection, the plates were incubated at 37°C and rocked every 10–15 minutes to ensure even coverage of the virus. After one hour, the media was aspirated, and cells were refed with fresh AC16 growth medium lacking selection antibiotics. At the end of the infection period, the conditioned media containing released virions was collected, centrifuged at 2,500 rcf to spin out dead cells and debris, and stored at −80°C for viral titering.

Cell Morphometry

Cell dimensions were analyzed by staining terminally CVB3-infected cells as before (Jensen et al., 2013). Briefly, AC16-CAR cells were infected with CVB3 at 10 MOI for 24 hours, stained with the LIVE/DEAD Fixable Violet Dead Cell Stain Kit (Thermo Fisher),
quenched with 10 mM glycine in PBS for five minutes, solvent fixed–permeabilized with 100% ice-cold methanol, and counterstained with DRAQ5 (Cell Signaling Technology). Imaging at late times after CVB3 infection allowed VROs to fuse and grow above the diffraction limit for fluorescence imaging (Melia et al., 2019). One hundred Violet-positive cells were imaged with an Olympus BX51 fluorescence microscope with a 40x 1.3 numerical aperture UPlanFL oil immersion objective and an Orca R2 charge–coupled device camera (Hamamatsu) with 2x2 binning. Images were thresholded in ImageJ to identify Violet-positive membrane borders, Violet-negative VRO borders, and DRAQ5-positive nuclear borders. When calculating cellular dimensions, we assumed a height equal to the diameter of a sphere corresponding to the average aggregate VRO volume per cell.

Cell Lysis

For immunoblotting, cells were washed with ice-cold PBS and lysed in radioimmunoprecipitation buffer plus protease–phosphatase inhibitors: 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% (v/v) Triton X-100, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, 5 mM EDTA, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 1 µg/ml pepstatin, 1 µg/ml microcystin-LR, 200 µM Na3VO4, and 1 mM PMSF. Protein concentrations of clarified extracts were determined with the BCA Protein Assay Kit (Pierce).

For RNA analysis, culture medium was aspirated and cells were immediately lysed in Buffer RLT Plus. Total RNA was purified with the RNEasy Mini Plus kit (Qiagen) as recommended. RNA concentrations were determined by absorption spectrophotometry on a Nanodrop.

Immunoblotting

Quantitative immunoblotting was performed on 10, 12, or 15% polyacrylamide gels with tank transfer to polyvinylidene difluoride membrane and multiplex near-infrared fluorescence detection as described previously (Janes, 2015). Primary antibodies were used at the following dilutions: VP1 (Mediagnost Cat# M47; 1:2000 dilution), eIF4G (Cell Signaling Technology Cat# 2498, RRID: AB_2096025; 1:2000 dilution), V5 epitope tag (Invitrogen Cat# R960-25; RRID: AB_2556564; 1:5000 dilution or Bethyl Cat# A190-118A, RRID: AB_66741; 1:5000 dilution), HSP90 (Santa Cruz Biotechnology Cat# sc-7947, RRID: AB_2121235; 1:2000 dilution), tubulin (Abcam Cat# ab89984, RRID: AB_10672056; 1:20000 dilution or Cell Signaling Technology Cat# 2148, RRID: AB_2288042; 1:2000 dilution), p38 (Santa Cruz Biotechnology Cat# sc-535, RRID: AB_632138; 1:5000 dilution), vinucil (Millipore Cat# 05-386, RRID: AB_309711; 1:10,000 dilution), IκBα (Cell Signaling Technology Cat# 4814, RRID: AB_390781; 1:2000 dilution), phospho-TBK1 (Cell Signaling Technology Cat# 5483, RRID: AB_10693472; 1:1000 dilution), total TBK1 (Cell Signaling Technology Cat# 3504, RRID: AB_2255663; 1:1000 dilution), phospho-IRF3 (Cell Signaling Technology Cat# 4947, RRID: AB_823547; 1:1000 dilution), total IRF3 (Cell Signaling Technology Cat# 4302, RRID: AB_1904036; 1:1000 dilution), MDA5 (Abcam Cat# ab126630, RRID: AB_1129704; 1:1000 dilution), MAVS (Cell Signaling Technology Cat# 3993, RRID: AB_823565; 1:1000 dilution), actin (Ambion Cat# AM4302, RRID: AB_2536382; 1:5000 dilution), total IRF3 (Cell Signaling Technology Cat# 4302, RRID: AB_1904036; 1:1000 dilution), MDA5 (Abcam Cat# ab126630, RRID: AB_1129704; 1:1000 dilution), MAVS (Cell Signaling Technology Cat# 3993, RRID: AB_823565; 1:1000 dilution), actin (Ambion Cat# AM4302, RRID: AB_2536382; 1:5000 dilution), FLAV (Sigma-Aldrich Cat# F1804, RRID: AB_262044; 1:5000 dilution). Serial dilutions of V5-containing Multiple Tag (GenScript) were used for absolute quantification of CAR-V5. Data are reported from n separate cell platings that were independently perturbed as indicated.

