Butyribacter intestini gen. nov., sp. nov., a butyric acid-producing bacterium of the family Lachnospiraceae isolated from human faeces, and reclassification of Acetivibrio ethanolgignens as Acetanaerobacter ethanolgignens gen. nov., comb. nov

Zou, Yuanqiang; Xue, Wenbin; Lin, Xiaojian; Lv, Mei; Luo, Guangwen; Dai, Ying; Sun, Haipeng; Liu, Shao-wei; Sun, Cheng-hang; Hu, Tongyuan; Xiao, Liang

Published in:
Systematic and Applied Microbiology

DOI:
10.1016/j.syapm.2021.126201

Publication date:
2021

Document version
Early version, also known as pre-print

Document license:
Other

Citation for published version (APA):

Download date: 19. feb., 2022
Butyribacter intestini gen. nov., sp. nov., a butyric acid-producing bacterium of the family Lachnospiraceae isolated from the human faeces, and reclassification of Acetivibrio ethanolgignens as Acetanaerobacter ethanolgignens gen. nov., comb. nov.

Wenbin Xue¹, Xiaoqian Lin¹,², Mei Lv¹, Guangwen Luo¹, Ying Dai¹, Haipeng Sun¹, Liang Xiao¹,³,⁴*, Yuanqiang Zou¹,²,³,⁴*,

¹ BGI-Shenzhen, Shenzhen 518083, China
² School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, China
³ Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China
⁴ Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
⁵ Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark

*Corresponding authors:
Liang Xiao.

Address: BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China.
Short title: Butyribacter intestini gen. nov., sp. nov.

Contents category: New taxa - Firmicutes and related organisms

Footnote:
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Butyribacter intestini TF01-11T is KT388745. The GenBank/EMBL/DDBJ accession numbers for the genome sequences of TF01-11T and Acetivibrio ethanolgignens ATCC 33324T are LLKB00000000 and LNAM00000000, respectively. The data that support the findings of this study have also been deposited into CNGB Sequence Archive (CNSA: https://db.cngb.org/cnsa/) of CNGBdb with accession number CNPhis0003380 and CNPhis0003389.
Abstract

A novel, non-motile, Gram-stain-positive, non-spore-forming, obligate anaerobic bacterium, designated strain TF01-11T, was isolated from human faeces. The isolate was characterized by phylogenetic and phenotypic properties, as well as by determination of its whole genome sequence. The growth temperature and pH ranges were 30–42 °C and 6.0–8.5, respectively. The end products of glucose fermentation were butyric acid and a small amount of acetic acid. The genome was estimated to be 3.61Mbp with G+C content of 36.79 mol%. Genes related to biosynthesis of diaminopimelic acid, polar lipids, polyamines, teichoic and lipoteichoic acids were present. The predominant fatty acids were C 16:0 (37.9 %), C14:0 (16.4 %), C13:0 OH/iso-C15:1 H (11.1 %) and C 18:1 ω9c (10.6 %). Phylogenetic analyses based on 16S rRNA gene sequences, the isolate was a member of family Lachnospiraceae, with the highest sequence similarity to the type strain of Roseburia intestinalis DSM 14610T at 92.18 % followed by Acetivibrio ethanolgignens ATCC 33324T at 91.99 %. The average nucleotide identity (ANI) calculated for the genomes between strain TF01-11T and these closest relatives were 70.5 % and 68.1 %. Based on results of phenotypic characteristics and genotypic properties presented in this study, strain TF01-11T represent a novel species in a new genus, for which the name Butyribacter intestini gen. nov., sp. nov. is proposed. The type strain of the type species is TF01-11T (CGMCC 1.5203T = CGMCC 10984T = DSM 105140T).

In addition, Acetivibrio ethanolgignens is proposed to be reclassified as Acetanaerobacter ethanolgignens gen. nov., comb. nov.
Introduction

The human intestine is colonized by a large number of microbial communities, which is 10 times higher than the total cells in the human body [1]. In total there are more than 4000 different species in the gut (Almeida et al., 2020). Most of the intestinal microbiota species are obligate anaerobes [2]. These gut microbiota play a key role involving nutrition extraction [3], host metabolic [4-6], prevention against pathogens [7] and immune regulation [8, 9]. Current evidence also suggests that the gut microbiota can be considered an environmental factor in development of disease, including obesity [10, 11], diabetes [11-13], inflammatory bowel disease [14, 15] and colorectal cancer [16-18]. Member of the family Lachnospiraceae was one of the most abundant groups within the Firmicutes [19, 20]. The production of butyric acid, a short-chain fatty acid, links with Lachnospiraceae has potentially beneficial effects on the host [21-23]. Butyrate is considered as one beneficial metabolites, which serves as the major energy source of intestinal epithelial cells and has anti-inflammatory properties [24, 25].

