COVID-19 drug practices risk antimicrobial resistance evolution

MetaSUB Consortium

Published in:
The Lancet Microbe

DOI:
10.1016/S2666-5247(21)00039-2

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
COVID-19 drug practices risk antimicrobial resistance evolution

Antimicrobial resistance is one of the biggest challenges facing modern medicine. Because the management of COVID-19 is increasingly becoming dependent on pharmacological interventions, there is greater risk for accelerating the evolution and spread of antimicrobial resistance. A study in a tertiary hospital environment revealed concerning colonisation patterns of microbes during extended periods. It also highlighted the diversity of antimicrobial resistance gene reservoirs in hospitals that could facilitate the emergence and transmission of new modes of antibiotic resistance.

Admission and release of patients from tertiary hospitals have risen dramatically in the past year due to the COVID-19 pandemic, with many hospitals expanding beyond capacity. With hospitalisations exceeding normal capacity due to COVID-19 combined with impaired immune function in patients, risks of co-infections have substantially increased. The gap in a comprehensive understanding of co-infection and comorbidity caused by COVID-19 has led to rapidly changing protocols for patient handling, including administering multiple drugs around the world (figure). The use of antiparasite, antiviral, antibacterial, and anti-inflammatory drugs for preventing secondary infections in patients with COVID-19 during a prolonged pandemic will inevitably invite future complications, including aggravation of antimicrobial resistance. This is particularly relevant in light of the successive emergence of mutations that increase SARS-CoV-2 fitness, which could be responsible for recurrent COVID-19 waves. Of note, because most of these drugs are used for other target pathogens, we might not only increase resistance in COVID-19 but also face challenges in the treatment of other bacterial and viral infections.

With drugs frequently replaced by new therapeutic options (figure), the fear of increased antimicrobial resistance evolution and spread are a reality. There was an increasing demand for and misuse of various drugs in the treatment of COVID-19 irrespective of paucity of scientific evidence. This has even been exacerbated by rapid publication of some papers without extensive peer-review and their recommendations by WHO and the centres for disease control and prevention across the world without evaluations. Social media has also played an alarming role in increasing the popularity (both negative and positive) of some drugs, including a number of pharmacological substances with no proven effects. As an additional threat, imperfect drug penetration to patients with COVID-19 might lead to rapid evolution of multidrug resistance. This might be worsened by alterations observed in the gut microbiota of patients hospitalised with COVID-19, which represents a propitious dysbiotic environment for the emergence and dissemination of multidrug resistance.

Nosocomial transmission of SARS-CoV-2 from patients to health-care workers was reported at the Wuhan Union Hospital, Wuhan, China, as early as Jan 16, 2020. However, investigations on accompanying multidrug-resistant infections have not been done in these and other studies. This is of note because there is substantial push towards administration of convalescent plasma therapy as a COVID-19 treatment option on the basis of success reported during previous global outbreaks, such as severe acute respiratory syndrome, Middle East respiratory syndrome, and H1N1 Influenza.

We must be vigilant and cautious that the fight against COVID-19 does not invite another significant threat to humankind.
We declare no competing interests.


on behalf of the MetaSUB Consortium

malaybhattacharyya@isical.ac.in

Department of Physiology and Biophysics, (EA, CB, CEM), and WorldQuant Initiative for Quantitative Prediction (CEM) Wellcome Cornell Medicine, New York, USA; Center for Research on Infectious Diseases, National Institute of Public Health, Cuernavaca, Mexico (AB-G); Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile (EC N); Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, USA (YD); Aix-Marseille University, University of Toulon, National Center for Scientific Research, French National Research Institute for Sustainable Development, Mediterranean Institute of Oceanography, Marseille, France (CD); Medical Genomics Group, A C Camargo Cancer Center and LIM-27, Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil (ED-N); Department of Biology, Lund University, Lund, Sweden (EE); Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay (GI); Discovery of Biology, Biology, Lund University, Lund, Sweden (ED-N); Department of Physiology and Biophysics, (EA, CB, CEM), The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine (EA, CB, CEM), and WorldQuant Initiative for Quantitative Prediction (CEM) Wellll Cornell Medicine, New York, USA; Center for Research on Infectious Diseases, National Institute of Public Health, Cuernavaca, Mexico (AB-G); Center for Bioinformatics and Integrative Biology, Universidad Andres Bello, Santiago, Chile (EC N); Department of Quantitative Health Sciences, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, USA (YD); Aix-Marseille University, University of Toulon, National Center for Scientific Research, French National Research Institute for Sustainable Development, Mediterranean Institute of Oceanography, Marseille, France (CD); Medical Genomics Group, A C Camargo Cancer Center and LIM-27, Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil (ED-N); Department of Biology, Lund University, Lund, Sweden (EE); Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay (GI); Discovery of Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam, South Korea (SJ); Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland (MP); Genome Institute of Singapore, A*STAR and Yong Loo Lin School of Medicine, National University of Singapore, Singapore (NN); Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark (MP); Department of Biology, Brooklyn College of the City University of New York, New York, USA (BP); University of Medicine and Health Sciences, Basetere, St Kitts and Nevis (RS); Biology Department, The American University in Cairo, Cairo, Egypt (RS); The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (TS), Faculty of Environment and Information Studies, Keio University, Kanagawa, Japan (HS); High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung, Eberhard Karls University of Tübingen, Tübingen, Germany (JW); Molecular Genetics, Corporación Cargopen and Universidad Central, Biogota, Colombia (MMZ), Centre for Artificial Intelligence and Machine Learning, Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India (MB)

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license.