In Vitro Transcription of CVB3 Positive and Negative Strands

The pcDNA3 CVB3 plasmid was linearized at the 3’ end with NotI (positive-strand template) or at the 5’ end with SnaBI (negative-strand template), gel purified, and used for in vitro transcription with T7 (positive strand) or SP6 (negative strand) RNA polymerase from the MAXIscript SP7/T7 kit (Ambion). In vitro transcription reactions were incubated at 37°C for one hour before the template was digested with TURBO DNase and used for immunoblotting. Total RNA was purified with the RNEasy Mini Plus kit (Qiagen) as recommended. RNA concentrations were determined by absorption spectrophotometry on a Nanodrop.

dsRNA Transfection

Poly(I:C) (High Molecular Weight) and 5’ppp-dsRNA control were prepared according to the manufacturer’s separate recommendations (Invivogen). dsCVB3 was prepared by mixing equal volumes of CVB3 positive and negative strand at 100 ng/ml, denaturing for at 68°C for 10 minutes, and cooling to 25°C. For dsRNA transfection, AC16-CAR cells were plated at 50,000 cells/cm² on a 12-well plate overnight and transfected with up to 1 µg dsRNA complexed with 3 µl Lipofectamine 3000 + no P3000 reagent (Invitrogen) in 200 µl total volume of DMEM/F12 (Gibco). For dose responses, lipocomplexes were serially diluted threefold in DMEM/F12 over ~two decades before addition to AC16-CAR cells. Four hours after transfection, cells were lysed in 350 µl Buffer RLT Plus and purified with the RNEasy Mini Plus Kit (Qiagen). Purified RNA concentrations were determined by absorption spectrophotometry on a Nanodrop.

ISG Transfection and Protein-Synthesis Inhibition

To estimate ISG cellular half-lives, 293T/17 cells were plated at 100,000 cells/cm² on a 24-well plate and transfected with 1 µl Lipofectamine 3000 + 1 µl P3000 reagent (Invitrogen) and 250 ng pLX302 EGFP-V5 puro + 250 ng pLX302 ISG-V5 puro (ISG = MX1, OAS1, OAS2, or OASL) in 100 µl total volume of DMEM (Gibco). Twenty-four hours after transfection, cells were treated with 50 µM cycloheximide (Sigma-Aldrich) for the indicated times and lysed in 50 µl RIPA + PPIs for immunoblot analysis of ~30 µg extract for V5 epitope tag (Invitrogen Cat# R960-25, RRID: AB_2556564; 1:5000 dilution [MX1/V5] or Bethyl Cat# A190-118A, RRID: AB_66741; 1:5000 dilution [OAS1-V5, OAS2-V5, and OASL-V5]) and HSP90 (Santa Cruz Biotechnology Cat# sc-7947, RRID: AB_2121235; 1:2000 dilution)–tubulin (Cell Signaling Technology Cat# 2148, RRID: AB_2288042; 1:2000 dilution)–p38 (Santa Cruz Biotechnology Cat# 8457, RRID: AB_2121235; 1:2000 dilution).
Biotechnology Cat# sc-535, RRID: AB_632138; 1:5000 dilution) as loading controls. Cotransfection of pLX302 EGFP-V5 yielded a short-lived FP-V5 truncation that served as a positive control for cycloheximide efficacy (FPcontrol).

RNA-seq and Analysis

500 ng total RNA was prepared using the TruSeq Stranded mRNA Library Preparation Kit (Illumina). Samples were sequenced on a NextSeq 500 instrument with NextSeq 500/550 Mid Output v2 kit (150 cycles; Illumina). Pooled samples were run in triplicate to obtain a minimum sequencing depth of 20 million reads per sample. Adaptors were trimmed using fastq-mcf in the EAUtis package (version 1.1.2) with the following options: -q 10 -t 0.01 -k 0 (quality threshold 10, 0.01% occurrence frequency, and no nucleotide skew causing cycle removal). Datasets were aligned to the human (GRCh38) genome with additions (CVB3 genome and SV40 genome) using HISAT2 (version 1.2.0) with the following options: –dta (downstream transcriptome assembly for subsequent assembly step) and –rna-strandedness RF (for paired-end reads generated by the TruSeq strand–specific library). Output SAM files were converted to BAM files using samtools (version 1.4.1). Alignments were assembled into transcripts using StringTie (version 2.0.6) with the following options: -e (to restrict assembly to known transcripts in the provided annotation) and -B (to save additional files for Ballgown). Differential gene expression analysis was carried out using edgeR (version 3.28.1) on raw read counts that passed the abundance-filtering step. Abundance filtering was performed by the cpm function in edgeR to retain transcripts that were expressed at greater than 100 counts per million in at least one cell line. Trimmed mean of M values normalization using the calcNormFactors function before differential expression analysis using exactTest in edgeR. The 1952 transcripts that were commonly differentially expressed [5% false discovery rate (FDR)] between AC16 parental and AC16-CAR cells are shown in Figure 2B. Data are reported from n separate cell platings that were independently quiesced and perturbed as indicated.

HeLa Cell Transcriptomic and Proteomic Data

Raw HeLa cell transcriptomic data (GSE111485) was downloaded from the GEO sequence read archive. The data were aligned and TPM calculated exactly as for the AC16 and AC16-CAR cells. “HeLa12” and “HeLa14” were profiled in triplicate, so each of their TPM values were averaged. Proteomic data was obtained from https://helaprot.shinyapps.io/crosslab/ by searching for CD55 for TPM calculated exactly as for the AC16 and AC16-CAR cells. ''HeLa12'' and ''HeLa14'' were profiled in triplicate, so each of their GEO. Obtained proteomic data was in log10 format, so absolute protein abundances were calculated by 10(log10_protein).

Determination of CVB3 Particle-to-PFU Ratio

Titered production stocks of CVB3 prepared in permissive HeLa cells were ultracentrifuged at 100,000 rcf for one hour at 4°C and lysed in Buffer RLT Plus for total RNA purification with the RNEasy Mini Plus kit (Qiagen) as recommended. RNA concentrations were determined by absorption spectrophotometry on a Nanodrop. Conditioned medium from uninfected cells was used as a negative control to confirm specificity to viral RNA. Similar results were obtained when CVB3 was ultracentrifuged at 120,000 rcf for 18 hours at 8°C through a 30% sucrose cushion and into a glycerol button (Kim et al., 2005).

