Overdispersion in COVID-19 increases the effectiveness of limiting nonrepetitive contacts for transmission control

Sneppen, Kim; Nielsen, Bjarke Frost; Taylor, Robert J.; Simonsen, Lone

Published in:
Proceedings of the National Academy of Sciences of the United States of America

DOI:
10.1073/pnas.2016623118

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Overdispersion in COVID-19 increases the effectiveness of limiting nonrepetitive contacts for transmission control

Kim Sneppen1, Bjarke Frost Nielsen2, Robert J. Taylor3, and Lone Simonsen3

1Niels Bohr Institute, University of Copenhagen, 2100 København Ø, Denmark; and 2Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark

Edited by Simon Asher Levin, Princeton University, Princeton, NJ, and approved March 8, 2021 (received for review August 5, 2020)

Increasing evidence indicates that superspreading plays a dominant role in COVID-19 transmission. Recent estimates suggest that the dispersion parameter k for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is on the order of 0.1, which corresponds to about 10% of cases being the source of 80% of infections. To investigate how overdispersion might affect the outcome of various mitigation strategies, we developed an agent-based model with a social network that allows transmission through contact in three sectors: “close” (a small, unchanging group of mutual contacts as might be found in a household), “regular” (a larger, unchanging group as might be found in a workplace or school), and “random” (drawn from the entire model population and not repeated regularly). We assigned individual infectivity from a gamma distribution with dispersion parameter k. We found that when k was low (i.e., greater heterogeneity, more superspreading events), reducing random sector contacts had a far greater impact on the epidemic trajectory than did reducing regular contacts; when k was high (i.e., less heterogeneity, no superspreading events), that difference disappeared. These results suggest that overdispersion of COVID-19 transmission gives the virus an Achilles’ heel: Reducing contacts between people who do not regularly meet would substantially reduce the pandemic, while reducing repeated contacts in defined social groups would be less effective.

Significance

Evidence indicates that superspreading plays a dominant role in COVID-19 transmission, so that a small fraction of infected people causes a large proportion of new COVID-19 cases. We developed an agent-based model that simulates a superspreading disease moving through a society with networks of both repeated contacts and nonrepeated, random contacts. The results indicate that superspreading is the virus’ Achilles’ heel: Reducing random contacts—such as those that occur at sporting events, restaurants, bars, and the like—can control the outbreak at population scales.

Author contributions: K.S. and L.S. designed research; K.S. performed research; K.S., B.F.N., R.J.T., and L.S. analyzed data; and K.S., B.F.N., R.J.T., and L.S. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).

1To whom correspondence may be addressed. Email: sneppen@nbi.ku.dk.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016623118/-/DCSupplemental.

Published March 19, 2021.

PNAS 2021 Vol. 118 No. 14 e2016623118

https://doi.org/10.1073/pnas.2016623118
heterogeneity, increasing the robustness of the basic finding that overdispersion is high in COVID-19.

Given the importance of superspreading to COVID-19 transmission, modeling studies assessing the effect of different mitigation strategies would do well to take superspreading into account. Agent-based models, which set up a network of individual agents that interact according to defined rules, are well suited to exploring the impact of mitigation in the presence of superspreading. Like standard compartmental Susceptible, Exposed, Infected, Recovered (SEIR) models, they can reproduce the epidemic curves observed in a population in an unmitigated scenario. Unlike purely compartmental models, agent-based models can easily adjust individual infectivity and mimic repeated social interactions within defined groups, as might be found in households, schools, and workplaces. Agent-based models can also include different types of social interaction and phenomena such as a disease saturating some households or workplaces by infecting all susceptible agents.

We therefore developed an agent-based model with a social network structure to investigate how overdispersion might affect nonpharmaceutical mitigation efforts to control a superspreading disease such as COVID-19. In brief, we simulated epidemic trajectories in an agent-based model with a population of 1 million agents. Upon infection, agents transition from susceptible to exposed, infected, and recovered states (Fig. 1A); agents are on average infectious for 5.5 days. We allowed contacts of three types: close (within a small, unchanging group as might be found in a household or other close association), regular (within a larger, unchanging group as might be found in a workplace, school, extended family, or other social unit), and random (drawn randomly from the entire agent population and not repeated regularly) (Fig. 1B). We adjusted the contact rates to achieve a 1:1:1 ratio of contact time in the three sectors, consistent with survey data from Mossong et al. (21). Within the timescale set by the generation time of COVID-19, our close and regular networks can be considered constant. Contacts that occur less frequently belong to the random sector. To simulate superspreading, we assigned infectivity according to a gamma distribution with dispersion parameter $k = 0.1$ and adjusted the overall infectivity to produce an initial growth rate of 23% per day, as observed for COVID-19 in Europe and North America (22–24), which corresponds to a basic reproductive number of 2.5. In the unmitigated case, contacts were allowed in all three sectors; we then simulated two additional scenarios in which the regular and random contacts were restricted. These three scenarios were simulated under two conditions, with k set to infinity (no superspreading) and with k set to 0.1 (superspreading). The model is described in detail in Methods.

