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ABSTRACT
The three-in-a-tree problem is to determine if a simple undirected

graph contains an induced subgraph which is a tree connecting

three given vertices. Based on a beautiful characterization that is

proved inmore than twenty pages, Chudnovsky and Seymour [Com-

binatorica 2010] gave the previously only known polynomial-time

algorithm, running in 𝑂 (𝑚𝑛2) time, to solve the three-in-a-tree

problem on an 𝑛-vertex𝑚-edge graph. Their three-in-a-tree algo-

rithm has become a critical subroutine in several state-of-the-art

graph recognition and detection algorithms.

In this paper we solve the three-in-a-tree problem in𝑂 (𝑚 log
2 𝑛)

time, leading to improved algorithms for recognizing perfect graphs

and detecting thetas, pyramids, beetles, and odd and even holes.

Our result is based on a new and more constructive characterization

than that of Chudnovsky and Seymour. Our new characterization

is stronger than the original, and our proof implies a new simpler

proof for the original characterization. The improved characteriza-

tion gains the first factor 𝑛 in speed. The remaining improvement

is based on dynamic graph algorithms.
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best previously known results our work

three-in-a-tree 𝑂 (𝑛4) [18] �̃� (𝑛2): Theorem 1.1

theta 𝑂 (𝑛11) [18] �̃� (𝑛6): Theorem 1.2

pyramid 𝑂 (𝑛9) [13] �̃� (𝑛5): Theorem 1.3

perfect graph 𝑂 (𝑛9) [13] 𝑂 (𝑛8): Theorem 1.4

odd hole 𝑂 (𝑛9) [17] 𝑂 (𝑛8): Theorem 1.4

beetle 𝑂 (𝑛11) [11] �̃� (𝑛6): Theorem 1.5

even hole 𝑂 (𝑛11) [11] 𝑂 (𝑛9): Theorem 1.6

Figure 1: Comparing results for 𝒏-vertex graphs.

1 INTRODUCTION
The graphs considered in this paper are all assumed to be undirected.

Also, it is convenient to think of them as connected. Let 𝐺 be such

a graph with 𝑛 vertices and𝑚 edges. An induced subgraph of 𝐺

is a subgraph 𝐻 that contains all edges from 𝐺 between vertices

in 𝐻 . For the three-in-a-tree problem, we are given three specific

terminals in𝐺 , and we want to decide if 𝐺 has an induced tree 𝑇 ,

that is, a tree𝑇 which is an induced subgraph of𝐺 , containing these

terminals. Chudnovsky and Seymour [18] gave the formerly only

known polynomial-time algorithm, running in 𝑂 (𝑚𝑛2) time, for

the three-in-a-tree problem. In this paper, we reduce the complexity

of three-in-a-tree from 𝑂 (𝑚𝑛2) to 𝑂 (𝑚 log
2 𝑛) = �̃� (𝑚) time.

Theorem 1.1. It takes𝑂 (𝑚 log
2 𝑛) time to solve the three-in-a-tree

problem on an 𝑛-vertex𝑚-edge simple graph.

To prove Theorem 1.1, we first improve the running time to

𝑂 (𝑚𝑛) using a simpler algorithm with a simpler correctness proof

than that of Chudnovsky and Seymour. The remaining improve-

ment is done employing dynamic graph algorithms.

1.1 Significance of Three-in-a-Tree
The three-in-a-tree problem may seem like a toy problem, but it has

proven to be of general importance because many difficult graph

detection and recognition problems reduce to it. The reductions are

often highly non-trivial and one-to-many, solving three-in-a-tree

on multiple graph instances with different placements of the three

terminals. With our near-linear three-in-a-tree algorithm and some

improved reductions, we get the results summarized Figure 1. These

results will be explained in more detail in Section 1.2.

Showcasing some of the connections, our improved three-in-a-

tree algorithm leads to an improved algorithm to detect if a graph

has an odd hole, that is, an induced cycle of odd length above three.

This is via the recent odd-hole algorithm of Chudnovsky, Scott, Sey-

mour, and Spirkl [17]. A highly nontrivial consequence of odd-hole
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algorithm is that we can use it to recognize if a graph𝐺 is perfect,

that is, if the chromatic number of each induced subgraph 𝐻 of 𝐺

equals the clique number of𝐻 . The celebrated Strong Perfect Graph

Theorem states that a graph is perfect if and only if neither the

graph nor its complement has an odd hole. An odd-hole algorithm

can therefore trivially test if a graph is perfect. The Strong Perfect

Graph Theorem, implying the last reduction was a big challenge

to mathematics, conjectured by Berge in 1960 [5–7] and proved by

Chudnovsky, Robertson, Seymour, and Thomas [16], earned them

the 2009 Fulkerson prize. Our improved three-in-a-tree algorithm

improves the time to recognize if a graph is perfect from 𝑂 (𝑛9) to
𝑂 (𝑛8). While this is a modest polynomial improvement, the point

is that three-in-a-tree is a central sub-problem on the path to solve

many other problems.

The next obvious question is why three-in-a-tree? Couldn’t we

have found a more general subproblem to reduce to? The dream

would be to get something like disjoint paths and graph minor

theory where we detect a constant sized minor or detect if we have

disjoint paths connecting of a constant number of terminal pairs

(one path connecting each pair) in 𝑂 (𝑛2) time. This is using the

algorithm of Kawarabayashi, Kobayashi, and Reed [44], improving

the original cubic algorithm of Robertson and Seymour [53].

In light of the above grand achievements, it may seem unam-

bitious for Chudnovsky and Seymour to work on three-in-a-tree

as a general tool. The difference is that the above disjoint paths

and minors are not necessarily induced subgraphs. Working with

induced paths, many of the most basic problems become NP-hard.

Obviously, we can decide if there is an induced path between two

terminals, but Bienstock [8] has proven that it is NP-hard to decide

two-in-a-cycle, that is, if two terminals are in an induced cycle. From

this we easily get that it is NP-hard to decide three-in-a-path, that

is if there is an induced path containing three given terminals. Both

of these problems would be trivial if we could solve the induced

disjoint path problem for just two terminal pairs. In connection

with the even and odd holes and perfect graphs, Bienstock also

proved that it is NP-hard to decide if there is an even (respectively,

odd) hole containing a given terminal.

In light of these NP-hardness results it appears quite lucky that

three-in-a-tree is tractable, and of sufficient generality that it can

be used as a base for solving other graph detection and recognition

problems nestled betweenNP-hard problems. In fact, three-in-a-tree

has become such a dominant tool in graph detection that authors

sometimes explained when they think it cannot be used [19, 58],

e.g., Trotignon and Vušković [58] wrote “A very powerful tool

for solving detection problems is the algorithm three-in-a-tree of

Chudnovsky and Seymour [...] But as far as we can see, three-in-a-

tree cannot be used to solve Π𝐻
1|1 .”

While proving that a problem is in P is the first big step in

understanding the complexity, there has also been substantial prior

work on improving the polynomial complexity for many of the

problems considered in this paper. In the next subsection, we will

explain inmore detail how our near-linear three-in-a-tree algorithm

together with some new reductions improve the complexity of

different graph detection and recognition problems. In doing so we

also hope to inspire more new applications of three-in-a-tree in

efficient graph algorithms.

1.2 Implications
We are now going to describe the use of our three-in-a-tree algo-

rithm to improve the complexity of several graph detection and

recognition problems. The reader less familiar with structural graph

theory may find it interesting to see how the route to solve the big

problems takes us through several toy-like subproblems, starting

from three-in-a-tree. Often we look for some simple configuration

implying an easy answer. If the simple configuration is not present,

then this tells us something about the structure of the graph that

we can try to exploit.

We first define the big problems in context. A hole is an in-

duced simple cycle with four or more vertices. A graph is chordal

if and only if it has no hole. Rose, Tarjan, and Leuker [54] gave

a linear-time algorithm for recognizing chordal graphs. A hole is

odd (respectively, even) if it consists of an odd (respectively, even)

number of vertices.𝐺 is Berge if𝐺 and its complement are both odd-

hole-free. The celebrated Strong Perfect Graph Theorem, which was

conjectured by Berge [5–7] and proved by Chudnovsky, Robertson,

Seymour, and Thomas [16], states that 𝐺 is Berge if and only if 𝐺

is perfect, i.e., the chromatic number of each induced subgraph 𝐻

of 𝐺 equals the clique number of 𝐻 .

The big problems considered here are detecting odd and even

holes, but related to this we are going to look for “thetas”, “pyra-

mids”, and “beetles”. These are different induced subdivisions where

a subdivision of a graph is one where edges are replaced by paths of

arbitrary length. A hole is thus an induced subdivision of a length-4

cycle, and a minimal three-in-a-tree is an induced subdivision of a

star with 2 or 3 leaves that are all prespecified terminals.

The first problem Chudnovsky and Seymour [18] solved us-

ing their three-in-tree algorithm was to detect a theta which is

any induced subdivision of 𝐾2,3 [4]. Chudnovsky and Seymour

are interested in thetas because they trivially imply an even hole.

They developed the previously only known polynomial-time algo-

rithm, running in𝑂 (𝑛11) time, for detecting thetas in𝐺 via solving

the three-in-a-tree problem on 𝑂 (𝑛7) subgraphs of 𝐺 . Thus, Theo-
rem 1.1 reduces the time to �̃� (𝑛9). Moreover, we show in Lemma 6.1

that thetas in𝐺 can be detected via solving the three-in-a-tree prob-

lem on𝑂 (𝑚𝑛2) 𝑛-vertex graphs, leading to an �̃� (𝑛6)-time algorithm

as stated in Theorem 1.2.

Theorem 1.2. It takes 𝑂 (𝑚𝑛4
log

2 𝑛) time to detect thetas in an

𝑛-vertex𝑚-edge graph.

The next problem Chudnovsky and Seymour solved using their

three-in-tree algorithmwas to detect a pyramidwhich is an induced

subgraph consisting of an apex vertex 𝑢 and a triangle 𝑣1𝑣2𝑣3 and

three paths 𝑃1, 𝑃2, and 𝑃3 such that 𝑃𝑖 connects 𝑢 to 𝑣𝑖 and touch

𝑃 𝑗 , 𝑗 ≠ 𝑖 , only in 𝑢, and such that at most one of 𝑃1, 𝑃2, and 𝑃3 has

only one edge. The point in a pyramid is that it must contain an odd

hole. An 𝑂 (𝑛9)-time algorithm for detecting pyramids was already

contained in the perfect graph algorithm of Chudnovsky et al. [13,

§2], but Chudnovsky and Seymour use their three-in-a-tree to give a

more natural “less miraculous” algorithm for pyramid detection, but

with a slower running time of 𝑂 (𝑛10). With our faster three-in-a-

tree algorithm, their more natural pyramid detection also becomes

the faster algorithm with a running time of �̃� (𝑛8). Moreover, as

for thetas, we improve the reductions to three-in-a-tree. We show

(see Lemma 6.2) that pyramids in 𝐺 can be detected via solving the
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three-in-a-tree problem on 𝑂 (𝑚𝑛) 𝑛-vertex graphs, leading to an
�̃� (𝑚𝑛3)-time algorithm as stated in Theorem 1.3.

Theorem 1.3. It takes 𝑂 (𝑚𝑛3
log

2 𝑛) time to detect pyramids in

an 𝑛-vertex𝑚-edge graph.

We now turn to odd holes and perfect graphs. Since a graph is

perfect if and only if it and its complement are both odd-hole-free,

an odd-hole algorithm implies a perfect graph algorithm, but not

vice versa. Cornuéjols, Liu, and Vušković [28] gave a decomposition-

based algorithm for recognizing perfect graphs that runs in𝑂 (𝑛18)
time, reduced to 𝑂 (𝑛15) time by Charbit, Habib, Trotignon, and

Vušković [12]. The best previously known algorithm, due to Chud-

novsky, Cornuéjols, Liu, Seymour, and Vušković [13], runs in𝑂 (𝑛9)
time. However, the tractability of detecting odd holes was open for

decades [20, 22, 26, 42] until recently. Chudnovsky, Scott, Seymour,

and Spirkl [17] announced an 𝑂 (𝑛9)-time algorithm for detecting

odd holes, which also implies a simpler 𝑂 (𝑛9)-time algorithm for

recognizing perfect graphs. An 𝑂 (𝑛9)-time bottleneck of both of

these perfect-graph recognition algorithms was the above men-

tioned algorithm for detecting pyramids [13, §2].

By Theorem 1.3, the pyramids can now be detected in �̃� (𝑚𝑛3)-
time, but Chudnovsky et al.’s odd-hole algorithm has six more

𝑂 (𝑛9)-time subroutines [17, §4]. By improving all these bottle-

neck subroutines, we improve the detection time for odd holes to

𝑂 (𝑚2𝑛4), hence the recognition time for perfect graphs to 𝑂 (𝑛8).

Theorem 1.4. (1) It takes 𝑂 (𝑚2𝑛4) time to detect odd holes in an

𝑛-vertex𝑚-edge graph, and hence (2) it takes𝑂 (𝑛8) time to recognize

an 𝑛-vertex perfect graph.

Even-hole-free graphs have been extensively studied [1, 23, 24,

29, 30, 37, 45, 55]. Vušković [62] gave a comprehensive survey.