Quantitative PCR (qPCR)

Purified total RNA was digested with TURBO DNase (Thermo Fisher) as recommended, and 500 ng of DNAse-treated RNA was reverse transcribed with 2.5 μL oligo(dT)24 primer as described previously (Miller-Jensen et al., 2007). PRDX6, HINT1, and GUSB were used as loading controls, and GAPDH was used as a fourth housekeeping gene to confirm accuracy of the loading normalization. Data are reported from n separate cell platings that were independently perturbed as indicated.

Tagged Strand-Specific qPCR

Purified total RNA was digested with TURBO DNAse (Thermo Fisher) as recommended, and 250 ng of DNAse-treated RNA was reverse transcribed with 1 pmol biotinylated strand-specific primer (positive strand: 5’biotin-GGGTGTTCTTTGGATCCTTG; negative strand: 5’biotin-TGCAACTCCCATCACCTGTA), 500 μM dNTPs, 5 mM DTT, 20 U RNAsin Plus RNAse inhibitor (Promega), and 100 U Superscript III reverse transcriptase (Invitrogen) in 1x first-strand buffer as recommended in a total volume of 10 μL. After reverse transcription for 60 minutes at 55°C, samples were heat inactivated for 15 minutes at 70°C and RNA was digested with 2.5 U RNase H (NEB) for 20 minutes at 37°C, followed by heat inactivation for 20 minutes at 65°C. Purified standards—either RNA from CVB3 virions purified by ultracentrifugation (positive strand) or in vitro transcribed RNA from SnaBI-digested pcDNA3 CVB3 (negative strand)—were added in the range of 10^6–10^12 copies per 10 μL reverse transcription along with 250 ng of DNAse-treated RNA from cells that had not been infected with CVB3. Biotinylated cDNA was purified with 5 μL streptavidin magnetic beads (Thermo Fisher) that had been washed twice with 1x first-strand buffer and resuspended to the original storage volume. Streptavidin beads were incubated with the first-strand reaction for one hour with tapping every 15 minutes. The 15 μL samples were diluted with 40 μL PCR-grade water, magnetized for one minute, and then washed three times with 50 μL PCR-grade water. After the final wash, the beads were resuspended in 50 μL and then 1/10th of the nonbead volume (4.5 μL) was measured by qPCR with 2.5 pmol each of CVB3-specific primers (Table S2) as described previously (Miller-Jensen et al., 2007). Data are reported from n separate cell platings that were independently perturbed as indicated.
Plaque Assay
Conditioned medium from CVB3-infected AC16-CAR cells was collected and diluted 5 x 10^4 or 5 x 10^5 in serum-free DMEM depending on the titer. A confluent 6-well plate of permissive HeLa cells was washed twice with serum-free DMEM, then 200 μl of diluted conditioned medium or serum-free DMEM was added to the cells. The cells were incubated at 37 °C for one hour with rocking every 10–15 minutes to ensure even coverage of the virus. After one hour, the medium was aspirated and cells were washed twice with serum-free DMEM. Sterile 1.5% (w/v) agar in water was mixed with 2x DMEM in a 1:1 ratio and added to the wells to form an agar plug. The cells were incubated at room temperature 10–15 minutes until solidification of the agar plug. Cells were incubated at 37 °C for 48–65 hours depending on the clearance rate of the plaques. Once plaques reached a countable size, 2 ml of 2% (w/v) formaldehyde was added to each well for 15 minutes to fix the cells. After fixation, the agar plugs were carefully pulled out using a plastic spatula. Fixed cells were stained with 0.5% (w/v) crystal violet in 25% (v/v) methanol in Milli-Q water for 10 minutes. Crystal violet staining was stopped by submerging the plates three times into a 1% bleach solution, and then wells were gently rinsed with Milli-Q water three times from a squirt bottle. The plates were air dried and scanned on a Licor Odyssey scanner in the 700 channel.

3Cpro Sequence Logo
We recreated the sequence logo for enteroviral 3Cpro substrates by assembling the 202 3Cpro cleavage sites from 27 SwissProt accession numbers in Table 6 of the original publication describing NetPicoRNA (Blom et al., 1996). Flanking sequences were amended with the latest revisions in UniProt, and the vectorized sequence logo was generated with WebLogo (Crooks et al., 2004).

CVB3 Complete Kinetic Model
The complete kinetics of CVB3 infection were described by 54 coupled differential equations that were organized into modules for delivery, replication, and encapsidation. After construction, the modules were interconnected by viral inputs–outputs and host-cell feedback. The system of differential equations was solved numerically with the ode15s function in MATLAB. The two core functions are 1) CVB3ODEEval.m, which defines the initial conditions and rate parameters, takes the user-defined inputs (CVB3 dose, simulation parameters, output options), and performs the bookkeeping on viral species (RNA strands, replicative intermediates, and protein classes); and 2) CVB3ODEfunc.m, which defines the rate equations, the switch to VROs, and the antiviral sensing-transduction mechanism. Additional functions provide capabilities for systematic plotting and sensitivity analysis (Data and Code Availability).