In this study, we report on the taxonomic characterization of a new butyrate-producing bacterial strain, TF01-11T, which was isolated from the faeces of a 17-year-old Chinese female. On the basis of the phenotypic, chemotaxonomic, genotypic and phylogenetic data, strain TF01-11T represents a novel genus in the family Lachnospiraceae, with the proposed name, Butyribacter intestini gen. nov., sp. nov. Furthermore, we suggest reclassification of Acetivibrio ethanolgignens to Acetanaerobacter ethanolgignens gen. nov., comb. nov.

Material and methods

Sample collection and bacteria isolation
The fresh faeces sample was transferred immediately to anaerobic box (Bactron Anaerobic Chamber, Bactron®-2, shellab, USA) and suspended in 0.1 M PBS (pH 7.0) after collected from a 17-year-old Chinese female living in Shenzhen. The faeces sample was tenfold diluted and spread-plated onto peptone-yeast extract-glucose (PYG) plates and incubated under anaerobic condition (contained 90% nitrogen, 5% hydrogen and 5% carbon dioxide, by vol.) at 37 °C for 3 days. Single colonies were picked and streaked onto PYG agar until a pure culture was obtained according the method previously [26]. The strain was maintained in glycerol suspension (20%, v/v) at -80 °C and preserved by lyophilization at 4 °C.

**Phenotypical characterization**

Cellular morphology of strain T01-11T was examined using phase contrast microscopy (Olympus BX51, Japan) by using cells grown in prereduced anaerobically sterilized PYG broth at 37 °C for 24 h. The Gram reaction and spore formation were performed by staining using Gram stain kit (Solarbio) and spore stain kit (Solarbio) according to the manufacturer’s instructions. Motility of cells grown in PYG broth was examined by phase-contrast microscopy. All growth experiments, described below, were evaluated using the PYG medium in two replicates (1%, v/v, inoculum) and recorded by measuring the OD$_{600}$ of the cultures after 24, 48 h and 7 d, respectively. The temperature range for growth at 4, 10, 15, 20, 25, 30, 37, 42, 45 and 50 °C and the pH range for growth was assessed at pH 3.0–10.0 (at interval of 0.5 pH units). Salt tolerance was determined in PYG broth containing 0–6.0% (w/v) NaCl (at 1.0% intervals). Biochemical reactions and carbon source utilization were investigated by using the API ZYM, API 20A and API 50CH tests (bioMe´rieux) according to the manufacturer’s instructions. Short-chain fatty acids (SCFA) produced from fermentation in PYG medium was measured by gas chromatograph (GC-2014C, Shimadzu) using capillary columns packed with porapak HP-INNOWax (Cross-Linked PEG, 30 m × 0.25 mm × 0.25 um) and detected with a flame-ionization detector. Column temperature was 220 °C, N$_2$ was used as the carrier gas in all analyses.

**Chemotaxonomic analyses**
Cells grown for 48 h at 37 °C on PYG agar plates were used for the whole-cell fatty acid and peptidoglycan analyses. Cellular fatty acids (CFA) of strain TF01-11T and related species were extracted, methylated and analysed by GC as described previously (Chen & Dong, 2004). The analysed of peptidoglycan structure was carried as described previously [27].

**Phylogenetic analysis based on 16S rRNA gene**

The genomic DNA was extracted from cells grown in PYG broth for 24 h at 37°C and purified using the method described by Drancourt et al. [28]. The 16S rRNA gene sequence was amplified by PCR and sequenced as described previously [27]. The sequence obtained was compared with entries in EzBioCloud server [29]. Phylogenetic analysis was performed by using software package MEGA 7 [30]. Sequences of TF01-11T and related type species were aligned and used to constrast a phylogenetic tree by the neighbour-joining method [31] and maximum likelihood method using CLUSTAL W [32]. In each case, bootstrap values were calculated based on 1000 replications.