Conforti, Cornuéjols, Kapoor, and Vušković [21, 25] gave the first

polynomial-time algorithm for detecting even holes, running in

𝑂 (𝑛40) time. Chudnovsky, Kawarabayashi, and Seymour [15] re-

duced the time to 𝑂 (𝑛31). A prism consists of two vertex-disjoint

triangles together with three vertex-disjoint paths between the

two triangles such that the union of every two of the three paths

induces a cycle. Chudnovsky et al. [15] also observed that the time

of detecting even holes can be further reduced to 𝑂 (𝑛15) as long
as detecting prisms is not too expensive, but this turned out to be

NP-hard [51]. However, Chudnovsky and Kapadia [14] and Maffray

and Trotignon [51, Algorithm 2] devised 𝑂 (𝑛35)-time and 𝑂 (𝑛5)-
time algorithms for detecting prisms in theta-free and pyramid-free

graphs 𝐺 , respectively. Later, da Silva and Vušković [30] improved

the time of detecting even holes in 𝐺 to 𝑂 (𝑛19). The best formerly

known algorithm, due to Chang and Lu [11], runs in 𝑂 (𝑛11) time.

One of its two 𝑂 (𝑛11)-time bottlenecks [11, Lemma 2.3] detects so-

called beetles in𝐺 via solving the three-in-a-tree problem on𝑂 (𝑛7)
subgraphs of 𝐺 . Theorem 1.1 reduces the time to �̃� (𝑛9). Moreover,

we show in Lemma 6.3 that beetles can be detected via solving the

three-in-a-tree problem on 𝑂 (𝑚2) 𝑛-vertex graphs, leading to an

�̃� (𝑛6)-time algorithm as stated in Theorem 1.5.

Theorem 1.5. It takes𝑂 (𝑚2𝑛2
log

2 𝑛) time to detect beetles in an

𝑛-vertex𝑚-edge graph.

Combining our faster beetle-detection algorithm with our𝑂 (𝑛9)-
time algorithm in §6.4, which is carefully improved from the other

𝑂 (𝑛11)-time bottleneck subroutine [11, Lemma 2.4], we reduce the

time of detecting even holes to 𝑂 (𝑛9) as stated in Theorem 1.6.

Theorem 1.6. It takes 𝑂 (𝑚2𝑛5) time to detect even holes in an

𝑛-vertex𝑚-edge graph.

For other implications of Theorem 1.1, Lévêque, Lin, Maffray, and

Trotignon gave𝑂 (𝑛13)-time and𝑂 (𝑛14)-time algorithms for certain

properties Π𝐵4
and Π𝐵6

, respectively [49, Theorems 3.1 and 3.2]. By

Theorem 1.1 and the techniques of §6, the time can be reduced by

a Θ(𝑛5/log
2 𝑛) factor. Theorem 1.1 also improves the algorithms of

van ’t Hof, Kaminski, and Paulusma [60, Lemmas 4 and 5]. We hope

and expect that three-in-a-tree with its new near-optimal efficiency

will find many other applications in efficient graph algorithms.

1.3 Other Related Work
For the general 𝑘-in-a-tree problem, we are given 𝑘 specific termi-

nals in 𝐺 , and we want to decide if 𝐺 has an induced tree 𝑇 . The

𝑘-in-a-tree problem is NP-complete [32] when 𝑘 is not fixed. With

our Theorem 1.1, it can be solved in near-linear time for 𝑘 ≤ 3,

and the tractability is unknown for any fixed 𝑘 ≥ 4 [38]. Solving

it in polynomial time for constant 𝑘 would be a huge result. It is,

however, not clear that 𝑘-in-a-tree for 𝑘 > 3 would be as powerful

a tool in solving other problems as three-in-a-tree has proven to be.

While 𝑘-in-a-tree with bounded 𝑘 is unsolved for general graphs,

there has been substantial work devoted to 𝑘-in-a-tree for special

graph classes. Derhy, Picouleau, and Trotignon [33] and Liu and

Trotignon [50] studied 𝑘-in-a-tree on graphs with girth at least 𝑘

for 𝑘 = 4 and general 𝑘 ≥ 4, respectively. Dos Santos, da Silva, and

Szwarcfiter [35] studied the 𝑘-in-a-tree problem on chordal graphs.

Golovach, Paulusma, and van Leeuwen [38] studied the 𝑘-in-a-

tree, 𝑘-in-a-cycle, and 𝑘-in-a-path problems on AT-free graphs [48].

Bruhn and Saito [10], Fiala, Kaminski, Lidický, and Paulusma [36],

and Golovach, Paulusma, and van Leeuwen [39] studied the 𝑘-in-a-

tree and 𝑘-in-a-path problems on claw-free graphs.

On the hardness side, recall that three-in-a-tree can also be

viewed as three in a subdivided star with two or three terminal

leaves. However, detecting such a star with 4 terminal leaves is NP-

hard. (This follows from Bienstock’s NP-hardness of 2-in-a-cycle

[8], asking if there exists a hole containing two vertices 𝑢 and 𝑣 ,

which may be assumed to be nonadjacent: Add two new leaves 𝑢1

and 𝑢2 adjacent to 𝑢 and then, for every two neighbors 𝑣1 and 𝑣2

of 𝑣 , check if the new graph contains an induced subdivision of a

star with exactly four terminal leaves 𝑢1, 𝑢2, 𝑣1, 𝑣2.) Even without

terminals, it is NP-hard to detect induced subdivisions of any graph

with minimum degree at least four [3, 49]. Finally, we note that if

we allow multigraphs with parallel edges, then even 2-in-a-path

becomes NP-hard. This NP-hardness is an easy exercise since the

induced path cannot contain both end-points of parallel edges.

We note that it is the subdivisions that make induced graph detec-

tion hard for constant sized pattern graphs. Without subdivisions,

we can trivially check for any induced 𝑘-vertex graph in𝑂 (𝑛𝑘 ) time.

Nesetril and Poljak has improved this to roughly 𝑂 (𝑛𝑘𝜔/3) where
𝜔 is the exponent of matrix multiplication [52]. On the other hand,

the ETH hypothesis implies that we cannot detect if a 𝑘-clique is a(n

induced) subgraph in 𝑛𝑜 (𝑘)
time [43]. See [31] for a more general

understanding of the hardness of detecting induced graphs.
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1.4 Techniques
Chudnovsky and Seymour’s 𝑂 (𝑛2𝑚)-time algorithm for the three-

in-a-tree problem is based upon their beautiful characterization for

when a graph with three given terminals are contained in some

induced tree [18]. The aim is to either find a three-in-a-tree or a

witness that it cannot exist. During the course of the algorithm,

they develop the witness to cover more and more of the graph.

In each iteration, they take some part that is not covered by the

current witness and try to add it in, but then some other part of the

witness may pop out. They then need a potential function argument

to show progress in each iteration.

What we do is to introduce some extra structure to the witness

when no three-in-a-tree is found, so that when things are added,

nothing pops out. This leads to a simpler more constructive al-

gorithm that is faster by a factor 𝑛. Our new witness has more

properties than that of Chudnovsky and Seymour, so our charac-

terization of no three-in-a-tree is strictly stronger, yet our overall

proof is shorter. Essentially the point is that by strengthening the in-

ductive hypothesis, we get a simpler inductive step. The remaining

improvement in speed is based on dynamic graph algorithms.

1.5 Road Map
The rest of the paper is organized as follows. Section 2 is a back-

ground section where we review Chudnovsky and Seymour’s char-

acterization for three-in-a-tree, sketch how it is used algorithmi-

cally, as well as the bottleneck for a fast implementation. Section 3

presents our new stronger characterization as well as a high level

description of the algorithms and proofs leading to our �̃� (𝑚) im-

plementation. Section 4 proves the correctness of our new charac-

terization. Section 5 provides an efficient implementation. Section 6

shows how our improved three-in-a-tree algorithm, in tandem with

other new ideas, is used to improve many state-of-the-art graph

recognition and detection algorithms. Section 7 concludes the paper.

See a full version at https://arxiv.org/abs/1909.07446 for the proofs

omitted due to the page limit of STOC 2020.

2 BACKGROUND
Let |𝑆 | denote the cardinality of set 𝑆 . Let 𝑅 \ 𝑆 for sets 𝑅 and

𝑆 consist of the elements of 𝑅 not in 𝑆 . Let 𝐺 and 𝐻 be graphs.

Let 𝑉 (𝐺) (respectively, 𝐸 (𝐺)) consist of the vertices (respectively,
edges) of 𝐺 . Let 𝑢 and 𝑣 be vertices. Let𝑈 and 𝑉 be vertex sets. Let

𝑁𝐺 (𝑢) consist of the neighbors of 𝑢 in 𝐺 . The degree of 𝑢 in 𝐺 is

|𝑁𝐺 (𝑢) |. Let 𝑁𝐺 [𝑢] = 𝑁𝐺 (𝑢) ∪ {𝑢}. Let 𝑁𝐺 (𝑈 ) be the union of

𝑁𝐺 (𝑢) \𝑈 over all vertices 𝑢 ∈ 𝑈 . Let 𝑁𝐺 (𝑢,𝐻 ) = 𝑁𝐺 (𝑢) ∩𝑉 (𝐻 )
and 𝑁𝐺 (𝑈 ,𝐻 ) = 𝑁𝐺 (𝑈 ) ∩𝑉 (𝐻 ). The subscript 𝐺 in notation 𝑁𝐺

may be omitted. A leaf of 𝐺 is a degree-one vertex of 𝐺 . Let ∇(𝐺)
denote the graph obtained from𝐺 by adding an edge between each

pair of leaves of 𝐺 . Let 𝐺 [𝐻 ] denote the subgraph of 𝐺 induced by

𝑉 (𝐻 ). Let𝐺 −𝑈 = 𝐺 [𝑉 (𝐺) \𝑈 ]. Let𝐺 −𝑢 = 𝐺 −{𝑢}. Let𝑢𝑣 denote
an edge with end-vertices 𝑢 and 𝑣 . Graphs 𝐻1 and 𝐻2 are disjoint if

𝑉 (𝐻1) ∩𝑉 (𝐻2) = ∅. Graphs 𝐻1 and 𝐻2 are adjacent in𝐺 if 𝐻1 and

𝐻2 are disjoint and there is an edge 𝑢𝑣 of 𝐺 with 𝑢 ∈ 𝑉 (𝐻1) and
𝑣 ∈ 𝑉 (𝐻2). A 𝑈𝑉 -path is either a vertex in 𝑈 ∩𝑉 or a path having

one end-vertex in𝑈 and the other end-vertex in𝑉 . A𝑈𝑉 -rung [18]

is a vertex-minimal induced 𝑈𝑉 -path. If𝑈 = {𝑢}, then a 𝑈𝑉 -path

is also called a 𝑢𝑉 -path and a 𝑉𝑢-path. If 𝑈 = {𝑢} and 𝑉 = {𝑣},

Figure 2: (a) An 𝑿-net H with nodes 𝑽1, . . . , 𝑽4 and arcs
𝑬1, 𝑬2, 𝑬3, where 𝑿 consists of the vertices other than 4, 5, 6.
Vertices 4 and 5 are H-local. Vertex 6 is H-nonlocal. (b) A
nonlocal net H having a triad 𝚫(𝑽4, 𝑽5, 𝑽6) = {6, 8, 9}. Vertex
5 is H-local. Vertex 4 is H-nonlocal.

then a𝑈𝑉 -path is also called a 𝑢𝑣-path. Let𝑈𝑣-rung, 𝑢𝑉 -rung, and

𝑢𝑣-rung be defined similarly.

For the three-in-a-tree problem, we assume without loss of gen-

erality that the three given terminals of the input 𝑛-vertex𝑚-edge

simple undirected graph 𝐺 are exactly the leaves of 𝐺 . A sapling

of 𝐺 is an induced tree containing all three leaves of 𝐺 , so the

three-in-a-tree problem is the problem of finding a sapling.

2.1 Chudnovsky & Seymour’s Characterization
Let H be a graph such that each member of𝑉 (H) and 𝐸 (H), called
node and arc respectively, is a subset of 𝑋 ⊆ 𝑉 (𝐺). H is an 𝑋 -net of

𝐺 if the following Conditions N hold (see Figure 2(a)): N1: Graph

H is connected and graph ∇(H) is biconnected. N2: The arcs of H

form a nonempty disjoint partition of the vertex set𝑋 . N3: Graph H

has exactly three leaf nodes, each of which consists of a leaf vertex

of 𝐺 . N4: For any arc 𝐸 = 𝑈𝑉 of H, each vertex of 𝑋 in 𝐸 is on a

𝑈𝑉 -rung of𝐺 [𝐸]. N5: For any arc 𝐸 and node𝑉 of H, 𝐸 ∩𝑉 ≠ ∅ if

and only if 𝑉 is an end-node of 𝐸 in H. N6: For any vertices 𝑢 and

𝑣 in 𝑋 contained by distinct arcs 𝐸 and 𝐹 of H, 𝑢𝑣 is an edge of 𝐺

if and only if arcs 𝐸 and 𝐹 share a common end-node 𝑉 in H with

{𝑢, 𝑣} ⊆ 𝑉 . An arc 𝐸 = 𝑈𝑉 is simple if 𝐺 [𝐸] is a𝑈𝑉 -rung. A net is

an 𝑋 -net for an 𝑋 . A base net is a net obtained via the next lemma.

Lemma 2.1 (Chudnovsky and Seymour [18]). It takes 𝑂 (𝑚)
time to find a sapling of 𝐺 or a net of 𝐺 whose arcs are all simple.