Delivery Module
At the start of a single-cell infection, a user-defined number of PFUs was placed in the restricted cell-surface volume defined by the estimated cell surface area multiplied by the 30-nm diameter of a CVB3 capsid (Table S1). For a cell-population infection, cell-to-cell variation in response to a viral inoculum follows a Poisson distribution (Ellis and Delbrück, 1939). Therefore, a Poisson-distributed pseudorandom number (representing a single-cell PFU) was drawn at each simulation with λ equal to the user-defined MOI. Cellular DAF and CAR were also concentrated in the restricted cell-surface volume for CVB3 binding and trafficking. Clustering of DAF was embedded in the rate of DAF trafficking to tight junctions, which used a kinetic parameter drawn from observations that relocalization is complete within 25–30 minutes (Coyne and Bergelson, 2006). Tight junctions were not encoded as a volume-restricted compartment but rather as their own set of species on the plasma membrane. DAF-bound CVB3 in tight junctions (bDAF_TJ) was allowed to unbind-rebind in the tight junction or transfer CVB3 directly to CAR:

\[
\begin{align*}
bDAF_{TJ} & \overset{k_{off,DAF}}{\rightleftharpoons} uDAF_{TJ} + uCVB3_{TJ} \\
bDAF_{TJ} + CAR & \overset{k_{on,CAR}}{\rightleftharpoons} uDAF_{TJ} + bCAR
\end{align*}
\]

(Equation 1)

In addition, CAR could bind CVB3 that had dissociated in tight junctions (uCVB3_{TJ},):

\[
\begin{align*}
CAR + uCVB3_{TJ} & \overset{k_{on,CAR}}{\rightleftharpoons} bCAR
\end{align*}
\]

(Equation 3)

The forward rates for Equations 2 and 3 were assumed to be identical to place equal weight on the two possible paths to CAR-bound CVB3. CAR internalizes with CVB3 (Chung et al., 2005) and we assumed that it was not recycled; however, this assumption was inconsequential to any of the kinetics (Figure S2A).

Entry of CVB3 occurs more slowly than poliovirus (Brandenburg et al., 2007; Chung et al., 2005). Therefore, delivery of CVB3 to the cytoplasm was encoded as two first-order processes in series, the first using a standard endocytosis rate and the second capturing pore formation and release of viral RNA (Table S1). Defective viral particles were assumed to bind to DAF–CAR and deliver to the cytoplasm identically to infectious PFUs.
Replication Module

Mammalian cells contain 10^6–10^7 ribosomes (Milo et al., 2010). Considering competition with newly transcribed host-cell RNAs and with RNA from defective particles, we assumed that 10^5 ribosomes per cell were theoretically accessible to the infectious virus. This number is also roughly equivalent to the number of eIF4G molecules [$\sim10^{5.5}$ copies per HeLa cell (Liu et al., 2019), with TPM values comparable in AC-16 cells], allowing us to equate eIF4G–ribosome as a single species in the model. We further simplified by considering viral translation in terms of polysomes containing N ribosomes. Each polysome translated viral polyprotein N times more rapidly but formed and released a translational complex with viral RNA N times more slowly than an individual ribosome. Translational initiation was emphasized as a rate-limiting step by selecting an operational early-polysome size of $N = 2.5$ (Figure S3A). Defective viral RNAs in the cytoplasm were assumed not to interact with the ribosome pool that was theoretically accessible, but this assumption was not critical to infection outcomes (Figures S3E and S3F).

Among these polysomes, 80–90% would be actively translating host-cell RNAs and therefore be inaccessible at the time of infection (Milo et al., 2010). The conversion of polysomes from inaccessible to accessible was encoded as an enzyme-catalyzed transition rate dependent on the concentration of viral protease, the concentration of inaccessible ribosomes (i.e., uncleaved eIF4G), and Michaelis-Menten parameters for rhinoviral 2Apro (Wang et al., 1998) (Table S1). The reported K_m for enterovirus 71 3Cpro is equivalently far above endogenous substrates and shows comparable catalytic efficiency (Shang et al., 2015), enabling 2Apro and 3Cpro to be lumped as a single viral protease.

The dissociation of a translation complex is non-intuitive and thus explained in detail here. The rate of protein production used poliovirus translation rates per amino acid multiplied by the length of the CVB3 polyprotein (Dorner et al., 1984). Each translation event yields one 3Dpol bound to VRO, one lumped protease, $\frac{1}{5}$ of a capsid pentamer at the VRO (which couples to $\frac{1}{5}$ of a 2CATPase), and $\frac{2}{5}$ of unbound 2CATPase at the VRO to balance polyprotein stoichiometry. At a rate $N + 1$ times the translation rate, the translation complex dissociates to release a positive-strand RNA at the VRO (Goodfellow et al., 2000; Novak and Kirkegaard, 1994) and repopulate the available polysome pool by N ribosomes. Placing a translation-competent positive strand at the VRO mimics c/s replication (Goodfellow et al., 2000; Novak and Kirkegaard, 1994), in that defective viral RNAs do not reach this step in the complete kinetic model. More-direct alternatives, such as coupling 3Dpol with released positive-strand RNA as a replicative intermediate at the VRO, gave rise to premature increases in negative strands that were not observed by experiment (Figure 3C).

The early steps of VRO formation remain elusive and were specified heuristically in the complete kinetic model. We assumed a switch-like transition from solution-phase behavior in the cytoplasm to the restricted surface volume of the VRO defined by the estimated VRO surface area multiplied by the 7.1-nm height of a 3Dpol molecule (Table S1). Based on these calculations, the concentrating effect (C_d) of shuttling a molecule from the cytoplasm to the VRO surface volume was 3216-fold. Degradation rates at the VRO surface were reciprocally scaled down by C_d to yield the same turnover as in the cytoplasm. The switch-like transition to VROs at 25 molecules of 3Dpol created a transient stoichiometric imbalance at the start of the transition (Figure S4B). The shift occurred when the rate processes of VRO-resident species were instantly scaled up and their whole-cell concentrations were reciprocally scaled down. The imbalances were short-lived, and alternate encodings of the VRO transition, such as a ramped transition, did not satisfactorily capture the measured protein–RNA dynamics.

At the VRO, viral RNA interacted with 3Dpol at the slow rate of association measured for poliovirus 3Dpol (Arnold and Cameron, 2000). The rate of RNA-dependent RNA polymerase elongation was likewise drawn from poliovirus (Castro et al., 2007). We did not postulate any differences in association or elongation between positive- and negative-strand templates (Regoes et al., 2005). However, we assumed that negative strand was not released from a replicative intermediate after replication of the positive strand was complete and had been released. This assumption reflects the cooperative RNA binding that results from 3Dpol oligomeric arrays on the VRO surface (Lyle et al., 2002). Positive strands, by contrast, must be released for encapsidation.