Our findings suggest that superspreading gives COVID-19 an Achilles’ heel: Limiting contacts in the part of the social environment where many random contacts are encountered—and where superspreading events are most likely to occur—slows transmission dramatically and far more effectively than limiting contacts in social groups where people meet repeatedly, such as in the home, work, or school.

Results

We found that the presence of superspreading profoundly improves the impact of reducing random contacts in mitigating the epidemic. Regardless of whether superspreading is present in the model, the overall percentage of the population infected in a no mitigation scenario is 90% (Fig. 2). Thus, superspreading has hardly any effect on the trajectory of an unmitigated epidemic. Furthermore, comparing Fig. 2, it is clear that a mitigation strategy based on restricting regular contacts performs similarly in both the superspreading (Fig. 2B) and nonsuperspreading (Fig. 2A) scenarios. However, when a mitigation strategy based exclusively on restricting random contacts is employed in the superspreading scenario, the effect is dramatically enhanced: The final epidemic size is just 15%, compared with 57% in the absence of superspreading.

We performed several sensitivity tests to investigate whether our findings were robust to changes in model parameters.

We varied the dispersion parameter k in the interval [0.05, 1.0] and found that as it increased, the effect of preventing random contacts gradually diminished (Fig. 3). This shows that the efficacy of random sector-based mitigation increases monotonically with the degree of superspreading. On the other hand, even partial mitigation of the random sector still had a considerable effect when $k = 0.1$ (SI Appendix, Fig. S1).

By adjusting the mean infection rate, we varied the initial epidemic growth rate from 16 to 30% per day (SI Appendix, Fig. S2), an interval that covers the range of premitigation growth rates observed in Europe and North America (22–24). We found, as expected, that a faster-growing epidemic is more difficult to mitigate; however, the enhanced effect of random sector mitigation when superspreading is present remains.

To assess the sensitivity of our results to the partitioning of the three social sectors, we varied the ratio of contacts in each sector from the base case of 1:1:1 to 2:2:1 for close, regular, and random contacts (SI Appendix, Fig. S3A) and increased the size of the groups from which regular and close contacts were drawn, respectively (SI Appendix, Fig. S3 B and C). These variations had only a moderate negative effect on mitigation, reflecting that a mitigation strategy based on removing random contacts becomes relatively less effective if fewer random contacts are made in the premitigation scenario. In a related analysis, we analyzed the effect of introducing heterogeneity in the number of individuals with whom an agent interacts. We did this by letting half of the population spend only 1/6 of their contact time in the random sector while allowing the other half to spend 1/2 of their contact time interacting in the random sector. In this way, we maintained the overall activity in the random sector to be 1/3. The result was a moderate decrease in the degree of mitigation (SI Appendix, Fig. S4).

To determine the effect of increased heterogeneity in social activity, we exponentially distributed the overall contact time of individuals, so that some agents would make contact more frequently than others (SI Appendix, Fig. S5). This heterogeneity was found to decrease the epidemic size in general, similar to what Britton et al. (25) recently showed for COVID-19. Nonetheless, random sector-based mitigation remained by far the most effective.

Finally, we measured the distribution of the number of secondary infections arising in our simulations (SI Appendix, Fig. S6). This analysis is an important test of our model since it is crucial that the model reproduces the degree of transmission heterogeneity reported in the literature; the analysis also allows us to assess the degree of transmission heterogeneity introduced by the model’s social structure alone. When we set the dispersion parameter for infectivity to $k = 0.1$ (our base superspreading scenario), the coefficient of variation (CV) of the observed distribution of secondary cases is 3.1, consistent with an observed k value of less than 0.1 for a negative binomial distribution (6), indicating that the model has the desired level of transmission heterogeneity in our base superspreading scenario. When the distribution of infectiousness is taken to be homogeneous (i.e., the non-superspreading scenario [formally obtained at infinite k for infectivity]), the observed distribution of cases has a CV of 0.7, consistent with an observed k value of 3.3 for a corresponding negative binomial distribution. Thus, the social structure by itself contributes only very moderately to the transmission heterogeneity observed in our superspreading simulations.