The original definition of Chudnovsky and Seymour only used

nets with no parallel arcs, but for our own more efficient construc-

tion, we need to use parallel arcs. A triad of H is Δ(𝑉1,𝑉2,𝑉3) =
(𝑉1 ∩𝑉2) ∪ (𝑉2 ∩𝑉3) ∪ (𝑉3 ∩𝑉1) for nodes𝑉1,𝑉2, and𝑉3 that induce

a triangle in graph H. A subset 𝑆 of 𝑋 is H-local if 𝑆 is contained

by a node, arc, or triad of H [18]. A set 𝑌 ⊆ 𝑉 (𝐺 − 𝑋 ) is H-local

if 𝑁 (𝑌,𝑋 ) is H-local. H is local if every 𝑌 ⊆ 𝑉 (𝐺 − 𝑋 ) with con-

nected 𝐺 [𝑌 ] is H-local. See Figure 2. The following theorem is

Chudnovsky and Seymour’s characterization.

Theorem 2.2 (Chudnovsky and Seymour. [18, 3.2]). 𝐺 is sapling

free if and only if 𝐺 admits a local net with no parallel arcs.

The proof of Theorem 2.2 in [18] takes upmore than 20 pages.We

will here present a stronger characterization with a shorter proof,

which moreover leads to a much faster implementation. Our results

throughout the paper do not rely on Theorem 2.2. Moreover, our

paper delivers an alternative self-contained proof for Theorem 2.2.
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Figure 3: ∇(H) for a web H. The yellow arcs are in ∇(H) \H.

Chudnovsky and Seymour’s proof of Theorem 2.2 is algorithmic

maintaining an 𝑋 -net H with 𝑋 ⊆ 𝑉 (𝐺) having no parallel arcs

until a sapling of 𝐺 is found or H becomes local, implying that 𝐺

is sapling-free by the if direction of Theorem 2.2. In each iteration,

if H is not local, they find a minimal set 𝑌 ⊆ 𝑉 (𝐺 − 𝑋 ) with con-

nected 𝐺 [𝑌 ] such that 𝑌 is H-nonlocal. Their proof for the only-if

direction of Theorem 2.2 shows that if𝐺 [𝑋∪𝑌 ] is sapling-free, then
H can be updated to an 𝑋 ′

-net with 𝑌 ⊆ 𝑋 ′ ⊆ 𝑋 ∪ 𝑌 . Although 𝑌
joins the resulting 𝑋 ′

-net H, a subset of 𝑋 may have to be moved

out of H to preserve Conditions N for H. To bound the number

of iterations, Chudnovsky and Seymour showed that the potential

|𝑋 | + (𝑛 + 1) · |𝑉 (H) | of H stays 𝑂 (𝑛2) and is increased by each

iteration, implying that the total number of iterations is 𝑂 (𝑛2). In
the next section, we will present a new stronger characterization

that using parallel arcs with particular properties avoids the afore-

mentioned in-and-out situation. More precisely, our 𝑋 will grow in

each iteration, reducing the number of iterations to at most 𝑛.

3 OUR STRONGER CHARACTERIZATION
A base net of 𝐺 contains only simple arcs. However, we do need

other more complex arcs, but we will show that it suffices that all

non-simple arcs are “flexible” in the sense defined below. For vertex

sets 𝑆 ,𝑉1, and𝑉2, an (𝑆,𝑉1,𝑉2)-sprout is an induced subgraph of𝐺 in

one of the following Types S: S1:A tree intersecting each of 𝑆 ,𝑉1, and

𝑉2 at exactly one vertex. S2: An 𝑆𝑉1-rung not intersecting 𝑉2 plus a

disjoint 𝑆𝑉2-rung not intersecting𝑉1. S3: A𝑉1𝑉2-rung not intersect-

ing 𝑆 plus a disjoint 𝑆𝑉 -rung with 𝑉 = 𝑉1 ∪𝑉2. Let 𝑆 = {1, . . . , 7}
for the example in Figure 3. Vertex 1 is an (𝑆,𝑉1,𝑉2)-sprout of
Type S1. The set {2, 19, 12, 11, 13, 14, 15, 16} induces an (𝑆,𝑉1,𝑈2)-
sprout of Type S1. The only (𝑆,𝑈1,𝑈2)-sprout and (𝑆,𝑊1,𝑊2)-
sprout of Type S1 contain vertex 1. The set {23, 4, 7, 28} induces an
(𝑆,𝑊1,𝑊2)-sprout of Type S2. The set {19, 2, 13, 14, 15, 16} induces
an (𝑆,𝑈1,𝑈2)-sprout of Type S3. An arc 𝐸 = 𝑈𝑉 of H is flexible

if 𝐺 [𝐸] contains an (𝑆,𝑈 ,𝑉 )-sprout for each nonempty vertex set

𝑆 ⊆ 𝐸. For the example in Figure 3, arcs 𝐸1, 𝐸3, 𝐸4, 𝐸5, 𝐸6 are simple

and arcs 𝐸1, 𝐸2, 𝐸7 are flexible. An 𝑋 -net H is an 𝑋 -web if all arcs of

H are simple or flexible. A web is an 𝑋 -web for some 𝑋 . A base net

of 𝐺 is a web of 𝐺 . Let H be a net. A split component G for H is ei-

ther an arc𝑈𝑉 of H or a subgraph of H containing a cutset {𝑈 ,𝑉 }
of ∇(H) such that G is a maximal subgraph of ∇(H) in which

𝑈 and 𝑉 are nonadjacent and do not form a cutset [34]. For both

cases, we call {𝑈 ,𝑉 } the split pair of G for H. The split components

Figure 4: The aiding net of the H in (a) is the H† in (b) with
𝑬†

2 = 𝑬2 ∪ · · · ∪ 𝑬8 and 𝑬†
3 = 𝑬9 ∪ · · · ∪ 𝑬15. The net H in (c)

aids itself.

having split pair {𝑉1,𝑉2} in Figure 3 are (1) the 𝑉1𝑉2-path with an

arc 𝐸1, (2) the 𝑉1𝑉2-path with arcs 𝐸3, 𝐸2, 𝐸4, and (3) the 𝑉1𝑉2-path

with arcs 𝐸5, 𝐸7, 𝐸6. Thus, even if H has no parallel arcs, there can

be more than one split components sharing a common split pair.

One can verify that each split component G of H contains at most

one leaf node of H and, if G contains a leaf node 𝑉 of H, then 𝑉

belongs to the split pair of G. A vertex subset 𝐶 of 𝐺 is a chunk

of H if 𝐶 is the union of the arcs of one or more split components

for H that share a common split pair {𝑈 ,𝑉 } for H. In this case, we

call {𝑈 ,𝑉 } the split pair of 𝐶 for H and call 𝐶 a𝑈𝑉 -chunk of H. A

chunk of H is maximal if it is not properly contained by any chunk

of H. A node of H is a maximal split node if it belongs to the split

pair of a maximal chunk for H. For the net H of 𝐺 in Figure 3, 𝐸1,

𝐸3, 𝐸3 ∪𝐸2, 𝐸3 ∪𝐸2 ∪𝐸4, and 𝐸1 ∪𝐸3 ∪𝐸2 ∪𝐸4 are all chunks of H.

If we consider only the subsets of𝑉 (𝐺) that intersect the numbered

vertices, then 𝐸1∪· · ·∪𝐸7 is the only maximal chunk and𝑉1 and𝑉2

are the only maximal split nodes. Given an 𝑋 -net H, a subset 𝑆 of

𝑋 is H-tamed if every pair of vertices from 𝑆 is either in the same

arc or together in some node of H. A set 𝑌 ⊆ 𝑉 (𝐺 −𝑋 ) is H-tamed

if 𝑁 (𝑌,𝑋 ) is H-tamed. H is taming if every 𝑌 ⊆ 𝑉 (𝐺 − 𝑋 ) with
connected𝐺 [𝑌 ] is H-tamed. If 𝑆 ⊆ 𝑋 is H-local, then 𝑆 is H-tamed.

The converse does not hold: If H has simple arcs 𝐸 and 𝐹 between

nodes𝑈 and𝑉 ,𝐺 [𝐸] is an edge 𝑢𝑣 with 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 , and𝐺 [𝐹 ]
is a vertex𝑤 ∈ 𝑈 ∩𝑉 , then {𝑢, 𝑣,𝑤} is H-tamed and H-nonlocal.

However, if H has no parallel arcs, then each H-tamed subset of 𝑋

is H-local, as shown in Lemma 3.5(2).

A non-trivial 𝑉1𝑉2-chunk 𝐶 of H is one that is not an arc in H.

We then define the operation merge(𝐶) which for a 𝑉1𝑉2-chunk 𝐶

of H replaces all arcs of H intersecting 𝐶 by an arc 𝐸 = 𝑉1𝑉2 with

𝐸 = 𝐶 and deletes the nodes whose incident arcs are all deleted.

We shall prove that this merge operation preserves that H is a

net (see Lemma 3.4). Let H†
denote the 𝑋 -net obtained from H by

applying merge(𝐶) on H for each maximal chunk 𝐶 of H. We call

H†
the 𝑋 -net that aids H. Such an aiding net has no non-trivial

chunks and no parallel arcs. See Figure 4 for examples. The simple

graph ∇(H†
) is triconnected. 𝑉 is node of H†

if and only if 𝑉 is

a maximal split node of H. 𝐸 is an arc of H†
if and only if 𝐸 is a

maximal chunk of H (respectively, H†
). The next theorem is our

characterization, which is the basis for our much more efficient

near-linear time algorithm.

Theorem 3.1. 𝐺 is sapling-free if and only if 𝐺 admits a web H

with a taming aiding net H†
.

1283



STOC ’20, June 22–26, 2020, Chicago, IL, USA Kai-Yuan Lai, Hsueh-I Lu, and Mikkel Thorup

Theorem 3.1 is stronger than Chudnovsky and Seymour’s Theo-

rem 2.2 in that our proof of Theorem 3.1 provides as a new shorter

proof of Theorem 2.2. For the relation between the two structural

theorems, we will prove in Lemma 3.5(2) that every taming net of

𝐺 having no parallel arcs is local. Since the aiding net H†
in Theo-

rem 3.1 has no parallel arcs, H†
is local as required by Theorem 2.2.

The algorithmic advantage of Theorem 3.1 is that H†
is the aiding

net of a web H which has more structure than an arbitrary net.

To get a self-contained proof of the easy if-direction of Theo-

rem 3.1, we prove more generally that if 𝐺 admits a taming net,

then 𝐺 is sapling-free (Lemma 3.5(1)). This proof holds for any net

including nets with parallel arcs like our web H. Proving the only-if

direction is the hard part for both structural theorems. Our new

proof follows the same general pattern as the old one stated after

the statement of Theorem 2.2, but with crucial differences to be

detailed later.

We grow an 𝑋 -web H with 𝑋 ⊆ 𝑉 (𝐺) until a sapling of 𝐺 is

found or H†
becomes taming, implying that𝐺 is sapling-free by the

if direction of Theorem 3.1. In each iteration, if H†
is not taming,

we find a minimal set𝑌 ⊆ 𝑉 (𝐺−𝑋 ) with connected𝐺 [𝑌 ] such that
𝑌 is not H†

-tamed. To prove the only-if direction of Theorem 3.1,

we show that if 𝐺 [𝑋 ∪ 𝑌 ] is sapling-free, then H can be expanded

to an 𝑋 ′
-web with 𝑋 ′ = 𝑋 ∪ 𝑌 .

Comparing with the proof of Chudnovsky and Seymour that

we sketched below Theorem 2.2, we note that in their case, their

new 𝑋 ′
-net would be for some 𝑌 ⊆ 𝑋 ′ ⊆ 𝑋 ∪ 𝑌 , whereas we get

𝑋 ′ = 𝑋 ∪ 𝑌 . This is why we can guarantee termination in 𝑂 (𝑛)
rounds while they need a more complicated potential function to

demonstrate enough progress in 𝑂 (𝑛2) rounds.
Another major difference is that we operate both on a webH and

its aiding net H†
. Recall that the web H is a net allowing parallel

arcs, but with the special structure that all arcs are simple or flexible.

This special structure is crucial to our simpler inductive step where

we can always add 𝑌 as above to get a new web over 𝑋 ′ = 𝑋 ∪𝑌 . If
we just used H, then we would have too many untamed sets. This is

where we use the aiding netH†
which generally has fewer untamed

sets. It is only for theminimallyH†
-untamed sets𝑌 ⊆ 𝑉 (𝐺−𝑋 ) that

we can guarantee progress as above. Thus we need the interplay

between the well-structured fine grained webH and its more coarse

grained aiding net H†
to get our shorter more constructive proof

of Theorem 3.1. On its own, our more constructive characterization

buys us a factor 𝑛 in speed. This has to be combined with efficient

data structures to get down to near-linear time.