Encapsidation Module

The encapsidation module leveraged the work of Zlotnick and colleagues for modeling viral capsid assembly (Endres and Zlotnick, 2002; Li et al., 2012; Zlotnick, 2003). During assembly, contact affinities that are weak individually (~1 mM) build upon one another through multivalency among symmetric subunits with multiple binding sites (Zlotnick, 2003). Using established formalisms (Endres and Zlotnick, 2002), we calculated effective pseudocritical concentrations (apparent dissociation constants) for all realistic combinations of pentamer and contact sites in a 12-pentamer virus assembly. We took the median effective pseudocritical concentration (~1 mM, calculated with Capsid_assembly_script.m) as a representative affinity for any step during the assembly process from 1–12 pentamers. By the same analysis, a slight increase in the individual contact affinity (0.1 mM; Figure 4E) increased the median affinity to 50 mM (simulated by decreasing the off rate; Figure 4E). The simplification avoids the need to assume or inventory specific geometric paths to viral assembly while recognizing the typical binding energies involved.

Retention and recruitment of pentamers to the VRO occurred through a direct interaction of 1:1 stoichiometry with 2CATPase (Liu et al., 2010). Kinetic parameters for this interaction are not known, but the complete kinetic model was not very sensitive to a biologically plausible range of values (Figure 4F). Crucial to the stoichiometric balance was to keep track of each molecule of 2CATPase “consumed” by pentamer binding to the VRO and then “regenerated” when pentamers self-assembled. For example:

$$\text{Pentamer} + 2\text{CATPase} \rightarrow \text{Pentamer}_{\text{VRO}}$$

(Equation 4)
Pentamer\textsubscript{VRO} + Pentamer\textsubscript{VRO} \overset{k_{\text{cap}}}{\rightleftharpoons} P2Empty + 2CATPase \quad \text{(Equation 5)}

Pentamer assemblies were assumed to grow and shrink linearly, with individual pentamer or RNA–pentamer complexes recruited to or removed from an intermediate assembly.

The mechanisms retaining viral RNA in the VRO are heterogeneous, requiring a more-generic exchange rate between cytoplasmic and VRO compartments. The on and off rates were equal ($k_{\text{on}} = k_{\text{off}} = 1 \text{ hr}^{-1}$), but at the VRO, $C_E = 3216$ provided a driving force for RNA to leave that was delayed by the retention time implied by the rate of exchange:

$$R_p, \text{ cyt} \overset{k_{\text{on}}}{\rightleftharpoons} R_p, \text{ VRO} \quad \text{(Equation 6)}$$

At these exchange rates, a typical RNA-protein association rate of 25 nM$^{-1}$hr$^{-1}$ (Gleitsman et al., 2017) yielded an effective membrane affinity of $(3216 \times 1 \text{ hr}^{-1})/25 \text{ nM}^{-1}\text{hr}^{-1} \sim 125 \text{ nM}$.

RNA and pentamer interacted at the VRO with the same kinetic parameters as the median pentamer–pentamer assemblies described above. We reduced combinatorics by assuming that RNA filling–unfilling of an intermediate assembly only occurred through gain or loss of an RNA–pentamer complex, which was defined to exist only at the VRO surface. For example:

$$\text{Pentamer}\textsubscript{VRO} + R_p, \text{ VRO} \overset{k_{\text{cap}}}{\rightleftharpoons} \text{RNAPentamer} \quad \text{(Equation 7)}$$

$$\text{P2Empty} + \text{RNAPentamer} \overset{k_{\text{cap}}}{\rightleftharpoons} \text{P3Filled} + 2\text{CATPase} \quad \text{(Equation 8)}$$

(Note the regenerated 2CATPase in Equation 8, consistent with the stoichiometric balance described in Equation 5.) The assembly of 12 pentamers with positive-strand RNA was considered the irreversible endpoint of encapsidation, which could be reached two ways:

$$P_{11}\text{Empty} + \text{RNAPentamer} \overset{k_{\text{cap}}}{\rightarrow} \text{Virion} \quad \text{(Equation 9)}$$

$$P_{11}\text{Filled} + \text{Pentamer}\textsubscript{VRO} \overset{k_{\text{cap}}}{\rightarrow} \text{Virion} \quad \text{(Equation 10)}$$

Like the other intermediates in the encapsidation module, empty provirions were assumed to be reversible:

$$P_{11}\text{Empty} + \text{Pentamer}\textsubscript{VRO} \overset{k_{\text{cap}}}{\rightarrow} \text{EmptyProvirion} \quad \text{(Equation 11)}$$

Rate parameters involving Pentamer\textsubscript{VRO} ($k_{1f,\text{cap}}$ and $k_{1b,\text{cap}}$) were assumed to be identical to those involving RNAPentamer ($k_{2f,\text{cap}}$ and $k_{2b,\text{cap}}$).

Antiviral and Antagonistic Feedbacks

The feedbacks overlaid on the CVB3 life cycle reflected known antiviral and antagonistic mechanisms, but they were not mechanistically encoded. Rather than striving for exact parameter values, we focused on lumped parameters and relationships that appropriately reflected dependencies and input–output characteristics. Future revisions could include more-elaborate detail when warranted by specific applications.