Across the sensitivity analyses, our basic finding remains unchanged: In an epidemic driven by superspreading, restricting random nonrepeating contacts is far more effective than limiting the regular repeating contacts that occur in interconnected groups.
Discussion

Policy makers worldwide face excruciating choices as they seek to ease restrictions as much as possible without causing a surge in COVID-19 cases that would overwhelm health care systems, especially by exceeding available intensive care unit beds needed to keep critically ill COVID-19 patients alive. These policy choices must take new information into account as the pandemic unfolds.

Evidence is now overwhelming that superspreading plays a key role in COVID-19 transmission (12–15). Yet, models used to predict effects of mitigation strategies often do not consider this phenomenon (26–28). In this study, we built an agent-based model with an underlying social structure to take on this task.

Our results indicate that reducing random contacts has an outsized effect in an epidemic characterized by superspreading; in the absence of superspreading, the same mitigation strategy is much less effective. This means that mitigation policies should focus on limiting contacts during activities that bring together large numbers of people who would otherwise not routinely come into contact, such as at sporting events, restaurants, bars, weddings, funerals, and religious services; repeated contacts that occur in smaller social groups are much less important. If such gatherings cannot be avoided, steps such as wearing face masks and moving events outdoors might also help. Our results also suggest that in complex settings such as workplaces and schools, which have characteristics of both our regular and random sectors, preventing congregation of large groups of people who would otherwise rarely meet is important.

Why does our model suggest that the presence of superspreaders favors these policy choices? When random contacts are prevented, regular contacts become the main source of infection. However, because the number of possible connections is limited in a regular social unit, a highly infectious individual soon runs out of susceptible contacts. When random contacts are allowed, however, there is no such limitation because as far as the superspreading agent is concerned, every contact is new. It follows that an epidemic driven by superspreading is

Fig. 1. (A) Schematic representation progression of disease in our agent-based model. Individual agents become infectious 2.5 d before symptom onset on average. Agents enter the recovered state after an average of 3 d of symptoms, giving an average total infectious period of 5.5 d. (B) Schematic representation of the connectivity between 150 agents. Individuals are represented as nodes, with shading indicating age (light = young, dark = older). Edges represent social connections, with bright yellow denoting close contacts, orange denoting regular contacts between adults, and red edges denoting regular contacts involving children. Random contacts are not pictured. The network diagram was generated by running our simulation on a smaller population of just 150 individuals, with the same rules for connectivity as in the full-scale simulations.
The mechanism that underlies superspreading is not understood, but relevant factors include both the rate at which an infected person sheds the virus and the environment in which the virus is shed, including the density of people and their susceptibility. Behavior, including shouting or singing, can increase both the rate of viral shedding and the susceptibility to infection, and a gathering in a closed room with poor ventilation involves considerably higher risk than one outdoors (29, 30). Superspreading has been broadly categorized in three main categories: biological, behavioral/social, and opportunistic (31). However, these categories are not mutually exclusive, and superspreading is generally a question of means (high infectiousness) and opportunity (social and environmental context). In order for a superspreading event to occur, a highly infectious individual must have access to a large number of distinct contacts. In our model, the means is simulated by assigning a distribution of individual infectiousness from a gamma distribution. While we do not specifically model events, we do allow many contacts in the random sector, which allows some agents to cause large clusters of secondary infections.

Our finding that the propagation of an overdispersed disease is more sensitive to the many random contacts (rather than the few but persistent regular contacts) is broadly applicable, regardless of the underlying biological mechanism. If, for example, one considers a disease where the high reproductive number of some individuals is the result of a prolonged infectious period, transmission would still be limited by the number of different persons an individual encounters. In our model, this number is set by the combined size of their close and regular contacts, when access to random contacts is restricted.