3.1 Two Lemmas & Our Algorithm for Sapling
Let H be an 𝑋 -net. An H-wild set is a minimally H-untamed 𝑌 ⊆
𝑉 (𝐺−𝑋 ) such that𝐺 [𝑌 ] is a path. In Figure 5,𝑌1∪𝑌2 is H-untamed

but not H-wild, since 𝑌1 ⊊ 𝑌1 ∪ 𝑌2 is H-untamed. H is not taming

if and only if 𝐺 admits an H-wild set. An 𝑆 ⊆ 𝑋 is H-solid if 𝑆 is a

node of H or 𝑆 is a subset of an arc 𝐸 = 𝑈𝑉 of H such that 𝐺 [𝐸]
contains no (𝑆,𝑈 ,𝑉 )-sprout. If 𝑆 is a subset of a simple arc of H,

then 𝑆 is H-solid if and only if 𝐺 [𝑆] is an edge, since a sprout has

to be an induced subgraph of𝐺 . Let 𝑌 ⊆ 𝑉 (𝐺 −𝑋 ) such that𝐺 [𝑌 ]
is a path. 𝑌 is H-solid if (1) 𝑁 (𝑌,𝑋 ) is the union of two H-solid

sets and (2) 𝑁 (𝑦,𝑋 ) = ∅ for each internal vertex 𝑦, if any, of path

𝐺 [𝑌 ]. A pod of 𝑌 in H is a 𝑉1𝑉2-chunk 𝐶 of H with the following

Figure 5: An𝑿-web H, where𝑿 consists of the vertices other
than𝒚1, 𝒚2, 𝒚3, 𝒚4. Vertices𝒚1, . . . , 𝒚4 are all H-tamed and H†-
tamed. 𝒀1 and 𝒀2 are H-wild and H†-nonwild. 𝒀3 is H-wild
and H†-wild. 𝒀1 is H-solid. 𝒀2 and 𝒀3 are H-nonsolid. 𝑬1, 𝑬1 ∪

𝑬2 ∪ 𝑬3, and 𝑬1 ∪ 𝑬2 ∪ 𝑬3 ∪ 𝑬4 are pods of 𝒀1 and 𝒀2 in H. 𝒀3 is
H-unpodded. 𝒀1 and 𝒀2 are H-sticky and 𝒀3 is H-nonsticky.

Conditions P: P1: 𝑁 (𝑌,𝑋 ) ⊆ 𝑉1 ∪ 𝐶 ∪ 𝑉2. P2: For each 𝑖 ∈ {1, 2},
𝑁 (𝑦,𝑉𝑖 ) ⊆ 𝐶 or 𝑉𝑖 ⊆ 𝐶 ∪ 𝑁 (𝑦) holds for an end-vertex 𝑦 of path

𝐺 [𝑌 ]. 𝑌 is H-podded if 𝑌 admits a pod in H. 𝑌 is H-sticky if 𝑌 is

H-solid or H-podded. See Figure 5.

Lemma 3.2. Let 𝑌 be an H†
-wild set for an 𝑋 -web H. (1) If 𝑌 is

H-nonsticky, then 𝐺 [𝑋 ∪ 𝑌 ] contains a sapling. (2) If 𝑌 is H-sticky,

then H can be expanded to an 𝑋 ∪ 𝑌 -web.
By Lemmas 2.1 and 3.2 and Theorem 3.1, the following algorithm

detects saplings in 𝐺 :

Algorithm A

Step A1: If a sapling of 𝐺 is found (Lemma 2.1), then exit.

Step A2: Let 𝑋 -web H be the obtained base net of 𝐺 and repeat:

(a) If H†
is taming, then report that𝐺 is sapling-free (if-direction

of Theorem 3.1) and exit.

(b) If H†
is not taming, then obtain an H†

-wild set 𝑌 .

(c) If 𝑌 is H-nonsticky, then report that 𝐺 [𝑋 ∪ 𝑌 ] contains a
sapling (Lemma 3.2(1)) and exit.

(d) If𝑌 isH-sticky, then expandH to an𝑋∪𝑌 -web (Lemma 3.2(2)).

Lemma 3.3. AlgorithmA can be implemented to run in𝑂 (𝑚 log
2𝑛)

time.

3.2 Reductions to Lemmas 3.2 and 3.3
This subsection reduces Theorems 1.1, 2.2, and 3.1 to Lemmas 3.2

and 3.3. We need a relationship between simple paths in H and

induced paths in 𝐺 . For any simple𝑈𝑉 -path P of H (i.e.,𝑈 and 𝑉

are the end-nodes ofP inH), we define aP-rung of𝐺 as a𝑈𝑉 -rung

of𝐺 where all edges are contained in the arcs of P. Such a P-rung

always exists by Conditions N4 and N6 of H as long as 𝑈 ≠ 𝑉 . For

the degenerate case 𝑈 = 𝑉 , let P-rung be defined as the empty

vertex set. For any distinct nodes 𝑈1 and 𝑈2 of H intersecting a

𝑉1𝑉2-chunk 𝐶 of H, there are disjoint UV-rungs P1 and P2 of H

with U = {𝑈1,𝑈2} and V = {𝑉1,𝑉2} by Condition N1 of H. Since

P1 and P2 are disjoint, any P1-rung and P2-rung of𝐺 are disjoint

and nonadjacent by Conditions N2 and N6 of H. Consider the𝑉1𝑉2-

chunk 𝐶 = 𝐸1 ∪ · · · ∪ 𝐸7 in Figure 3. Let V = {𝑉1,𝑉2}. Let P1 be

the path of H with arc 𝐸3. Let P2 be the path of H with arc 𝐸4. Let

P3 be the path of H with arcs 𝐸6 and 𝐸7. Let P4 be the degenerate

path of H consisting of a single node 𝑉1. If U = {𝑈1,𝑈2}, then
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P1 and P2 are disjoint UV-rungs. If U = {𝑈1,𝑊1}, then P1 and

P3 are disjoint UV-rungs of H. If U = {𝑉1,𝑊1}, then P3 and

P4 are disjoint UV-rungs of H. The path of 𝐺 induced by vertex

set {11, 12} is the unique P1-rung of 𝐺 . The path of 𝐺 induced by

vertex set {17, 18} is the unique P2-rung of 𝐺 . The paths induced

by vertex sets {25, 26, 27, 5, 4, 23} and {25, 26, 28, 7, 6, 24} are the two
P3-rungs of 𝐺 . The empty vertex set is the unique P4-rung of 𝐺 .

Lemma 3.4. If 𝐶 is a 𝑉1𝑉2-chunk of an 𝑋 -net H, then applying

merge(𝐶) on H results in an 𝑋 -net.

Lemma 3.5. (1) If 𝐺 admits a taming net, then 𝐺 is sapling-free.

(2) If an 𝑋 -net H has no parallel arcs, then every H-tamed subset of

𝑋 is H-local.

Since any H-local subset of𝑋 for any𝑋 -net H is H-tamed, the if

direction of Chudnovsky and Seymour’s Theorem 2.2 follows from

Lemma 3.5(1). Moreover, by Lemma 3.5(2), the only-if direction of

Theorem 3.1 implies the only-if direction of Theorem 2.2. Thus, our

proofs for Lemma 3.5 and the only-if direction of Theorem 3.1 form

a self-contained proof for Theorem 2.2.

Proof of Theorems 1.1 and 3.1. Lemma 3.5(1) implies the if di-

rection of Theorem 3.1. For the only-if direction of Theorem 3.1,

let H be an 𝑋 -web maximizing |𝑋 | by Lemma 2.1. If H†
were not

taming, then any H†
-wild 𝑌 would be H-sticky by Lemma 3.2(1),

which in turn implies an 𝑋 ∪𝑌 -web by Lemma 3.2(2), contradicting

the maximality of H. Thus Theorem 3.1 follows. By Lemmas 2.1

and 3.2 and the if direction of Theorem 3.1, Algorithm A detects

saplings in 𝐺 . Thus, Theorem 1.1 follows from Lemma 3.3. □

The above reduction of Theorem 3.1 does not need Lemma 3.3 or

else our proof of Theorem 2.2 would not be shorter than that in [18].

To finish proving Theorems 2.2 and 3.1, we prove Lemma 3.2 in §4.

After that, to finish proving Theorem 1.1, we prove Lemma 3.3 in §5.

4 PROVING LEMMA 3.2
The next lemma for an𝑋 -webH is needed for proving Lemma 3.2(1)

in §4.1 and Lemma 3.2(2) in §4.2. For any chunk 𝐶 of a net H, the

arc set C of H for 𝐶 consists of the arcs of H that intersect 𝐶 .

Lemma 4.1. (1) If 𝑌 is an H†
-wild set, then 𝑌 is H†

-podded if and

only if 𝑌 is H-podded. (2) Each H†
-solid subset of 𝑋 is H-solid.

4.1 Proving Lemma 3.2(1)
A net self-aids if it aids itself. Since the aiding net of any web self-

aids, Lemma 3.2(1) is immediate from Lemma 4.2 by Lemma 4.1.

Lemma 4.2. For self-aiding 𝑋 -net H0 and H0-wild H0-nonsticky

set 𝑌 , 𝐺 [𝑋 ∪ 𝑌 ] contains a sapling.
The rest of the subsection proves Lemma 4.2 via Lemmas 4.3, 4.4,

and 4.5. Let L consist of the leaves of the self-aiding net H in

Lemma 4.3, 4.4, or 4.5. Since ∇(H) is triconnected, each nonleaf

node of H has degree at least three in H and any three-node set

U of H admits pairwise disjoint UL-rungs P1,P2,P3 of H. By

Condition N6 of H, any P𝑖 -rungs 𝑃𝑖 of 𝐺 with 𝑖 ∈ {1, 2, 3} are

pairwise disjoint and nonadjacent.

Lemma 4.3. If 𝑌 is an H-wild H-nonsticky set for a self-aiding

𝑋 -net H of 𝐺 with 𝑁𝐺 (𝑌,𝑋 ) = 𝑀1 ∪𝑀2 and each of𝑀1 and𝑀2 is

contained by a node or arc of H, then 𝐺 [𝑋 ∪ 𝑌 ] contains a sapling.

If𝑌 isH-wild for an𝑋 -netH, then let ℓ (𝑌,H,𝐺) denote the min-

imum number of H-tamed subsets of 𝑋 whose union is 𝑁𝐺 (𝑌,𝑋 ).
A net is simple if all of its arcs are simple. If H is a simple self-

aiding 𝑋 -net of 𝐺 , then 𝐺 [𝑋 ] is isomorphic to the line graph of a

subdivision of H.

Lemma 4.4. If 𝑌 is an H-wild set for a simple self-aiding 𝑋 -net H

of 𝐺 with ℓ (𝑌,H,𝐺) = 2 such that 𝑁𝐺 (𝑌,𝑋 ) contains a triad of H,

then 𝐺 [𝑋 ∪ 𝑌 ] contains a sapling.

Lemma 4.5. Let 𝑌 be an H-wild set for a simple self-aiding 𝑋 -net

H of graph 𝐺 with ℓ (𝑌,H,𝐺) ≥ 3. If 𝐺 [𝑋 ∪ 𝑌 ] is sapling-free, then
𝑌 is H-podded for 𝐺 .

Proof of Lemma 4.2. Assume for contradiction that𝐺 [𝑋 ∪𝑌 ] is
sapling-free. A vertex set𝐷 ⊆ 𝑋 is an inducing set ofH0 if𝐺 [𝐸0∩𝐷]
for each arc 𝐸0 = 𝑈0𝑉0 is an𝑈0𝑉0-rung of 𝐺 [𝐸0]. For any inducing

set𝐷 of H0, let H0 (𝐷) denote the simple self-aiding𝐷-net of graph

𝐻0 (𝐷) = 𝐺 [𝑌 ∪ 𝐷] obtained from H0 by replacing each arc 𝐸0 of

H0 with the arc 𝐸 = 𝐸0 ∩𝐷 and replacing each node𝑉0 of H0 with

the node 𝑉 = 𝑉0 ∩ 𝐷 . Let 𝑁 = 𝑁𝐺 (𝑌,𝑋 ). Let ℓ = ℓ (𝑌,H0,𝐺). If
ℓ = 2, then Lemma 4.3 implies 𝑁 ⊈ 𝑆1 ∪ 𝑆2 for any node or arc

𝑆𝑖 of H0 with 𝑖 ∈ {1, 2}. Thus, 𝑁 contains a triad Δ and 𝑁 \ Δ is

not contained by any arc of H0 between two nodes of Δ. By ℓ = 2,

there is an inducing set 𝐷 of H0 with ℓ (𝑌,H0 (𝐷), 𝐻0 (𝐷)) = 2 and

Δ ⊆ 𝑁𝐻0 (𝐷) (𝑌, 𝐷), contradicting Lemma 4.4. Thus, ℓ ≥ 3, implying

a three-vertex set 𝑆 ⊆ 𝑁 such that every two-vertex subset of 𝑆 is

H0-untamed. Let 𝐷 be an inducing set of H0 with 𝑆 ⊆ 𝐷 , implying

ℓ (𝑌,H0 (𝐷), 𝐻0 (𝐷)) ≥ 3. By Lemma 4.5, there is a pod 𝐸 = 𝑈𝑉 of

𝑌 in H0 (𝐷) for 𝐻0 (𝐷) such that 𝑁𝐻0 (𝐷) (𝑌 ) intersects 𝐸 \ (𝑈 ∪𝑉 ),
𝑈 \ 𝐸, and 𝑉 \ 𝐸. Let 𝐸0 = 𝑈0𝑉0 be the arc of H0 with 𝐸 = 𝐸0 ∩ 𝐷 ,
𝑈 = 𝑈0 ∩𝐷 , and𝑉 = 𝑉0 ∩𝐷 . Since 𝐸0 is not a pod of 𝑌 in H0 and 𝑁

intersects 𝐸0 \ (𝑈0 ∪𝑉0),𝑈0 \ 𝐸0, and𝑉0 \ 𝐸0, a vertex 𝑥 belongs to

𝑁 \ (𝑈0 ∪𝐸0 ∪𝑉0) or (𝑈0 ∪𝑉0) \ (𝐸0 ∪𝑁 ). Let 𝐷 ′
be an inducing set

(𝐷 \𝐸0) ∪𝑉 (𝑃) of H0, where 𝐸0 = 𝑈0𝑉0 is the arc of H0 containing

𝑥 and 𝑃 is a𝑈0𝑉0-rung of 𝐺 [𝐸0] containing 𝑥 . One can verify that

𝑌 is H0 (𝐷 ′)-unpodded for𝐻0 (𝐷 ′) with ℓ (𝑌,H0 (𝐷 ′), 𝐻0 (𝐷 ′)) ≥ 3,

contradicting Lemma 4.5. □

4.2 Proving Lemma 3.2(2)
This subsection shows that if 𝑌 is H-sticky for an 𝑋 -web H, then

H can be expanded to an 𝑋 ∪𝑌 -web via Subroutine B below. Let H

be an 𝑋 -net. For any H-solid subset 𝑆 of 𝑋 contained by a simple

arc 𝐹 = 𝑈1𝑈2 of H, define Operation subdivide(𝑆) to (1) create a

new node 𝑆 and (2) replace the simple arc by new simple arcs 𝑆𝑈𝑖

with 𝑖 ∈ {1, 2} consisting of the vertices of the 𝑆𝑈𝑖 -rung of 𝐺 [𝐹 ].
Define Subroutine B with 𝑁 = 𝑁 (𝑌,𝑋 ) as follows (see Figure 6):
Subroutine B

Step B1: 𝑌 isH-solid. Let 𝑆1 and 𝑆2 be H-solid sets with𝑁 = 𝑆1∪𝑆2.