**Whole Genome analysis**

The draft whole-genome sequence of strain TF01-11T was performed by using a paired-end strategy with the platform Illumina HiSeq 2000 at BGI-Shenzhen (Shenzhen, China). The paired-end library had an mean insert length of 500 bp. Paired-end de novo genome assembly was performed with SOAPdenovo 2 package [33]. The genome sequence of strain TF01-11T was compared with available genome sequences of representatives of the family Lachnospiraceae. All genome sequences were obtained from the GenBank sequence database. Individual coding sequences were annotated using the Rapid Annotation Subsystem Technology (RAST) server [34], freely available at (http://rast.nmpdr.org). DNA base content (mol% G+C) was calculated from the whole genome sequence. The average nucleotide identity (ANI) values were calculated for strain TF01-11T and the most closely related species *R. intestinalis* DSM 14610T, *A. ethanolignens* ATCC 33324T, *Lachnospira multipara* DSM 3073T and *Coprococcus eutactus* ATCC 27759T.
Results and discussion

16S rRNA gene sequencing and phylogenetic analyses

The almost complete 16S rRNA gene sequence of strain TF01-11\textsuperscript{T} of 1,400 bp was determined. Comparative sequence analysis of strain TF01-11\textsuperscript{T} and validly published names using the EzBioCloud server revealed that the most similar sequences were those of the members of family Lachnospiraceae of the phylum Firmicutes. The 16S rRNA gene sequence similarity of strain TF01-11\textsuperscript{T} and the closest relatives, Roseburia intestinalis DSM 14610\textsuperscript{T} [35] and Acetivirio ethanolignens ATCC 33324\textsuperscript{T} [36], were 92.18 \% and 91.99 \% (Table 3), respectively, which was below the ‘lower cut-off window’ of 95 \% for differentiation of a new genus [37, 38]. Furthermore, the phylogenetic analysis showed that strain TF01-11\textsuperscript{T}, together with the closest relative A. ethanolignens ATCC 33324\textsuperscript{T}, formed a separate branch within the family Lachnospiraceae (Fig. 1 and Supplementary Fig. S1). Additionally, the type species of the genus Acetivirio, Acetivirio cellulolyticus, is phylogenetically classified in the family Ruminococcaceae according to the taxonomy list in LPSN (https://lpsn.dsmz.de/genus/acetivirio) and shared a low 16S rRNA gene sequence similarity (85.2 \%) with A. ethanolignens ATCC 33324\textsuperscript{T}. It is obvious that strain A. ethanolignens ATCC 33324\textsuperscript{T} does not cluster together with Acetivirio cellulolyticus in the family Ruminococcaceae, but more closely group in the family Lachnospiraceae. This result was also confirmed by the maximum-likelihood method (Supplementary Fig. S1), suggesting that A. ethanolignens ATCC 33324\textsuperscript{T} should be reclassified as a new genus of the family Lachnospiraceae.

Whole genome sequencing and G+C content

Sequencing of the genome produced an annotated genome size of approximately 3.61 Mbp. The G+C content of DNA was 36.79 mol\% as calculated from the whole-genome sequence (Table 2). The ANI between strain TF01-11\textsuperscript{T} and R. intestinalis DSM 14610\textsuperscript{T}, A. ethanolignens ATCC 33324\textsuperscript{T}, L. multipara DSM 3073\textsuperscript{T} and C. eutactus ATCC 27759\textsuperscript{T} had a maximum value of 70.5 \% (Table 3).
For RAST annotation with genome of strain TF01-11T, there were 11 genes associated with
diaminopimelic acid synthesis, 7 genes associated with metabolism of polyamines, 12 genes
associated with teichoic and lipoteichoic acids and 20 genes associated with metabolism of polar
lipids, respectively, present in the genome (Table 4 and Table S2). No predicted gene sequences
with recognizable similarity to those responsible for respiratory lipoquinones, mycolic acids or
lipopolysaccharides.