The most important limitation of our study is the model’s simplicity compared with the complex reality of human society. Our social structure does not precisely reproduce the complex and fluid interactions of human societies. However, our division of contact approximates the range of possible interactions, from familiar to random. We relegated all nonrepeating contacts to the random sector, so that contacts with known persons occurred only through two fixed social networks, one small and one somewhat larger. In the real world of large families, workplace cafeterias, school playgrounds, and neighborhood restaurants, many interactions in the random sector would be with familiar but rarely seen people such as old friends and extended family; likewise, some contacts with random people would occur in places dominated by repeat contacts with familiar people. We simply separated those into two artificially distinct spheres.

The mechanism that underlies superspreading is not understood, but relevant factors include both the rate at which an infected person sheds the virus and the environment in which the virus is shed, including the density of people and their susceptibility. Behavior, including shouting or singing, can increase the rate of viral shedding and the susceptibility to infection, and a gathering in a closed room with poor ventilation involves considerably higher risk than one outdoors (29, 30). Superspreading has been broadly categorized in three main categories: biological, behavioral/social, and opportunistic (31). However, these categories are not mutually exclusive, and superspreading is generally a question of means (high infectiousness) and opportunity (social and environmental context). In order for a superspreading event to occur, a highly infectious individual must have access to a large number of distinct contacts. In our model, the means is simulated by assigning a distribution of individual infectiousness from a gamma distribution. While we do not specifically model events, we do allow many contacts in the random sector, which allows some agents to cause large clusters of secondary infections.

Other recent studies modeling superspreading in COVID-19 have generally come to the conclusion that “cutting the tail” (i.e., targeted elimination of superspreaders) would be an effective
means of mitigation (31–33). What is less clear is how to con-
struct policies to accomplish that and how to identify the situa-
tions and modes of contact which are likely to lead to
 superspreading. By distinguishing between repeated and random
contacts, our model points to a feasible population-wide miti-
gation strategy. This is not possible in well-mixed (32), branching
process (31), or purely network-based models (33), which do
not incorporate different types of social contacts.

The social network underlying our model is of the “small-
world” variety (34), insofar as it is characterized by cliquishness
and short typical distances between nodes. Thus, any given node
in our model can typically be reached by moving through only a
few close and regular units. Block et al. (27) recently used small-world
networks to explore how mitigation strategies that alter typical
nodal distance and cliquishness affect the epidemic trajectory.
In the same vein, Leng et al. (35) studied the influence of social
bubbles on mitigation efforts using an agent-based model with
three levels of transmission: within households, between house-
holds in the same bubble, and lastly, community spread (akin to
our random sector). However, none of these papers addressed
the effect of superspreading on the mitigation strategies. Our results
lend support to mitigations based on cutting links between cliques
(27, 35) since the mixing of different close and regular groups
occurs primarily through encounters in the random sector. Our
work further shows that this kind of mitigation strategy is
enhanced in a pandemic characterized by superspreading, as illus-
trated by Fig. 2B (compared with Fig. 24).

Superspreading is a defining feature of the COVID-19 pan-
demic; a relatively small minority of the population causes the
majority of infections, while most do not even infect people in
their own household. As it is not possible to identify these super-
spreaders before transmission occurs, we here suggest an effective
alternative strategy, namely that policies should aim to reduce
close contact diversity, rather than attempt to limit total contact time.

Methods
We developed an age-stratified, agent-based model with three sectors of social
contact through which the disease can be transmitted. Each agent is assigned to
one close and one regular unit, within which contacts are repeated over time,
and participates in random contacts drawn from the entire population.

Agents are stratified by age in 10-y intervals and assigned age-dependent
social activity levels a_i, which are adjusted such that the observed contact
rates in an unmitigated scenario fit the age-dependent activity given in Ta-
ble 1 (21). Close units have some properties of households: an average of 2.3
members; adults are in the same or adjacent age bands, and children are
taken to be 20 to 40 y younger than adults in the same unit. The CV of the generated
close contact network sizes is 0.59. This may be compared with The European
Union Statistics on Income and Living Conditions Survey, which reports an av-
average household size of 2.3 with a CV of 0.57 (36). Regular units have properties
of workplaces and schools: Agents 20 to 70 y of age are assigned to a Poisson-
distributed cluster with an average of eight agents. Agents under 20 y old are
assigned a regular unit of 18 members. Each of these units is also assigned two
agents aged 20 to 70. Agents older than 70 are not assigned to a regular unit.
Random contacts are chosen from the entire population at random for each
infection attempt to simulate brief contacts without temporal correlation.