(a) For each 𝑖 ∈ {1, 2}, if 𝑆𝑖 is contained by a simple arc, then

create node 𝑆𝑖 by subdivide(𝑆𝑖 ).
(b) Add each end-vertex 𝑦 of path 𝐺 [𝑌 ] into the nodes 𝑆𝑖 with

𝑖 ∈ {1, 2} and 𝑆𝑖 ⊆ 𝑁 (𝑦).
(c) Make a simple arc 𝑌 = 𝑆1𝑆2.

Step B2: 𝑌 is H-nonsolid. Thus, 𝑌 is H-podded. Let 𝑉1𝑉2-chunk

𝐶 of H be a minimal pod of 𝑌 in H. Since 𝑌 is H†
-wild, assume

𝑉1 ∈ 𝑉 (H†) and 𝑉1 ⊆ 𝐶 ∪ 𝑁 without loss of generality.
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Figure 6: Applying Step B1 on the example in (a) results in
the example in (b), in which 𝑬1 ∪ 𝑬2 ∪ 𝑭 is a minimal pod
of the green 𝒚1𝒚2-rung. Applying Step B2(a) on the example
in (b) results in the example in (c), in which 𝑬1 ∪ 𝑬2 ∪ 𝑬3 is
a minimal pod of the green 𝒚1𝒚2-rung. Applying Steps B2(b)
and B2(c) on the example in (c) results in the example in (d).

(a) If 𝑉2 is incident to exactly one arc 𝐹 = 𝑉𝑉2 in the arc set for

𝐶 , 𝑁 ∩ 𝑉2 ⊆ 𝐹 , and 𝐹 is simple, then 𝑁 intersects 𝐹 \ 𝑉 by

the minimality of 𝐶 . Let 𝑣2 be the end-vertex of the 𝑁𝑉2-rung

𝑃 of 𝐺 [𝐹 ] in 𝑁 . Let 𝑣 be the neighbor of 𝑣2 not in 𝑃 . Call

subdivide({𝑣, 𝑣2}) to create a node 𝑉2 = {𝑣, 𝑣2}. Delete 𝑉 (𝑃)
from 𝐶 to preserve that 𝐶 is a 𝑉1𝑉2-chunk that is a minimal

pod of 𝑌 in H.

(b) Update H by merge(𝐶). Let 𝐸 = 𝑉1𝑉2 be the arc of H with

𝐸 = 𝐶 .

(c) Add 𝑌 to arc 𝐸 and add each end-vertex 𝑦 of path 𝐺 [𝑌 ] to the

nodes 𝑉𝑖 with 𝑉𝑖 ⊆ 𝐶 ∪ 𝑁 (𝑦).
The resulting H of Step B1 is an 𝑋 ∪𝑌 -web, since all steps preserve
Conditions N and all new arcs are simple. It remains to prove that

the resulting H of Step B2 is also an 𝑋 ∪ 𝑌 -web.
This completes the proof of our characterization in Theorem 3.1

as well as Chudnovsky and Seymour’s characterization in Theo-

rem 2.2. Subroutine B can be implemented to run in 𝑂 (𝑚) time, so

Steps A2(c) and A2(d) take 𝑂 (𝑚) time. Steps A1, A2(a), and A2(b)

take 𝑂 (𝑚) time. Since the set of vertices of 𝐺 in H is enlarged

by Step A2(d) and not affected elsewhere, Step A2 halts in 𝑂 (𝑛)
iterations. Thus, Algorithm A can be implemented to run in𝑂 (𝑚𝑛)
time. To finish proving Theorem 1.1, it remains to implement Al-

gorithm A to run in 𝑂 (𝑚 log
2 𝑛) time in §5 via dynamic graph

algorithms and other data structures.

5 PROVING LEMMA 3.3
Let 𝐺 be represented by a static adjacency list. We use a dynamic

adjacency list to represent an incremental biconnected multigraph

H∗
with 𝑉 (H∗) = 𝑉 (H) that is a supergraph of ∇(H). An arc or

node of H∗
is dummy if it is an empty vertex set of𝐺 . Thus, the arcs

of ∇(H) between the leaves of H are dummy in H∗
. Other dummy

nodes and arcs are created only via operation merge. The𝑋 -web H

maintained by Algorithm A is exactly H∗
excluding its dummy arcs

and nodes. See Figure 7(a) for an example of H∗
. Each node and

arc of H and H†
is associated with a distinct color that is a positive

integer such that two vertices share a common arc color (resp., node

color) for H and H†
if and only if they are contained by a common

Figure 7: An example of H∗ and T. The Q-knots are omit-
ted for brevity. The virtual arc in dark purple in a nonroot
knot 𝑲 matches a light purple arc in the parent of 𝑲 in T.
They form the pair of virtual arcs between the poles of 𝑲 .
Each non-purple arc in a knot 𝑲 is a virtual arc whose cor-
responding arc of H∗ is contained by a child Q-knot of 𝑲 .
A non-purple arc is yellow if and only if its corresponding
arc of H∗ is dummy. The dummy nodes of H∗ are yellow. H

is the multigraph obtained from H∗ by deleting the yellow
nodes and arcs. H† is the simple graph obtained from the
one in the root of T by deleting the yellow arcs. The maxi-
mal split nodes of H, i.e., the nodes of H† are red.

arc (resp., node) of H and H†
. For each vertex 𝑣 of 𝐺 , we maintain

a set of at most six colors indicating the arc, maximal chunk, nodes,

and maximal split nodes of H that contain 𝑣 , which are called the

H-arc, H†
-arc, H-node, and H†

-node colors of vertex 𝑣 . For each

color 𝑐 , we store its corresponding arc or node for H or H†
and

maintain the number of the vertices having the color 𝑐 without

keeping an explicit list of these vertices. For each node 𝑉 and each

incident arc 𝐸 of 𝑉 in H, we maintain the cardinality of the vertex

set 𝐸∩𝑉 . Thus, it takes𝑂 (1) time to (1) update and query the colors

of a vertex and (2) add a vertex to an arc or node of H. For each

arc of H∗
, mark whether it is dummy, simple, or flexible. For each

simple arc 𝐸 = 𝑉1𝑉2 of H∗
, use a doubly linked list to store the𝑉1𝑉2-

rung𝐺 [𝐸]. For vertex 𝑣 and vertex set 𝑌 of𝐺 , let 𝑑 (𝑣) = |𝑁 (𝑣) | and
𝑑 (𝑌 ) = ˝

𝑦∈𝑌 𝑑 (𝑦) throughout the section. Based on Lemma 5.1,

to be proved in §5.4, Steps A2(a) and A2(b) are implemented in

§5.1 to run in overall 𝑂 (𝑚 log
2 𝑛) time. Step A2(c) is implemented

in §5.2 to run in overall 𝑂 (𝑚) time. Step A2(d), i.e., Subroutine B

is implemented in §5.3 to run in overall 𝑂 (𝑚 log𝑛 · 𝛼 (𝑛, 𝑛)) time,

where 𝛼 (𝑛, 𝑛) is the inverse Ackermann function.

5.1 Steps A2(a) and A2(b)
Vertex colors change only in Step A2(d), but the overall number

of changes of the H†
-arc and H†

-node colors affects the analysis

of our implementation of Steps A2(a) and A2(b). Therefore, this

subsection analyzes the time for the change ofH†
-arc andH†

-node

colors. The time for the change of H-arc and H-node colors will be

analyzed for Step A2(d) in §5.3. A vertex of𝐺 stays uncolored until

it is added into𝑋 . Each vertex of𝑋 has exactly oneH†
-arc color and

at most two H†
-node colors. Each node𝑉 of H†

stays a node of H†

and each vertex in𝑉 stays in𝑉 for the rest the algorithm. Thus, the
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H†
-node colors of each vertex are updated 𝑂 (1) times throughout

the algorithm, implying that the overall time for updating H†
-node

colors of all vertices is𝑂 (𝑛). Although the H†
-arc color of a vertex

may change many times, the overall time for updating the H†
-node

colors of all vertices can be bounded by𝑂 (𝑛 log𝑛). Observe that H

is updated by Subroutine B only via (1) subdividing a simple arc of

H, (2) merging an H-podded 𝑌 into a minimal pod of 𝑌 in H, and

(3) creating an arc 𝐸 = 𝑌 for an H-solid 𝑌 . If the simple graph H†

does not change, then each of these updates takes 𝑂 (𝑑 (𝑌 )) time.

If the simple graph H†
changes, then 𝑌 is H-solid. For instance,

let H be as in Figure 4(a), implying that H†
is as in Figure 4(b). If

an H-solid 𝑌 joins H as the arc 𝐸16 in Figure 4(c), then all nodes

and arcs of H become nodes and arcs of H†
. However, once two

vertices of 𝑋 have distinct H†
-arc colors, they can no longer share

a common arc color for H†
for the rest of the algorithm. Thus,

one can bound the overall number of changes of H†
-arc colors

of all vertices by 𝑂 (𝑛 log𝑛): If 𝐸 is an arc of the original H†
and

𝐸1, . . . , 𝐸𝑘 are the arcs of the updated H†
with 𝐸1 ∪ · · · ∪ 𝐸𝑘 ⊆ 𝐸

and |𝐸1 | ≤ · · · ≤ |𝐸𝑘 |, then let the vertices in 𝐸𝑘 keep their original

H†
-arc color and assign a new H†

-arc color to the vertices in each

𝐸𝑖 with 𝑖 ∈ {1, . . . , 𝑘 − 1}. Since the cardinality of the arc of H†

containing a specific vertex of𝑋 is halved each time itsH†
-arc color

changes, its H†
-arc color changes𝑂 (log𝑛) times, implying that the

H†
-arc colors of all vertices change overall 𝑂 (𝑛 log𝑛) times. With

Lemma 5.1, to be proved in §5.4, the overall time for Steps A2(a)

and A2(b) throughout the algorithm is 𝑂 (𝑚 log
2 𝑛).

Lemma 5.1. If 𝑋 is an incremental subset of 𝑉 (𝐺) such that each

𝑥 ∈ 𝑋 has exactly one H†
-arc color 𝑎 and a set of at most two H†

-

node colors corresponding to a subset of the two end-vertices of 𝑎, then

there is an 𝑂 (𝑚 + 𝑛)-time obtainable data structure supporting the

following queries and updates: (1) Move a vertex 𝑣 of 𝐺 − 𝑋 to 𝑋

in amortized 𝑂 (𝑑 (𝑣) · log
2 𝑛) time. (2) Update the colors of a vertex

𝑣 ∈ 𝑋 in amortized 𝑂 (𝑑 (𝑣) · log𝑛) time. (3) Determine if there is

a set 𝑌 ⊆ 𝑉 (𝐺 − 𝑋 ) with connected 𝐺 [𝑌 ] such that two vertices of

𝑁 (𝑌,𝑋 ) share no color and, for the positive case, report a minimal

such 𝑌 in amortized 𝑂 (𝑑 (𝑌 ) · log
2 𝑛) time.

5.2 Step A2(c)
Let S be the 𝑂 (𝑑 (𝑌 ))-time obtainable set consisting of the nodes

𝑉 of H with 𝑉 ⊆ 𝑁 (𝑌,𝑋 ) and the simple arcs 𝐸 of H with 𝐺 [𝐸 ∩
𝑁 (𝑌,𝑋 )] being an edge.𝑌 isH-solid if and only if |S | = 2,𝑁 (𝑦,𝑋 ) =
∅ for each internal node 𝑦 of path 𝐺 [𝑌 ], and 𝑁 (𝑌,𝑋 ) is contained
by the union of the nodes or arcs in S. Therefore, it takes 𝑂 (𝑑 (𝑌 ))
time to determine whether 𝑌 is H-solid. Lemma 4.1(1) implies that

𝑌 is H-podded if and only if both of the following conditions hold:

(a) 𝑁 (𝑌,𝑋 ) is contained by the union of an arc 𝐸 of H†
and its

end-nodes 𝑉1 and 𝑉2 in H†
and (b) 𝐸 is a pod of 𝑌 in H†

. Both

conditions can be checked in 𝑂 (𝑑 (𝑌 )) time via the H†
-arc and

H†
-node colors of each vertex in 𝑁 (𝑌,𝑋 ) and |𝑉1 \ 𝐸 | and |𝑉2 \ 𝐸 |.

Hence, it takes𝑂 (𝑑 (𝑌 )) time to determine whether 𝑌 is H-podded.