**Phenotypic and chemotaxonomic characteristics**

Strain TF01-11T was non-motile, Gram-stain-positive and non-spore-forming. No growth
occurred under aerobic conditions. Cells were approximately 0.5–1.0 μm in width and 2.0–8.0 μm
in length and occurring singly or in chains. Colonies on PYG agar plates were approximately 2.0
mm in diameter, grayish white, opaque, flat, smooth, dull and irregular with rhizoid margins after
48 h incubation at 37 °C under anaerobic conditions. The temperature for growth range from
30 °C to 42 °C (optimum 37 °C). The pH growth range was pH 6.0–8.5 (optimum pH 7.0). The
NaCl tolerance range was 0 %–2.0 % (w/v). The major SCFAs produced in PYG broth were
butyric and acetic acids. The main physiological and biochemical properties of strain TF01-11T
are given in Table 1 in comparison with closely related genera within family *Lachnospiraceae*.
The predominant cellular fatty acid (>10 %) of strain TF01-11T were C16:0 (37.9 %), C14:0 (16.4 %),
C13:0 OH/iso-C15:1 H (11.1 %) and C18:1 ω9c (10.6 %) (Table S1, available in the online
Supplementary Material), The whole-cell hydrolysate of strain TF01-11T contained meso-
diaminopimelic acid (m-DAP).

**Taxonomic conclusions**

Base on genomic, phylogeny, phenotypic and chemotaxonomic characteristics of strain TF01-
11T presented above, we propose that this strain isolated from the faeces represents a novel species
of a new genus distinct from other currently known species of family *Lachnospiraceae*, for which
the name *Butyribacter intestini* gen. nov., sp. nov. is proposed. In addition, we propose
reclassifying *Acetivibrio ethanolgignens* ATCC 33324T within a new genus in the family
*Lachnospiraceae, Acetanaerobacter ethanolgignens* gen. nov., comb. nov.
**Description of Butyribacter gen. nov.**

*Butyribacter* (Bu.ty.ri.bac'ter. N.L. n. *acidum butyricum* butyric acid; N.L masc. n. *bacter* a rod; N.L masc. n. *Butyribacter* a butyric acid-producing rod).

Gram-stain-negative, non-motile, non-spore-forming rods, about 2.0–8.0 μm long and 0.5–1.0 μm wide, occurring singly or in chains. Obligately anaerobic. Optimum growth temperature is approximately 37 °C. Butyric and acetic acids are the major metabolic end products in PYG broth. Meso-diaminopimelic acid is present in the hydrolysate of the peptidoglycan. The main fatty acids are C\textsubscript{16:0}, C\textsubscript{14:0}, C\textsubscript{13:0} OH/iso-C\textsubscript{15:1} H and C\textsubscript{18:1} \textit{ω9c}. The genome size is circa 3.6 Mbp. The genus is affiliated to the family *Lachnospiraceae*. The type species is *Butyribacter intestini*.

**Description of Butyribacter intestini sp. nov.**

*Butyribacter intestini* (in.tes'ti.ni. L. gen. n. *intestini* of the gut, referring to the ecosystem of origin of the bacterium).