For the dsRNA sensor–transducer feedback leading to an interferon response, we defined a virus detection sigmoid with parameters (K_D, n_H) gleaned from the IFNB induction of cells lipofected with dsCVB3 (Figure 1B). To capture viral antagonism, the sigmoid maximum was scaled down hyperbolically depending on the concentration of viral protease and a half-effective concentration ($EC_{50_{\text{detectordeg}}}$) defined by qualitative system properties (Figure 5I):

$$\text{VirDetection} = \left(\frac{[\text{dsRNA}]^{n_H}}{[\text{dsRNA}]^{n_H} + K_D^{n_H}}\right) \left(\frac{EC_{50_{\text{detectordeg}}}}{[\text{Protease}]} + EC_{50_{\text{detectordeg}}}\right) \quad \text{(Equation 12)}$$

where $[\text{dsRNA}]$ is the total concentration of replicative intermediates (described in Bookkeeping). This sigmoid was used to scale a maximum induced response of ISGs, which was defined by the maximum transcription rate for RNA polymerase II through a short ISG, multiplied by the current number of virus-inaccessible ribosomes (Table S1). For simulations involving supplemental interferon, VirDetection was superseded by StimISG = 1 (maximum stimulated interferon response) at the time of supplementation and maintained for the rest of the simulation.
The ISG response impinges on three facets of the viral life cycle. For i) the inhibition of viral translation, we hyperbolically down-scaled the formation rate of translation complexes:

\[
\text{TranslateForm}' = \text{TranslateForm} \left(\frac{\text{EC}_{50_{\text{Translate}}}}{[\text{ISG}] + \text{EC}_{50_{\text{Translate}}}} \right)
\]

(Equation 13)

Although PKR (\text{EIF2AK2}) is highly abundant (~480 TPM) and does not show interferon inducibility in AC16-CAR cells (Figure S1A), PKR is directly activated by dsRNA. Thus, the feedback architecture was assumed to be functionally similar to other ISGs. For ii) the deactivation of viral proteinases, we used a hyperbolic down-scaling function (similar to that of Equation 13) on the rate of viral protease production, assuming that protease deactivation was irreversible. For iii) the oligoadenylate synthetase–RNAse L acceleration of RNA turnover, we posited a maximum fold increase in the rate of turnover (\(k_{\text{RNAdeg}}' = 5\)) and scaled the basal rate of RNA degradation (\(k_{\text{RNAdeg}}\)) hyperbolically to this maximum based on a half-effective concentration (\(\text{EC}_{50_{\text{RNAdeg}}}\)) and the concentration of ISGs:

\[
k_{\text{RNAdeg}}' = k_{\text{RNAdeg}} \left[1 + \left(\frac{[\text{OAS}_{\text{RNAdeg}}]}{[\text{ISG}] + \text{EC}_{50_{\text{RNAdeg}}}'} \right) \right]
\]

(Equation 14)

All feedback parameters were sampled lognormally about their best estimate with a user-defined log coefficient of variation as with the parameters and initial conditions of the complete kinetic model.

Bookkeeping

Total dsRNA concentrations combined the replicative intermediates using positive- or negative-strand templates. For ratiometric calculations where dsRNAs were counted with different efficiencies (Figure 3E), only the template strand was included in the calculation. Total viral protein included capsid from infectious PFUs and defective particles from internalization and all steps downstream (Figure 2A). Viral particles bound to DAF or CAR on the cell surface were assumed to be removed by the washing steps associated with cell lysis and protein analysis. Endosomal release of \(R_p\) implied instant degradation of all associated capsid proteins. For RNA analysis, cells were not washed before lysis according to the manufacturer’s recommendation; therefore, these calculations included all viral particles bound to CAR on the cell surface (DAF affinity is so low that it was assumed to be removed by aspiration).

Sensitivity Analysis

Single-parameter sensitivity analysis was performed with SensitivityAnalysisfunc.m (Data and Code Availability) to alter individual model parameters over a 2²-fold range in either direction from the base value and record virion production at 24 h.

MAVS Filamentation Model

The filamentation model for MAVS was described by 4–6 differential equations depending on the MAVS genotype:

\[
\frac{d[\text{MAVS}]}{dt} = k_{\text{act}} - k_{\text{poly}}[\text{MAVS}]^n - \alpha k_{\text{clv}} [3\text{C}^\text{pro}] [\text{MAVS}]
\]

(Equation 15)

\[
\frac{d[\text{polyMAVS}]}{dt} = k_{\text{poly}}[\text{MAVS}]^n - k_{\text{deg}} \frac{\phi}{\frac{\omega_1}{\omega_1} + \omega_2} [\text{polyMAVS}]
\]

(Equation 16)

\[
\frac{d[3\text{C}^\text{pro}]}{dt} = k_{\text{act}}
\]

(Equation 17)

\[
\frac{d[\text{ISG}]}{dt} = \frac{k_{\text{ext}}}{n} [\text{polyMAVS}] - k_{\text{deg}}[\text{ISG}]
\]

(Equation 18)

\[
\frac{d[\text{Clv1}]}{dt} = (\alpha - \beta) k_{\text{clv}} [3\text{C}^\text{pro}] [\text{MAVS}]
\]

(Equation 19)

\[
\frac{d[\text{Clv2}]}{dt} = \beta k_{\text{clv}} [3\text{C}^\text{pro}] [\text{MAVS}]
\]