Since the H†
-wild sets 𝑌 in all iterations of the algorithm are pair-

wise disjoint, it takes overall𝑂 (𝑚) time for Step A2(c) to determine

whether 𝑌 is H-sticky throughout the algorithm.

Figure 8: Four examples of the lowest common ancestor 𝑲
of the Q-knots containing the arcs of H in C1 ∪ C2, which
equals 𝑬2 in (a), 𝑬1 ∪ 𝑬2 in (b), 𝑬1 in (c), and 𝑬2 ∪ 𝑬3 in (d).

5.3 Step A2(d), i.e., Subroutine B
This subsection implements Subroutine B so that the overall time

of Step A2(d) throughout Algorithm A is 𝑂 (𝑚 log𝑛 · 𝛼 (𝑛, 𝑛)). We

may delete nodes and arcs from H via merge(𝐶) for a minimal pod

𝐶 of 𝑌 in H, but they stay as dummy nodes and arcs in H∗
in order

to make the multigraph H∗
incremental. One can verify that H†

aids H∗
, even though H∗

is not an 𝑋 -net due to its dummy arcs

and nodes. Although Step B1(b) may change H†
, the overall time

for updating the H†
-colors has been accounted for in §5.1. This

subsection only analyzes the time for changing H-arc and H-node

colors and |𝐸 ∩𝑉1 | and |𝐸 ∩𝑉2 | for each arc 𝐸 = 𝑉1𝑉2 of H.

The SPQR-tree T of the incremental multigraph H∗
is an 𝑂 (𝑛)-

time obtainable 𝑂 (𝑛)-space tree structure representing the tri-

connected components of H∗
[34, 40]. Each member of 𝑉 (T),

which we call a knot, is a graph homeomorphic to a subgraph

of H∗
[34, Lemma 3] such that the knots induce a disjoint partition

of the arcs of H∗
. Specifically, there is a supergraph G of H∗

with

𝑉 (G) = 𝑉 (H∗), where each arc of G \ H∗
is called virtual [59],

and there are four types of knots of T: (1) S-knot: a simple cycle

on three or more nodes. (2) P-knot: three or more parallel arcs. (3)

Q-knot: two parallel arcs, exactly one of which is virtual. (4) R-knot:

a triconnected simple graph that is not a cycle. The Q-knots are the

leaves of T and each arc of H∗
is contained by a Q-knot. No two

S-knots (respectively, P-knots) are adjacent in T. Each virtual arc is

contained by exactly two adjacent knots. Since H has 𝑂 (𝑛) arcs by
Condition N2, T has 𝑂 (𝑛) knots. If𝑈 and 𝑉 are nonleaf nodes of

H such that𝑈𝑉 is a virtual arc, then {𝑈 ,𝑉 } is a split pair of H. If

distinct nodes𝑈 and 𝑉 admit three internally disjoint𝑈𝑉 -paths in

H∗
, then𝑈 and 𝑉 are contained by a common P-knot or R-knot of

T [34]. By Condition N1 of H, there are 3 internally disjoint paths

in ∇(H) between each pair of leaves of H∗
, implying an R-knot

of T containing the leaves of H. Let T be rooted at this unique

R-knot. Figure 7(b) is the T for the H∗
in Figure 7(a). Let 𝐾 be a

nonroot knot of T. The poles [40] of 𝐾 are the end-nodes of the

unique virtual arc contained by 𝐾 and its parent knot in T. For the

four nonroot knots 𝐾 in Figure 8, 𝑉1 and 𝑉4 (respectively, 𝑉2) are

the poles of the knots in (a) and (d) (respectively, (b) and (c)). Let

C(𝐾) consist of the arcs of H in the descendant Q-knots of 𝐾 in T.

Let𝐶 (𝐾) consist of the vertices of𝐺 contained by the arcs of C(𝐾).
If𝑈 and 𝑉 are the poles of a nonroot knot 𝐾 of T, then 𝐶 (𝐾) is a
𝑈𝑉 -chunk and C(𝐾) is the arc set for𝐶 (𝐾). A nonempty vertex set

𝐶 is a maximal chunk of H if and only if𝐶 = 𝐶 (𝐾) holds for a child
knot 𝐾 of the root of T. For instance, the 𝑋 -net H in Figure 7(a)

has six maximal chunks. One of them is 𝐶 (𝐾) for the child R-knot
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(respectively, P-knot and S-knot) 𝐾 of the root of T. The remaining

three are 𝐶 (𝐾) for 3 omitted child Q-knots 𝐾 of the root of T. For

any nonroot knot 𝐾 of T with 𝐶 (𝐾) ≠ ∅, if 𝐾 is a P-knot, then

C(𝐾) is the union of the arc sets of all split components of {𝑈 ,𝑉 }
(e.g., 3 splits components of {𝑉1,𝑉2} in the example in Figure 8(b));

otherwise, C(𝐾) is the arc set of a single split component of {𝑈 ,𝑉 },
where𝑈 and𝑉 are the poles of 𝐾 (e.g., exactly one split component

for {𝑉1,𝑉4} in the examples in Figures 8(a) and 8(d) and exactly one

split component for {𝑉1,𝑉2} in the example in Figure 8(c)).

Lemma 5.2 (Di Battista and Tamassia [34]). Each update to

T corresponding to the following operations on the incremental bi-

connected multigraph H∗
can be implemented to run in amortized

𝛼 (𝑛, 𝑛) time: (1) Add a node 𝑉 to subdivide an arc 𝑉1𝑉2 of H∗
into

arcs 𝐸1 = 𝑉𝑉1 and 𝐸2 = 𝑉𝑉2. (2) Add an arc 𝑈𝑉 between nodes 𝑈

and 𝑉 of H.

We first show that, given a vertex set 𝑆 contained by a simple

arc 𝐸 = 𝑉1𝑉2 such that 𝐺 [𝑆] is an edge, Operation subdivide(𝑆)
in Steps B1(a) and B2(a) can be implemented to run in amortized

𝑂 (log𝑛) time: Let each 𝑃𝑖 with 𝑖 ∈ {1, 2} be the 𝑉𝑖𝑆-rung of 𝐺 [𝐸].
Let 𝑗 be an index in {1, 2} with |𝑉 (𝑃 𝑗 ) | ≤ |𝑉 (𝑃3−𝑗 ) |. Using the

doubly linked list for the 𝑉1𝑉2-rung𝐺 [𝐸], it takes 𝑂 ( |𝑉 (𝑃 𝑗 ) |) time

to (1) create a new node𝑉 = 𝑆 with a new H-node color assigned to

both vertices in 𝑆 , (2) create a new simple arc 𝐸 𝑗 = 𝑉𝑉𝑗 consisting

of the vertices of 𝑃 𝑗 , (3) assign a new H-arc color for each vertex

in 𝐸 𝑗 , (4) let arc 𝐸3−𝑗 take over the H-arc color of 𝐸, and (5) obtain

the doubly linked lists of𝐺 [𝐸1] and𝐺 [𝐸2] from that of𝐺 [𝐸]. Each
time a vertex 𝑥 is recolored this way, the cardinality of the simple

arc of H containing 𝑥 is halved. Therefore, the overall time for

Operation subdivide(𝑆) in Steps B1(a) and B2(a) is 𝑂 (𝑛 log𝑛).
Step B1: By the above analysis for subdivide, Step B1(a) runs in

amortized𝑂 (log𝑛) time. As for Steps B1(b) and B1(c), a new H-arc

color is created for the new arc of H. The H-arc and H-node colors

of the vertices in 𝑌 and the cardinality of each vertex set that is a

node, arc, or the intersection of a node and its incident arc can be

updated in 𝑂 (𝑑 (𝑌 )) time. By Lemma 5.2 and that Subroutine B is

executed 𝑂 (𝑛) times, the overall time for Step B1 is 𝑂 (𝑚 log𝑛).
Step B2: We first assume that we are given a set C of arcs of

H whose union is a minimal pod 𝐶 of 𝑌 in H and show how to

implement Steps B2(a), B2(b), and B2(c) to run in overall𝑂 (𝑚 log𝑛)
time throughout Algorithm A. Let 𝐶 be a 𝑉1𝑉2-chunk of H.

Step B2(a): It takes 𝑂 ( |C |) time to determine whether 𝑉2 is inci-

dent to exactly one arc 𝐹 = 𝑉𝑉2 in C and 𝐹 is simple. We start from

𝑉 to traverse the 𝑉𝑉2-rung 𝐺 [𝐹 ] to obtain the node 𝑣2 ∈ 𝑁 (𝑌, 𝐹 )
that is closest to𝑉2 in𝐺 [𝐹 ]. The required time is linear in the num-

ber of traversed edges plus 𝑑 (𝑌 ). Observe that Step B2(a) in any

remaining iteration of Algorithm A does not traverse these edges

again. Moreover, the sum of |C | over all iterations of Algorithm A

is𝑂 (𝑛). Thus, the overall time of Step B2(a) including that of calling

subdivide({𝑣, 𝑣2}) is 𝑂 (𝑚 log𝑛).
Step B2(b): Let 𝐸1, . . . , 𝐸𝑘 with |𝐸1 | ≤ · · · ≤ |𝐸𝑘 | be the arcs of

H in C. We implement merge(𝐶) in Step B2(b) to run in amortized

𝑂 (log𝑛) time: Create an arc 𝐸 = 𝑉1𝑉2 in H∗
consisting of all ver-

tices in 𝐶 and mark the original arcs 𝐸1, . . . , 𝐸𝑘 of H∗
intersecting

𝐶 dummy so that H∗
is incremental as required by Lemma 5.2. The

nodes of H whose incident arcs are all dummy are also marked

dummy. The cardinalities of 𝐸, 𝑉1, 𝑉2, 𝐸 ∩ 𝑉1, and 𝐸 ∩ 𝑉2 can be

obtained in 𝑂 (𝑘) time. Since we do not keep an explicit list of the

vertices in 𝐶 , we simply let all vertices in 𝐶 adopt the H-color of

the vertices in 𝐸𝑘 . Each time a vertex 𝑣 is recolored this way, the

cardinality of the arc of H containing 𝑣 is doubled. Once a vertex

in 𝑋 loses its H-node colors, it stays without any H-node color for

the rest of the algorithm. Combining with Lemma 5.2(2), Step B2(b)

takes overall 𝑂 (𝑛 log𝑛) time throughout Algorithm A.

Step B2(c): The H-arc and H-node colors of the vertices of 𝑌

and |𝐸 ∩𝑉1 | and |𝐸 ∩𝑉2 | can be updated in 𝑂 (𝑑 (𝑌 )) time.

Lemma 5.3 (Alstrup, Holm, Lichtenberg, and Thorup [2,

§3.3]). For any dynamic rooted 𝑛-knot tree, there is an 𝑂 (𝑛)-time

obtainable data structure supporting the following operations and

queries on T in amortized 𝑂 (log𝑛) time for any given distinct knots

𝐾1 and 𝐾2 of T: (1) If 𝐾2 is not a descendant of 𝐾1, then make the

subtree rooted at 𝐾1 a subtree of 𝐾2 such that 𝐾2 becomes the parent

of 𝐾1. (2) Obtain the lowest common ancestor of 𝐾1 and 𝐾2. (3) If

𝐾2 is a descendant of 𝐾1, then obtain the child knot of 𝐾1 that is an

ancestor of 𝐾2 in T.

It remains to show that it takes overall 𝑂 (𝑚 log𝑛 · 𝛼 (𝑛, 𝑛)) time

to obtain the arc set C of a minimal pod 𝐶 of an H-podded 𝑌 in all

iterations of AlgorithmA.We additionally construct a data structure

for T ensured by Lemma 5.3. By Lemmas 5.2 and 5.3(1), the overall

time for updating the data structure reflecting the updates to T

throughout Algorithm A is 𝑂 (𝑛 log𝑛 · 𝛼 (𝑛, 𝑛)). Let 𝐶∗ =𝑊1𝑊2 be

the arc of H†
with 𝑉1 = 𝑊1 ⊆ 𝑁 (𝑌,𝑊1) ∪ 𝐶∗

. By Conditions P,

𝐶 has to contain all arcs 𝐸 of H with (1) (𝐸 \ 𝑉1) ∩ 𝑁 (𝑌,𝑋 ) ≠ ∅
or (2) (𝐸 ∩ 𝑉1) \ 𝑁 (𝑌,𝑋 ) ≠ ∅. Let C1 and C2 consist of the arcs

of Types (1) and (2), respectively. It takes 𝑂 (𝑑 (𝑌 )) time to obtain

C1 and the incident arcs of 𝑉1 that are not of Type (1) or (2). It

then takes 𝑂 ( |C2 |) time to obtain C2. By Lemma 5.3(2), it takes

𝑂 ( |C1 ∪ C2 | · log𝑛) time to obtain the lowest knot 𝐾 of T with

C1 ∪ C2 ⊆ C(𝐾). Since all arcs in C1 ∪ C2 are merged into a

single arc of H via merge(𝐶) at the end of the current iteration, the
overall time for obtaining 𝐾 throughout Algorithm A is𝑂 (𝑚 log𝑛 ·
𝛼 (𝑛, 𝑛)). It remains to show thatC can be obtained from𝐾 in overall

𝑂 (𝑚 log𝑛 · 𝛼 (𝑛, 𝑛)) time throughout Algorithm A.