Cell morphology is the same as described for the genus. Colonies are approximately 2.0 mm in diameter, grayish white, opaque, flat, smooth, dull and irregular with rhizoid margins after 48 h at 37 °C. Growth occurs between 30 and 42 °C (optimum 37 °C) and at pH 6.0–8.5 (optimum pH 7.0–7.5). Positive result in tests for acid phosphatase (weak reaction) and α-glucosidase activities, but negative for alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and β-fucosidase. Acid is produced from glucose, ribose (week positive), galactose, fructose, methyl-D-glucopyranoside, cellobiose, maltose, melibiose, sucrose, starch, turanose, but not from xylose, adonitol, salicin, methyl-β-D-xylopyranoside, arabinose, glycerol, sorbose, dulcitol, melezitose, inositol, raffinose, mannitol, sorbitol, rhamnose, methyl-α-
D-mannopyranoside, N-acetyl-glucosamine, arbutin, trehalose, inulin, glycogen, xylitol, gentiobiose, lyxose, tagatose, fucose, arabitol, gluconate, 2-ketogluconate and 5-ketogluconate. Indole is not produced. Gelatin is liquefied. Aesculin is not hydrolysed. There were 11 genes/proteins responsible for biosynthesis of DAP, including 4-hydroxy-tetrahydrodipicolinate reductase (EC 1.17.1.8) (1 gene), 4-hydroxy-tetrahydrodipicolinate synthase (EC 4.3.3.7) (1 gene), aspartate-semialdehyde dehydrogenase (EC 1.2.1.11) (1 gene), aspartokinase (EC 2.7.2.4) (1 gene), diaminopimelate decarboxylase (EC 4.1.1.20) (1 gene), diaminopimelate epimerase (EC 5.1.1.7) (1 gene), L,L-diaminopimelate aminotransferase (EC 2.6.1.83) (1 gene), N-acetyl-L,L-diaminopimelate deacetylase (EC 3.5.1.47) (2 genes), UDP-N-acetylmuramoylalanyl-D-glutamate--2,6-diaminopimelate ligase (EC 6.3.2.13) (1 gene), and UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate--D-alanyl-D-alanine ligase (EC 6.3.2.10) (1 gene), 7 genes/proteins responsible for biosynthesis of polyamines, including 5′-methylthioadenosine nucleosidase (EC 3.2.2.16) @ S-adenosylhomocysteine nucleosidase (EC 3.2.2.9) (1 gene), ABC transporter, periplasmic spermidine putrescine-binding protein PotD (TC 3.A.1.11.1) (1 gene), arginine decarboxylase (EC 4.1.1.19) / lysine decarboxylase (EC 4.1.1.18) (1 gene), carbamate kinase (EC 2.7.2.2) (1 gene), putrescine transport ATP-binding protein PotA (TC 3.A.1.11.1) (1 gene), spermidine Putrescine ABC transporter permease component PotB (TC 3.A.1.11.1) (1 gene), and spermidine putrescine ABC transporter permease component potC (TC 3.A.1.11.1) (1 gene), 12 genes/protein responsible for biosynthesis of teichoic and lipoteichoic acids, including 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (EC 2.7.7.60) (2 genes), CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase (EC 2.7.8.12) (2 genes), membrane protein involved in the export of O-antigen, teichoic acid lipoteichoic acids (1 gene), minor teichoic acid biosynthesis protein GgaB (1 gene), N-acetylmannosaminyltransferase (EC 2.4.1.187) (1 gene), teichoic acid export ATP-binding protein TagH (EC 3.6.3.40) (3 genes), teichoic acid glycosylation protein (1 gene), and teichoic acid translocation permease protein TagG (1 gene), and 20 genes/protein responsible for biosynthesis of polar lipids, including 1-acyl-sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.51) (2 genes), acyl carrier protein (2 genes), acyl-phosphate:glycerol-3-phosphate O-acyltransferase PIsY (1 gene), alcohol dehydrogenase (EC 1.1.1.1) (1 gene), acetaldehyde dehydrogenase (EC 1.2.1.10) (1
gene), aldehyde dehydrogenase (EC 1.2.1.3) (1 gene), cardiolipin synthetase (EC 2.7.8.3) (1 gene),
CDP-diacylglycerol--glycerol-3-phosphate 3-phosphatidyltransferase (EC 2.7.8.5) (1 gene), CDP-
diacylglycerol--serine O-phosphatidyltransferase (EC 2.7.8.8) (1 gene), dihydroxyacetone kinase
family protein (1 gene), glycerate kinase (EC 2.7.1.31) (1 gene), glycerol-3-phosphate
dehydrogenase (EC 1.1.5.3) (1 gene), glycerol-3-phosphate dehydrogenase \[\text{NAD(P)}^+\] (EC
1.1.1.94) (1 gene), phosphate:acyl-ACP acyltransferase PlsX (1 gene), phosphatidate
cytidylyltransferase (EC 2.7.7.41) (1 gene), phosphatidylglycerophosphatase B (EC 3.1.3.27) (1
gene), and phosphatidylserine decarboxylase (EC 4.1.1.65) (1 gene). There are no genes
responsible for biosynthesis of respiratory lipoquinones, mycolic acids or lipopolysaccharides.

The type strain is TF01-11\(^T\) (CGMCC 1.5203\(^T\) = CGMCC 10984\(^T\) = DSM 105140\(^T\)), isolated from
the faeces obtained from a 17-year-old Chinese female. The DNA G+C content of the type strain
is 36.79 mol%.

Description of *Acetanaerobacter* gen. nov.

*Acetanaerobacter* (A.cet.an.ae.ro. bac’ter. L. n. acetum vinegar; Gr. pref. an not; Gr. masc. n. aer
air; N.L masc. n. bacter a rod; N.L. masc. n. *Acetanaerobacter* vinegar-producing anaerobic rod).