(Equation 20)

where \(\alpha = 0, \beta = 0 \) for \(\text{Glu}^{93}\text{Ala}^{271}\), \(\alpha = 1, \beta = 0 \) for \(\text{Glu}^{93}\text{Gln}^{271}\), and \(\alpha = 2, \beta = 1 \) for \(\text{Gln}^{93}\text{Gln}^{271}\). For the \(\text{Gln}^{93}\text{Gln}^{271}/\text{Glu}^{93}\text{Gln}^{271}\) heterozygous model (Figure S8D), \(\alpha = 1.5, \beta = 0.5\), and for the \(\text{Gln}^{93}\text{Gln}^{271}\) overexpression model in a \(\text{Gln}^{93}\text{Gln}^{271}/\text{Glu}^{93}\text{Gln}^{271}\) heterozygous background (Figure S8C), \(\alpha\) was set to 1 + 12.5/13 and \(\beta\) to 12.5/13 to reflect the ~12-fold ectopic expression measured in Figure 6D.
Initial conditions were all set to zero, and rate parameters were nominally assumed to be fast \((k_{\text{poly}} = 1000)\), average \((k_{\text{act}}, k_{\text{txn}} = 1)\), or slow \((k_{\text{clv}}, k_{\text{deg}} = 0.1)\). \(\Phi\) and \(\gamma\) were set to one as equal default feedback strengths, and \(n = 800\) based on calculations from the literature (Wu et al., 2013; Wu et al., 2014). Filament assembly was assumed to occur by a two-step process used for other biological filaments (Lopez et al., 2016). Dynamic trajectories were solved numerically for 250 nominal time units with the ode15s function in MATLAB. Single-parameter sensitivities were evaluated by changing parameters individually 22- or 102-fold in either direction about the nominal parameter and using time-integrated ISG abundance as the model readout.

Dynamical systems behavior of MAVS alleles

The single-parameter sensitivity analysis indicated that time-integrated ISG profiles are robust to feedback inhibition of MAVS cleavage products on the uncleaved MAVS polymerization rate (Figure S8A). Feedback loops are thus omitted from this analysis of dynamical behavior, defined by a system of 4–6 differential equations depending on the MAVS allele:

- **Glu^{93}Ala^{271} allele (Equations 21a, 22–24):**
 \[
 \frac{d[M]}{dt} = k_a - k_p[M]^n \quad \text{(Equation 21a)}
 \]

- **Glu^{93}Gln^{271} allele (Equations 21b, 22–25):**
 \[
 \frac{d[M]}{dt} = k_a - k_p[M]^n - k_c[P][M] \quad \text{(Equation 21b)}
 \]

- **Gln^{93}Gln^{271} allele (Equations 21c, 22–26):**
 \[
 \frac{d[M]}{dt} = k_a - k_p[M]^n - 2k_c[P][M] \quad \text{(Equation 21c)}
 \]

 \[
 \frac{d[pM]}{dt} = k_p[M]^n - k_d [pM] \quad \text{(Equation 22)}
 \]

 \[
 \frac{d[P]}{dt} = k_a \quad \text{(Equation 23)}
 \]

 \[
 \frac{d[I]}{dt} = k_{\text{t}} \frac{n}{n} [pM] - k_d[I] \quad \text{(Equation 24)}
 \]

 \[
 \frac{d[C_1]}{dt} = k_c[P][M] \quad \text{(Equation 25)}
 \]

 \[
 \frac{d[C_2]}{dt} = k_c[P][M] \quad \text{(Equation 26)}
 \]

where \(M\) is uncleaved MAVS, \(pM\) is polymerized MAVS filaments, \(P\) is 3CPro, \(C_1\) is MAVS cleavage product 1, \(C_2\) is MAVS cleavage product 2, \(I\) is ISGs, \(k_a\) is a general activation rate, \(k_p\) is the polymerization rate, \(k_d\) is a general degradation rate, \(k_{\text{t}}\) is the transcription rate, and \(n\) is number of MAVS monomers in a polyMAVS filament. For the same rate parameters, differences in the magnitude and duration of \(I\) depend entirely on the dynamics of \(pM\), which depends on the dynamics of \(M\). Further, the linear accumulation of \(P\) allows its analytical solution \((k_c)\) to be substituted directly into the governing equation for \(M\). Ignoring the bookkeeping equations of \(C_1\) and \(C_2\) reduces the system to two stable nonlinear, nonhomogeneous differential equations:

- **Equation 27:**
 \[
 \frac{d[M]}{dt} = k_a - k_p[M]^n - \alpha k_a k_d t[M] \quad \text{(Equation 27)}
 \]

- **Equation 28:**
 \[
 \frac{d[pM]}{dt} = k_p[M]^n - k_d [pM] \quad \text{(Equation 28)}
 \]

where \(\alpha = 0\) (Glu^{93}Ala^{271} allele), 1 (Glu^{93}Gln^{271} allele), or 2 (Gln^{93}Gln^{271} allele).
For $\alpha = 0$, the long-term dynamics of the system can be solved analytically, with M rapidly reaching its pseudo steady-state value (M_{SS}):

$$M_{SS} = \sqrt{\frac{k_a}{k_p}}$$

(Equation 29)

Substituting M_{SS} into the governing equation for pM yields:

$$\frac{d[pM]}{dt} = k_a - \frac{k_a}{n} [pM]$$

(Equation 30)

and the solution:

$$[pM](t) = \frac{k_a n}{k_a} \left(1 - e^{-\frac{t}{n}} \right)$$

(Equation 31)

with pM approaching $\frac{k_a}{n}$ slowly with time, because $n \gg k_d$.

When $\alpha \neq 0$, an analytical solution does not exist. However, it is possible to identify critical transitions and limiting behavior of the dynamical system. For example, because t is always linearly increasing, one can define the time at which this initial M_{SS} is no longer possible and M must decrease. Changing Equation 27 to an inequality:

$$k_a - k_p[M]^n - ak_c k_d t < 0$$

(Equation 32)

and solving for t yields a transition time for M (t_M):

$$t_M > \frac{k_a - k_p[M]^n}{ak_c k_d}$$

(Equation 33)

Thus, if the state of M is equal, the model predicts that Gln93Gln271 ($\alpha = 2$) will transition twice as fast as Glu93Gln271 ($\alpha = 1$; Figure S7).