Case 1:𝐾 is an S-knot. Let𝑉1𝑉2 · · ·𝑉ℓ𝑉1 with ℓ ≥ 3 be the cycle of

𝐾 such that𝑉1 and𝑉ℓ are the poles of 𝐾 . For each 𝑖 ∈ {1, . . . , ℓ − 1},
let 𝐾𝑖 be the child knot of 𝐾 with poles 𝑉𝑖 and 𝑉𝑖+1, C𝑖 = C(𝐾1) ∪
· · · ∪ C(𝐾𝑖 ), and let 𝐶𝑖 be the union of the arcs in C𝑖 . Let 𝑗 be the

smallest index in {2, . . . , ℓ − 1} with C1 ∪ C2 ⊆ C 𝑗 . If 𝑁 (𝑌,𝑋 ) \
(𝑉1 ∪𝐶 𝑗−1) = 𝑉𝑗 \𝐶 𝑗−1, then C = C 𝑗−1; otherwise, C = C 𝑗 . For

the example in Figure 8(a), if 𝑁 (𝑋,𝑌 ) \ (𝑉1 ∪ 𝐸1) = 𝑉2 \ 𝐸1, then

𝐸1 is a minimal pod of 𝑌 in H; otherwise, 𝐸1 ∪ 𝐸2 is a minimal pod

of 𝑌 in H. By Lemma 5.3(3), the time required to obtain the index 𝑗

and determine whether C = C 𝑗−1 or C = C 𝑗 is dominated by the

time of obtaining 𝐾 plus the time of merge(𝐶).
Case 2: 𝐾 is a P-knot. C equals the union of C(𝐾 ′) over all child

knots 𝐾 ′
of 𝐾 in T with (C1 ∪ C2) ∩ C(𝐾 ′) ≠ ∅. For the example

in Figure 8(b), 𝐸1 ∪ 𝐸2 is a minimal pod of 𝑌 in C. By Lemma 5.3(3),

the time needed to obtain C is dominated by that of obtaining 𝐾 .

Case 3: 𝐾 is a Q-knot. As illustrated by Figure 8(c), C = C(𝐾)
can be obtained in 𝑂 (1) time.

Case 4: 𝐾 is an R-knot. If there is child knot 𝐾 ′
of 𝐾 in T with

poles 𝑉1 and 𝑉2 such that all arcs of 𝐾 intersecting C1 ∪ C2 are

incident to 𝑉2 and 𝑁 (𝑌,𝑋 ) \ (𝑉1 ∪ 𝐶 (𝐾 ′)) = 𝑉2 \ 𝐶 (𝐾 ′), then
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C = C(𝐾 ′); otherwise, C = C(𝐾). For the example in Figure 8(d),

if 𝑁 (𝑌,𝑋 ) \ (𝑉1 ∪ 𝐸1) = 𝑉2 \ 𝐸1, then 𝐸1 is a minimal pod of 𝑌

in H; otherwise, 𝐸1 ∪ · · · ∪ 𝐸5 is a minimal pod of 𝑌 in H. By

Lemma 5.3(3), the time required to identify all possible vertices 𝑉2,

which can be at most two, is dominated by the time of identifying

𝐾 . If there are no possible 𝑉2, then we have C = C(𝐾). Otherwise,
for each of the at most two vertices 𝑉2, we spend 𝑂 (𝑑 (𝑌 )) time to

determine whether the child knot 𝐾 ′
with poles 𝑉1 and 𝑉2 satisfies

𝑁 (𝑌,𝑋 ) \ (𝑉1 ∪𝐶 (𝐾 ′)) = 𝑉2 \𝐶 (𝐾 ′). For the positive (respectively,
negative) case, we have C = C(𝐾 ′) (respectively, C = C(𝐾)).

Therefore, the overall time for obtaining the arc set of a minimal

pod of 𝑌 in H is 𝑂 (𝑚 log𝑛 · 𝛼 (𝑛, 𝑛)). To complete our proof of

Lemma 3.3, it remains to prove Lemma 5.1 in §5.4.

5.4 Proving Lemma 5.1
The subsection omits H†

from the terms H†
-wild, H†

-tamed, H†
-

untamed, and H†
-node and H†

-arc colors. Recall that each vertex

𝑥 of 𝑋 is associated with exactly one arc color and at most two

node colors from which we know which arc 𝐸 of H†
contains 𝑥

and whether 𝑥 ∈ 𝐸 ∩ 𝑉 holds for each end-node 𝑉 of 𝐸. For any

nonempty 𝑆 ⊆ 𝑋 , we say that an 𝑅 ⊆ 𝑆 represents 𝑆 and call 𝑅

a representative set of 𝑆 if |𝑅 | ≤ 3 and, for any 𝑉 ⊆ 𝑋 , 𝑅 ∪ 𝑉 is

tamed if and only if 𝑆 ∪ 𝑉 is tamed. If 𝑆 is untamed, then each

untamed two-vertex subset of 𝑆 represents 𝑆 . If 𝑅1 represents 𝑆1, 𝑅2

represents 𝑆2, and 𝑅 represents 𝑅1 ∪ 𝑅2, then 𝑅 represents 𝑆1 ∪ 𝑆2.

Lemma 5.4. Any nonempty 𝑆 ⊆ 𝑋 admits a representative set

obtainable from the colors of the vertices of 𝑆 in 𝑂 ( |𝑆 |) time.

For each𝑦 ∈ 𝑉 (𝐺−𝑋 ), wemaintain a balanced binary search tree

𝑇𝑦 on𝑁 (𝑦,𝑋 ). For each vertex 𝑥 of𝑇𝑦 , we maintain a representative

set 𝑅𝑦 (𝑥) of the vertices in the subtree of 𝑇𝑦 rooted at 𝑥 . Thus,

𝑅𝑦 = 𝑅𝑦 (root(𝑇𝑦)) represents 𝑁 (𝑦,𝑋 ). We also maintain a doubly

linked list 𝐷1 for the vertices 𝑦 ∈ 𝑉 (𝐺 −𝑋 ) with untamed 𝑁 (𝑦,𝑋 ).
When a vertex joins 𝑁 (𝑦,𝑋 ) or a vertex in 𝑁 (𝑦,𝑋 ) changes color,
𝑅𝑦 and 𝐷1 can be updated in𝑂 (log𝑛) time by Lemma 5.4. Thus, as

long as 𝐷1 ≠ ∅, H†
is not taming and an H†

-wild set consisting

of a single vertex can be obtained from 𝐷1 in 𝑂 (1) time, implying

Lemma 5.1. The rest of the subsection handles the case 𝐷1 = ∅.
Lemma 5.5 (Holm, de Lichtenberg, Thorup [41]). A spanning

forest of an 𝑛-vertex dynamic graph can be maintained in amortized

𝑂 (log
2 𝑛) time per edge insertion and deletion such that each update

to the graph adds and deletes at most one edge in the spanning forest.

Wemaintain a spanning forest 𝐹 of the decremental graph𝐺 −𝑋
by Lemma 5.5. For each maximal connected𝑈 ⊆ 𝑉 (𝐹 ), we maintain

a balanced binary search tree𝑇𝑈 on𝑈 . For each𝑦 ∈ 𝑈 , we maintain

a representative set 𝑅𝑈 (𝑦) for the union of 𝑅𝑧 over all vertices 𝑧

in the subtree of 𝑇𝑈 rooted at 𝑦. It takes 𝑂 (1) time to determine if

𝑈 is tamed from 𝑅𝑈 = 𝑅𝑈 (root(𝑇𝑈 )). We also maintain a doubly

linked list 𝐷2 for the untamed maximal connected subsets 𝑈 of

𝑉 (𝐹 ). When 𝑅𝑦 for a vertex 𝑦 ∈ 𝑉 (𝐺 − 𝑋 ) changes, 𝐷2 and 𝑅𝑈 for

the maximal connected𝑈 ⊆ 𝑉 (𝐹 ) containing 𝑦 can be updated in

𝑂 (log𝑛) time by Lemma 5.4. If deleting an edge of 𝐹 decomposes

a maximal connected 𝑈 ⊆ 𝑉 (𝐹 ) into 𝑈1 and 𝑈2 with |𝑈1 | ≤ |𝑈2 |,
it takes 𝑂 ( |𝑈1 | log𝑛) time to delete the vertices of 𝑈1 from 𝑇𝑈 ,

construct 𝑇𝑈1
, and obtain 𝑅𝑈1

. The resulting 𝑇𝑈 and 𝑅𝑈 become

𝑇𝑈2
and 𝑅𝑈2

. 𝐷2 can be updated in 𝑂 (1) time. Whenever a vertex

Figure 9: The cases of joining the child clusters𝑨 and 𝑩 with
|𝝏𝑨| ≥ |𝝏𝑩 | into their parent cluster 𝑪 = 𝑨 ∪ 𝑩 on a top tree.
Row 1 shows the three cases with |𝝏𝑨| = |𝝏𝑩 |. Row 2 shows
the two cases with |𝝏𝑨| � |𝝏𝑩 |. The vertex in 𝑨∩𝑩 is purple.
The vertices in 𝝏𝑪 are black. If |𝝏𝑪 | = 2, then the black line
is 𝚷(𝑪). If |𝝏𝑨| = 2, then the red line is 𝚷(𝑨). If |𝝏𝑩 | = 2,
then the yellow line is 𝚷(𝑩).

𝑦 moves to a new connected component, the number of vertices

of the connected component containing 𝑦 is halved. Hence, the

𝑇𝑈 for all maximal connected sets 𝑈 ⊆ 𝑉 (𝐹 ) are changed overall

𝑂 (𝑛 log𝑛) times. Thus, the overall time to maintain 𝐷2 and all

representative sets 𝑅𝑈 throughout the algorithm is 𝑂 (𝑛 log
2 𝑛),

not affecting the correctness of Lemmas 5.1(1) and 5.1(2) and the

first half of Lemma 5.1(3). It remains to prove the second half of

Lemma 5.1(3) for the case 𝐷1 = ∅ and 𝐷2 ≠ ∅, i.e., each 𝑁 (𝑦,𝑋 )
with 𝑦 ∈ 𝑉 (𝐺 − 𝑋 ) is tamed and H†

is not taming.

A top tree is defined over a dynamic tree 𝑇 and a dynamic set

𝜕𝑇 of at most two vertices of 𝑇 . For any subtree 𝐶 of 𝑇 , 𝜕𝐶 =

𝜕(𝑇,𝜕𝑇 )𝐶 consists of the vertices of 𝐶 belonging to 𝜕𝑇 or adjacent

to 𝑉 (𝑇 ) \ 𝑉 (𝐶). A cluster [2] of (𝑇, 𝜕𝑇 ) is a subtree 𝐶 of 𝑇 with

|𝐸 (𝐶) | ≥ 1 and |𝜕𝐶 | ≤ 2. If |𝜕𝐶 | = 2, then let Π(𝐶) be the path of

𝑇 between the vertices of 𝜕𝐶 . If |𝐸 (𝑇 ) | = 0, then (𝑇, 𝜕𝑇 ) admits no

cluster and the top tree over (𝑇, 𝜕𝑇 ) is empty. If |𝐸 (𝑇 ) | ≥ 1, then a

top tree T over (𝑇, 𝜕𝑇 ) is a binary tree on clusters of (𝑇, 𝜕𝑇 ) such
that (1) the root of T is the maximal cluster 𝑇 of (𝑇, 𝜕𝑇 ), (2) the
leaves of T are the edges of 𝑇 , i.e., the minimal clusters of (𝑇, 𝜕𝑇 ),
and (3) the children𝐴 and𝐵 of any cluster𝐶 of (𝑇, 𝜕𝑇 ) onT are edge

disjoint clusters of (𝑇, 𝜕𝑇 ) with 𝐶 = 𝐴 ∪ 𝐵 and |𝑉 (𝐴) ∩𝑉 (𝐵) | = 1.

See Figure 9. If |𝜕𝐴| = |𝜕𝐶 | = 2, then Π(𝐴) ⊆ Π(𝐶). Moreover,

Π(𝐴) = Π(𝐶) if and only if |𝜕𝐵 | ≤ 1. For each vertex 𝑣 ∈ 𝑉 (𝑇 ) \ 𝜕𝑇 ,
let𝐶𝑣 be the lowest cluster of (𝑇, 𝜕𝑇 ) on T with 𝑣 ∈ 𝑉 (𝐶𝑣) \ 𝜕𝐶𝑣 . If

|𝜕𝐶 | = 2, then 𝑣 ∈ 𝑉 (𝐶) is an internal vertex of Π(𝐶) if and only if

|𝜕𝐴| = 2 holds for each cluster 𝐴 on the𝐶𝐶𝑣-path of T . A top forest

F over a forest 𝐹 consists of top trees, one for each maximal subtree

of 𝐹 . By Lemma 5.5, each update to 𝐹 either deletes an edge of 𝐹

or adds an edge between two maximal subtrees of 𝐹 . In addition to

that, F also needs be modified if 𝜕𝑇 for a maximal subtree 𝑇 of 𝐹

is updated. To accommodate each update to 𝐹 or 𝜕𝑇 , we modify F
via a sequence of operations such that there can be temporary top

trees T𝐶 rooted at clusters 𝐶 that are not maximal subtrees of 𝐹 .

Specifically, F is modified via the following 𝑂 (1)-time top-tree

operations: (1) Create or destroy a top tree on a single cluster that

is an edge. (2) Split a top tree T𝐶 into the two immediate subtrees

of T𝐶 by deleting the root 𝐶 . (3) Merge top trees T𝐴 and T𝐵 with

|𝑉 (𝐴) ∩𝑉 (𝐵) | = 1 into a top tree T𝐶 rooted at 𝐶 = 𝐴 ∪ 𝐵.