The progression of the disease is modeled in an SEIR framework, with
agents passing through each stage at a rate determined by the average dura-
tions given in Fig. 1. The exposed state is subdivided into four stages, each of
1.25 d in length, with a constant probability rate for transitioning from one
stage to the next. The first two of these stages comprise the gamma-distributed
preinfectious state (average total duration: 2.5 d; SD: 1.8 d). The next two stages
comprise the presymptomatic infectious state (average total duration: 2.5 d; SD:
1.8 d). This is followed by the infected state, in which agents are infectious and
symptoms may be displayed (average total duration: 3 d (37, 38); SD: 3 d).
Agents then pass into the recovered state where they are no longer infectious.
Simulations are run in a population of 1 million, randomly seeded with 100
infected agents. Agents are assigned a gamma-distributed infectivity δ with
an age-dependent probability for making contact to another agent; for each
contact, a contact partner is drawn from one of the three social sectors.
The rate at which each of these sectors is chosen is based on a population-based
survey of mixing patterns in eight European countries by Mossong et al. (21).
That study found that the “home” sector made up 19 to 50% of all contacts,
while the “work/school” sector accounted for 23 to 37%, and the remaining
sectors amounted to 27 to 44%. For our model, we approximated this strati-
fication by letting one-third of all contacts fall into each of the three sectors,
for our base case. In SI Appendix, Fig. S2, we investigate the effect of varying these
sector-specific social contact frequencies. Potential targets for infection are
selected proportional to the age-dependent social activity listed in Table 1.

At each contact, the disease is transmitted with probability $P_t = \delta / \Delta t$. The
time step length is chosen small enough to ensure that the probability of in-
fected in any given time step is always less than one, even for the most in-
fec tious individuals. We simulate mitigation strategies by not permitting
infection in a chosen fraction of contacts in one or more of the contact sectors.
Mitigation is initiated when the infected population reaches 1% of the total.
When mitigation by reduction of random contacts is performed, social networks
are kept fixed, and the same numbers of contacts are removed in super-
spreading and nonsuperspreading scenarios to facilitate direct comparison.

To analyze the impact of heterogeneous social activity, we assigned each
agent a separate activity parameter a, selected from an exponential distri-
bution (SI Appendix, Fig. S5). At each contact attempt from agent i to agent
j, if $a < a$, then the contact proceeds as usual; however, if $a > a$, then
the contact proceeds with a probability a/a. This procedure yields an exponen-
tial distribution of observed social activity, with more active agents be-
ing removed from the susceptible pool earlier in the epidemic.

Data Availability. Model code data have been deposited in GitHub (https://

ACKNOWLEDGMENTS. We thank Raul Donangelo, Viggo Andreasen, and
Andreas Eilersen for enlightening discussions and multiple corrections and
suggestions to the manuscript.

1. R. J. Hatchett, C. E. Mecher, M. Lipstitch, Public health interventions and epidemic
2. S. Flaxman et al.; Imperial College COVID-19 Response Team, Estimating the effects
(2020).
4. S. Jang, S. H. Han, J. Y. Rhee, Cluster of Coronavirus disease associated with fitness
5. S. P. Mahale et al., Multiple COVID-19 outbreaks linked to a wedding reception in rural
6. J. O. Lloyd-Smith, J. S. Schreiber, P. E. Kopp, W. M. Getz, Superspreading and the
(2011).

Table 1. Distribution of simulated population by age group (40), with conditional probabilities for relative social contact time (21)

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Percentage of population</th>
<th>Relative social time per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–9</td>
<td>10.9</td>
<td>1.21</td>
</tr>
<tr>
<td>10–19</td>
<td>11.9</td>
<td>1.70</td>
</tr>
<tr>
<td>20–29</td>
<td>13.3</td>
<td>1.45</td>
</tr>
<tr>
<td>30–39</td>
<td>11.7</td>
<td>1.45</td>
</tr>
<tr>
<td>40–49</td>
<td>13.6</td>
<td>1.38</td>
</tr>
<tr>
<td>50–59</td>
<td>13.6</td>
<td>1.31</td>
</tr>
<tr>
<td>60–69</td>
<td>11.7</td>
<td>1.06</td>
</tr>
<tr>
<td>70–79</td>
<td>8.9</td>
<td>0.81</td>
</tr>
<tr>
<td>80+</td>
<td>4.3</td>
<td>0.81</td>
</tr>
</tbody>
</table>
22. A. Remuzzi, G. Remuzzi, COVID-19 and Italy: What next?