Immediately after t_M, all terms in Equations 27 and 28 contribute to the dynamical-system behavior. However, the high multiplicity of MAVS polymerization implies that M will eventually decrease to a point that $k_p[M]^n$ rapidly vanishes relative to the other terms in $\frac{d[M]}{dt}$:

$$\frac{d[M]}{dt} = k_a - ak_c k_d t[M] = k_a(1 - ak_c t[M])$$

(Equation 34)

At this point, both M and t are large enough that we can further approximate Equation 34 as:

$$\frac{d[M]}{dt} = -ak_c k_d t[M]$$

(Equation 35)

which is solvable analytically:

$$M(t) = c_1 e^{\frac{-ak_c k_d t}{n}}$$

(Equation 36)

where c_1 is an unknown coefficient. Note from Equation 36 that the exponential decline occurs half as fast for Glu93Gln271 ($\alpha = 1$) compared to Gln93Gln271 ($\alpha = 2$). However, the approximate time point at which the $k_p[M]^n$ term would vanish—shortly after t_M—is twice as long for Glu93Gln271 according to Equation 33. Therefore, around the time when the system begins to deviate from steady state, the net decrease in M (and thus pM) occurs twice as fast for Glu93Gln271 as for Gln93Gln271 (Figure S7).

Finally, at longer times, the rapid decline in M according to Equation 36 has progressed so much that it overwhelms the offsetting linear increase in it in Equation 34, and the simplification in Equation 35 is no longer valid. Here, the dynamics of M are governed by the linear, nonhomogeneous Equation 34. Numerical simulations suggest it is around this transition when $k_p[M]^n$ rapidly vanishes relative to $\frac{k_a}{n} [pM]$ and the governing equation for pM (Equation 28) can be approximated as:

$$\frac{d[pM]}{dt} = -\frac{k_a}{n} [pM]$$

(Equation 37)

and solved to yield:

$$pM(t) = c_2 e^{\frac{-k_a t}{n}}$$

(Equation 38)

where c_2 is an unknown coefficient. In this regime, pM does not reach a formal steady state but is operationally stable at c_2 because $n \gg k_d$ (Figure S7). For Glu93Gln271, the delayed transition from steady state (Equation 33) causes a faster rate of decline in M (Equation 36), leading to a deeper plunge in pM before the transition to an operationally stable concentration (Equation 38).
QUANTIFICATION AND STATISTICAL ANALYSIS

dsRNA-Induced Interferon Response
Dose-independent induction of IFNB, MX1, and OAS1 as a group (or PKR and GAPDH as a control group) was assessed by log-transformed three-way ANOVA of ISG transcripts with the following factors: dsRNA dose, transcript, and condition (control vs. poly(I:C) or control vs. dsCVB3). ANOVA p values testing a condition effect were Sidák corrected for multiple-hypothesis testing.

ISG Protein Half-Life Determination
Immunoblot bands were quantified by image densitometry as described previously (Janes, 2015). V5 band intensities were normalized to the averaged proportional loadings of HSP90, tubulin, and p38 for each sample on the immunoblot. Loading-normalized biological duplicates were averaged, and the ISG and FP_control time courses were normalized again by their respective maxima. Half-lives ($t\text{1/2}$) were estimated by nonlinear least-squares curve fitting in Igor Pro (WaveMetrics) to the following:

$$\text{Max normalized protein} = (1 - b)e^{-kt} + b$$

(Equation 39)

Where b represents a minimum baseline (estimated from the FP_control of each experiment and kept constant for the associated ISG) and $t\text{1/2} = \ln(2)/k$.

Plaque Assay Calculations
Plaques were counted manually in ImageJ after contrast enhancement. The plaque forming units per milliliter (PFU/ml) was calculated from the following formula:

$$\text{PFU/ml} = \frac{\text{(# of plaques)} \times \text{(dilution)}}{\text{volume of virus added in ml}}$$

(Equation 40)

The dilution was either 5 x 10^4 or 5 x 10^5, and the volume of virus added to the wells was 0.2 ml.

Relative Cleavage of MAVS Genotypes
MAVS cleavage was assessed via densitometry in ImageJ as

$$\% \text{ cleavage} = \frac{\text{MAVS}_{\text{clv}}}{\text{MAVS}_{\text{clv}} + \text{MAVS}_{\text{mini}} + \text{MAVS}_{\text{FL}}}$$

(Equation 41)

and normalized to MAVS Glu^{93}Gln^{148}Gln^{271} such that MAVS Glu^{93}Gln^{148}Gln^{271} cleavage = 1. Differences in cleavage were assessed by two-way ANOVA with CVB3 batch and genotype as factors or by Wilcoxon rank sum test where indicated.

Protein Abundance Estimation From TPM Data
Paired transcriptomic-proteomic data in HeLa cells (Liu et al., 2019) were related to one another using the following hyperbolic-to-linear equation:

$$\text{Protein copies} = \frac{A \times \text{TPM}}{B + \text{TPM} + \text{TPM}}$$

(Equation 42)

where A and B are fitted parameters. Equation 42 specifies a linear relationship between RNA and protein (Edfors et al., 2016) but allows for some nonlinearity at low RNA copy numbers. Nonlinear least-squares parameterization was performed with the fminsearchbnd function in MATLAB. Asymptotic error analysis was used to calculate the 99% confidence interval of the fit. DAF and CAR protein copies were estimated in AC16 and AC16-CAR cells using the best-fit parameters from the HeLa data for DAF or CAR, respectively.

Statistics
Standard statistical approaches (hypothesis testing, interval estimation) were performed in MATLAB or R. Details are described along with summary statistics (central estimates and dispersion) in the figure captions where the data are summarized and reported. We consistently define n as the number of independent perturbations, with further details described in the corresponding figure caption. Formal methods were not used to determine whether the data in this work met the assumptions of the statistical approach, but prior work with larger datasets using the same methods were assessed by Jarque-Berra and Anderson-Darling tests to justify parametric methods or the indicated reversible transformations.