Cells are nonsporeforming, motile, Gram-stain-negative rods, obligately anaerobic, which do not
grow under microaerophilic or aerobic conditions. Growth occurs between 30 and 42 °C
(optimum 37 °C) and at pH 7.0–9.0 (optimum pH 7.0). Acetic and lactate acids are the major
metabolic end products in PYG broth. Major fatty acids are C\(_{14:0}\), C\(_{16:0}\) and C\(_{18:1 \omega 9c}\). The
genome size is circa 3.7 Mbp. The genomic DNA G+C content of the type species is 41.0 mol%.

The type species is *Acetanaerobacter ethanolgignens*.

Description of *Acetanaerobacter ethanolgignens* comb. nov.
The description of the species is given by Robinson & Ritchie (1881) and determined from this study. Cells are about 0.5–0.9 μm long and 1.5–2.5 μm wide, occurring singly, in pairs, and often in short chains. Colonies are yellowish-white, circular, convex, smooth, translucent, and 0.5 to 1.5 mm in diameter on PYG plate after 2–3 days of cultivation. The fermentation products is acetic acid, ethanol, hydrogen, and carbon dioxide. Positive result in tests for leucine arylamidase activity, but negative for acid phosphatase, α-glucosidase activities, alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase and β-fucosidase. Acid is produced from glucose, mannose, lactose, maltose, salicin, mannose, cellobose (weak positive), raffinose (weak positive), fructose, galactose, mannitol, pyruvate and starch (weak positive), but not from xylose, arabinose, glycerol, melezitose, sorbitol, rhamnose, trehalose, adonitol, lactate, raffinose, ribose and sucrose. Indole is not produced. Gelatin is liquefied. Aesculin is not hydrolysed.

The type strain is 77-6T (= ATCC 33324T = DSM 3005T).

**Acknowledgements**

This work was supported by grants from National Key Research and Development Program of China (No. 2018YFC1313800) and Natural Science Foundation of Guangdong Province, China (No. 2019B020230001). We are grateful to Professor Fang Chengxiang for his support in technical advice. We also thank the colleagues at BGI-Shenzhen for sample collection, and discussions, and China National Genebank (CNGB) Shenzhen for DNA extraction, library construction, sequencing.
References


Figure legends

Fig. 1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequence of strain TF01-11\textsuperscript{T} and related type species of the family \textit{Lachnospiraceae} and \textit{Ruminococcaceae}. Bootstrap values (> 90\%) based on 1000 replications are shown at branch nodes. \textit{Clostridium butyricum} is used as an out-group. Bar, 20\% nucleotide sequence divergence.
Table 1. Differential phenotypic features among TF01-11T and the type species of phylogenetically closely related members of family Lachnospiraceae.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation source</td>
<td>Human faeces</td>
<td>Human faeces</td>
<td>Pigs colons</td>
<td>Cattle rumen</td>
</tr>
<tr>
<td>Cell size (μm)</td>
<td>0.5–1.0×2.0–8.0</td>
<td>0.5×1.5–3</td>
<td>0.5–0.9×1.5–2.5</td>
<td>0.4–0.6×2.0–4.0</td>
</tr>
<tr>
<td>Gram-stain</td>
<td>Positive</td>
<td>Variable</td>
<td>Negative</td>
<td>Weakly positive</td>
</tr>
<tr>
<td>Motility/flagella</td>
<td>–</td>
<td>+/Multiple</td>
<td>+/Fascicle</td>
<td>+/Monotrichous</td>
</tr>
<tr>
<td>Major SCFA(s) produced</td>
<td>a, b, l</td>
<td>b, f, l</td>
<td>a, l</td>
<td>a, f, l</td>
</tr>
<tr>
<td>Growth:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range (°C)</td>
<td>30–42</td>
<td>25–42</td>
<td>30–42</td>
<td>25–50</td>
</tr>
<tr>
<td>pH range</td>
<td>6.0–8.5</td>
<td>6.0–8.0</td>
<td>7.0–9.0</td>
<td>6.0–9.0</td>
</tr>
<tr>
<td>Salt tolerance (%)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Aesculin hydrolysis</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Gelatin hydrolysis</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Acid from:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellobiose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>D-Arabinose</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D-Galactose</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 2. Genome size and DNA G+C content of Strain TF01-11<sup>T</sup> compared with three closely related isolates of the family Lachnospiraceae. The data of <i>R. intestinalis</i> DSM 14610<sup>T</sup>, <i>A. ethanolgignens</i> ATCC 33324<sup>T</sup>, <i>C. eutactus</i> ATCC 27759<sup>T</sup> and <i>L. multipara</i> DSM 3073<sup>T</sup> were from NCBI.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Accession number</th>
<th>Genome size (×10&lt;sup&gt;6&lt;/sup&gt; bp)</th>
<th>G+C content (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain TF01-11&lt;sup&gt;T&lt;/sup&gt;</td>
<td>LLKB000000000</td>
<td>3.61</td>
<td>36.79</td>
</tr>
<tr>
<td>&lt;i&gt;R. intestinalis&lt;/i&gt; DSM 14610&lt;sup&gt;T&lt;/sup&gt;</td>
<td>ABYJ000000000</td>
<td>4.38</td>
<td>42.6</td>
</tr>
<tr>
<td>&lt;i&gt;A. ethanolgignens&lt;/i&gt; ATCC 33324&lt;sup&gt;T&lt;/sup&gt;</td>
<td>LNAM000000000</td>
<td>3.66</td>
<td>41.0</td>
</tr>
<tr>
<td>&lt;i&gt;C. eutactus&lt;/i&gt; ATCC 27759&lt;sup&gt;T&lt;/sup&gt;</td>
<td>ABEY000000000</td>
<td>3.10</td>
<td>43.1</td>
</tr>
<tr>
<td>&lt;i&gt;L. multipara&lt;/i&gt; DSM 3073&lt;sup&gt;T&lt;/sup&gt;</td>
<td>AUJG000000000</td>
<td>2.87</td>
<td>35.3</td>
</tr>
</tbody>
</table>

‡ a, Acetate; b, butyrate; f, formate; l, lactate;
Table 3. Levels of 16S rRNA gene sequence similarity and ANI values (in percentages) based on BLAST for strains TF01-11T and the most closely related members of the family Lachnospiraceae.


<table>
<thead>
<tr>
<th>Strain</th>
<th>Accession no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>16S rRNA gene sequence similarity (%)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF01-11T</td>
<td>KT388745</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>R. intestinalis</em> DSM 14610T</td>
<td>AJ312385</td>
<td>92.18</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>A. ethanolgignens</em> ATCC 33324T</td>
<td>FR749897</td>
<td>91.99</td>
<td>93.22</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>C. eutactus</em> ATCC 27759T</td>
<td>NR044049</td>
<td>89.84</td>
<td>91.54</td>
<td>91.08</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td><em>L. multipara</em> DSM 3073T</td>
<td>FR733699</td>
<td>90.60</td>
<td>92.34</td>
<td>91.48</td>
<td>92.43</td>
<td>100</td>
</tr>
<tr>
<td><strong>ANI values (%)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF01-11T</td>
<td>LLKB000000000</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>R. intestinalis</em> DSM 14610T</td>
<td>ABYJ000000000</td>
<td>70.5</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>A. ethanolgignens</em> ATCC 33324T</td>
<td>LNAM000000000</td>
<td>68.1</td>
<td>68.3</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>C. eutactus</em> ATCC 27759T</td>
<td>ABYEY000000000</td>
<td>69.3</td>
<td>69.5</td>
<td>68.9</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td><em>L. multipara</em> DSM 3073T</td>
<td>AUJG000000000</td>
<td>66.9</td>
<td>66.3</td>
<td>66.2</td>
<td>66.7</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4. Number of genes identified in biosynthetic pathway from whole genome sequences of strain TF01-11T and related organisms identified by RAST.

Taxa: 1, TF01-11T; 2, *R. intestinalis* DSM 14610T; 3, *A. ethanolgignens* ATCC 33324T; 4, *C. eutactus* ATCC 27759T; 5, *L. multipara* DSM 3073T; 6, *Anaerostipes caccae* DSM 14662T. Data are for type strains. Numbers of genes identified for benzoquinones (ubiquinones, rhodoquinones, plastoquinones), naphthoquinones (menaquinones, demethylmenaquinones, monomethylmenaquinones, menathioquinones), lipopolysaccharides and mycolic acids were zero for all taxa studied.
<table>
<thead>
<tr>
<th>Genes responsible for biosynthesis</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaminopimelic acid</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Polar lipids</td>
<td>20</td>
<td>26</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>39</td>
</tr>
<tr>
<td>Polyamines</td>
<td>7</td>
<td>17</td>
<td>12</td>
<td>7</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Teichoic and lipoteichoic acids</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>