Lemma 5.6 (Alstrup, Holm, de Lichtenberg, Thorup [2]). An

𝑛-vertex forest 𝐹 admits an 𝑂 (𝑛)-space top forest F consisting of
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𝑂 (log𝑛)-height top trees such that for any maximal subtree 𝑇 of 𝐹

(1) it takes 𝑂 (1) time to obtain on the top tree T for 𝑇 (a) the cluster

𝐶𝑣 for any 𝑣 ∈ 𝑉 (𝑇 ) \ 𝜕𝑇 , (b) the parent of a nonroot cluster, (c) the
children of a non-leaf cluster, and (d) 𝜕𝐶 for a cluster𝐶 and (2) it takes

𝑂 (log𝑛) time to identify a sequence of 𝑂 (log𝑛) top-tree operations
with which F can be modified in 𝑂 (log𝑛) time with respect to (a)

updating 𝜕𝑇 , (b) deleting an edge of 𝑇 , or (c) adding an edge between

𝑇 and another maximal subtree of 𝐹 .

We use Lemma 5.6 to maintain a top forest F over the spanning

forest 𝐹 of 𝐺 − 𝑋 maintained by Lemma 5.5. For each cluster 𝐶

on each nonempty top tree T of F , we maintain a representative

set 𝑅𝐶 of 𝑁 (𝑉 (𝐶) \ 𝜕𝐶,𝑋 ). We first show that maintaining the

representative sets 𝑅𝐶 does not affect the complexity of maintaining

F stated in Lemma 5.6 and that of maintaining the colors of the

vertices of 𝑋 stated in Lemmas 5.1(1) and 5.1(2). By Lemma 5.4, the

following bottom-up update for a cluster 𝐵 on a top tree T of F
takes𝑂 (log𝑛) time: For each cluster𝐶 on the 𝐵𝑇 -path of T from 𝐵

to𝑇 , if𝐶 is an edge𝑢𝑣 of𝑇 , then an 𝑅𝐶 can be obtained from 𝑅𝑢 ∪𝑅𝑣

in 𝑂 (1) time; if 𝐶 is not an edge of 𝑇 , then an 𝑅𝐶 can be obtained

from 𝑅𝐶1
∪𝑅𝐶2

∪𝑅𝑐 in𝑂 (1) time, where𝐶1 and𝐶2 are the children

of𝐶 on T and 𝑐 is the vertex in𝑉 (𝐶1) ∩𝑉 (𝐶2). Thus, the initial 𝑅𝐶

for all clusters 𝐶 of all top trees T of F can be obtained in overall

𝑂 (𝑚 log𝑛) time by performing a bottom-up update for each leaf

cluster of each top tree. With respect to each top-tree operation, the

representative sets 𝑅𝐶 can be updated in𝑂 (1) time: For destroy and

split, we simply delete 𝑅𝐶 together with the root𝐶 of T𝐶 . For create

and merge, we just perform a bottom-up update for𝐶 in𝑂 (1) time.

Therefore, maintaining the representative sets 𝑅𝐶 does not affect

the complexity of maintaining F stated in Lemma 5.6. If a vertex

𝑣 ∈ 𝑉 (𝐺 −𝑋 ) moves to𝑋 or the colors of a vertex 𝑣 ∈ 𝑋 change, we

update 𝑅𝐶 for all𝑂 (𝑑 (𝑣) log𝑛) clusters𝐶 with 𝑣 ∈ 𝑁 (𝑉 (𝐶) \𝜕𝐶,𝑋 ).
Specifically, for each of the 𝑂 (𝑑 (𝑣)) vertices 𝑦 ∈ 𝑉 (𝐺 − 𝑋 ) with
𝑣 ∈ 𝑁 (𝑦,𝑋 ), we perform a bottom-up update for 𝐶𝑦 in 𝑂 (log𝑛)
time. Thus, maintaining the representative sets 𝑅𝐶 does not affect

the correctness of Lemmas 5.1(1) and 5.1(2). We omit the proof of

Lemma 5.1(3) for the case with 𝐷1 = ∅ and 𝐷2 ≠ ∅.

6 IMPROVED RECOGNITION & DETECTION
6.1 Theta, Pyramid, and Beetle
Each previous algorithm for detecting a family F of graphs in 𝐺

via three-in-a-tree identifies a set G of a polynomial number of

subgraphs 𝐻 of 𝐺 , each associated with a set 𝐿(𝐻 ) of three ter-

minals, such that 𝐺 is F-free if and only if each graph 𝐻 in G

does not admit an induced tree containing 𝐿(𝐻 ). In addition to

Theorem 1.1, our improvement are obtained via exploiting that

the graphs 𝐻 in G need not be subgraphs of 𝐺 . For instance, if F

are thetas, then Chudnovsky and Seymour [18] obtained a set G

of 𝑂 (𝑛7) subgraphs of 𝐺 . Each 𝐻 ∈ G with 𝐿(𝐻 ) = {𝑎1, 𝑎2, 𝑎3}
is uniquely determined from vertices 𝑏,𝑏1, 𝑏2, 𝑏3, 𝑎1, 𝑎2, 𝑎3 of 𝐺

such that 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3 are the distinct edges of

𝐺 [{𝑏,𝑏1, 𝑏2, 𝑏3, 𝑎1, 𝑎2, 𝑎3}]. We observe that the requirement that

𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3 are the distinct edges of 𝐺 [{𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3}]
can be achieved bymaking the neighbors of each𝑏𝑖 with 𝑖 ∈ {1, 2, 3}
in 𝑉 (𝐺) \ {𝑏,𝑏1, 𝑏2, 𝑏3} a clique. As a result, each 𝐻 ∈ G is deter-

mined from four vertices 𝑏, 𝑏1, 𝑏2, 𝑏3 such that 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 are the

distinct edges of 𝐺 [{𝑏, 𝑏1, 𝑏2, 𝑏3}]. Thus, there is a set G of 𝑂 (𝑛4)

𝑛-vertex graphs 𝐻 with 𝐿(𝐻 ) = {𝑏1, 𝑏2, 𝑏3} such that 𝐺 is theta-

free if and only each graph 𝐻 in G does not admit an induced

tree containing 𝐿(𝐻 ). An 𝑛3
-factor is reduced from the number

of the three-in-a-tree problems to be solved in order to determine

whether𝐺 is theta-free. Beetle detection can be improved similarly.

Improving the algorithm for pyramid detection needs additional

care, since a pyramid has to contain exactly one triangle. Theo-

rem 1.2 is immediate from Theorem 1.1 and the next lemma.

Lemma 6.1. Thetas in𝐺 can be detected by solving the three-in-a-

tree problem on 𝑂 (𝑚𝑛2) linear-time-obtainable 𝑛-vertex graphs.

A pyramid [18] of 𝐺 is the subgraph induced by the vertices

of an induced subtree 𝑇 of 𝐺 − {𝑏1𝑏2, 𝑏2𝑏3, 𝑏3𝑏1} with exactly 3

leaves𝑏1, 𝑏2, 𝑏3 such that𝐺 [{𝑏1, 𝑏2, 𝑏3}] is the only triangle of𝐺 [𝑇 ].
Theorem 1.3 is immediate from Theorem 1.1 and the next lemma.

Lemma 6.2. Pyramids in 𝐺 can be detected by solving the three-

in-a-tree problem on 𝑂 (𝑚𝑛) linear-time-obtainable 𝑛-vertex graphs.

A beetle [11] of a graph𝐺 is an induced subgraph of𝐺 consisting

of a cycle 𝑏1𝑏2𝑏3𝑏4𝑏1 with a chord 𝑏2𝑏4 (i.e., a diamond [25, 45] of

𝐺) and a tree 𝑇 of𝐺 − 𝑏4 having exactly three leaves 𝑏1, 𝑏2, and 𝑏3.

Theorem 1.5 is immediate from Theorem 1.1 and the next lemma.

Lemma 6.3. Beetles in 𝐺 can be detected by solving the three-in-a-

tree problem on 𝑂 (𝑚2) linear-time-obtainable 𝑛-vertex graphs.

6.2 Perfect Graph
As summarized by Maffray and Trotignon [51, §2], the algorithm of

Chudnovsky et al. [13] consists of two 𝑂 (𝑛9)-time phases. Phase 1

(a) detects pyramids in 𝐺 in 𝑂 (𝑛9) time, (b) detects the so-called

T𝑖 configurations with 𝑖 ∈ {1, 2, 3} in 𝑂 (𝑛6) time,
1
and (c) detects

jewels in 𝐺 in 𝑂 (𝑛6) time. If any of them is detected, then either 𝐺

or 𝐺 contains odd holes, implying that 𝐺 is not perfect. Otherwise,

each shortest odd hole 𝐶 of𝐺 is amenable, i.e., any anti-connected

component of the𝐶-major vertices is contained by 𝑁𝐺 (𝑢) ∩𝑁𝐺 (𝑣)
for some edge 𝑢𝑣 of 𝐶 . Phase 2 (a) computes in 𝑂 (𝑛5) time a set

X of 𝑂 (𝑛5) subsets of 𝑉 (𝐺) such that if 𝐺 contains an amenable

shortest odd hole, then X contains a near cleaner of 𝐺 and (b)

spends 𝑂 (𝑛4) time on each 𝑋 ∈ X to either obtain an odd hole of

𝐺 or ensure that 𝑋 is not a near cleaner of 𝐺 . Theorem 1.3 reduces

the time of detecting pyramids to 𝑂 (𝑛6). Lemma 6.5 reduces the

time of Phase 2(b) from 𝑂 (𝑛4) to the time of performing 𝑂 (𝑛)
multiplications of Boolean 𝑛×𝑛 matrices [27, 47, 61]. Therefore, the

time of recognizing perfect graphs is already reduced to 𝑂 (𝑛8.377)
without resorting to our improved odd-hole detection algorithm.

Let 𝐺 be an 𝑛-vertex 𝑚-edge graph. A 𝑘-hole (respectively, 𝑘-

cycle and 𝑘-path) is a 𝑘-vertex hole (respectively, cycle and path).

For any odd hole𝐶 of𝐺 , a vertex 𝑥 ∈ 𝑉 (𝐺) \𝑉 (𝐶) is𝐶-major [13] if

𝑁𝐺 (𝑥,𝐶) is not contained by any 3-path of𝐶 . Let𝑀𝐺 (𝐶) consist of
the 𝐶-major vertices. We have𝑀𝐺 (𝐶) ∩𝑉 (𝐶) = ∅. A shortest odd

hole𝐶 of𝐺 is clean if𝐺 does not contain any𝐶-major vertex. A set

𝑋 ⊆ 𝑉 (𝐺) is a near cleaner [13] if there is a shortest odd hole𝐶 of𝐺

such that (1)𝐶 [𝑋 ] is contained by a 3-path of𝐶 and (2) all𝐶-major

vertices of 𝐺 are in 𝑋 . A jewel of 𝐺 is an 𝑂 (𝑛6)-time detectable

induced subgraph of 𝐺 [13]. If 𝐺 contains jewels or beetles, then 𝐺

contains odd holes. Let 𝐺 denote the complement of graph 𝐺 .

1
As in [51] we omit the complicated definitions of T8 configurations, which are not

needed by our improved algorithms.
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Lemma 6.4 (Chudnovsky et al. [13, 4.1]). Let 𝑢 and 𝑣 be distinct

vertices of a clean shortest odd hole 𝐶 of a pyramid-free jewel-free

graph 𝐺 . (1) The shortest 𝑢𝑣-path of 𝐶 is a shortest 𝑢𝑣-path of 𝐺 .

(2) The graph obtained from 𝐶 by replacing the shortest 𝑢𝑣-path of 𝐶

with a shortest 𝑢𝑣-path of 𝐺 remains a clean shortest odd hole of 𝐺 .

We already have a faster algorithm for recognizing perfect graphs

without using Theorem 1.4(1). Lemma 6.5 reduces the time of Chud-

novsky et al.’s algorithms [13, 4.2 and 5.1] from 𝑂 (𝑛4) to 𝑂 (𝑛3.377).

Lemma 6.5. For any given vertex set𝑋 of an 𝑛-vertex pyramid-free

jewel-free graph 𝐺 , it takes the time of performing 𝑂 (𝑛) multiplica-

tions of 𝑛 × 𝑛 Boolean matrices to either obtain an odd hole of 𝐺 or

ensure that 𝑋 is not a near cleaner of a shortest odd hole of 𝐺 .

Lemma 6.6 (Chudnovsky et al. [13]). Let𝐺 be an 𝑛-vertex graph

such that𝐺 and 𝐺 are pyramid-and-jewel-free. It takes 𝑂 (𝑛6) time

to (1) ensure that𝐺 contains odd holes or (2) obtain a set X of 𝑂 (𝑛5)
vertex subsets of𝐺 such that if𝐺 contains odd holes, then X contains

a near cleaner of 𝐺 .

By Theorem 1.3, it takes𝑂 (𝑛6) time to detect pyramids or jewels

in 𝐺 and 𝐺 . If 𝐺 or 𝐺 contains pyramids or jewels, then 𝐺 is not

perfect. By Lemma 6.6, it suffices to consider the case that we are

given a set X of𝑂 (𝑛5) vertex subsets such that if𝐺 or𝐺 is not odd-

hole-free, then X contains a near cleaner of𝐺 or𝐺 . By Lemma 6.5,

it takes overall 𝑂 (𝑛8.377) time [27, 47, 61] to either obtain an odd

hole of 𝐺 or 𝐺 or ensure that both 𝐺 and 𝐺 are odd-hole-free.

6.3 Odd Hole
Chudnovsky et al.’s odd-hole detection algorithm has seven 𝑂 (𝑛9)-
time bottleneck subroutines. One is for pyramid detection, which is

eliminated by Theorem 1.3. The remaining six are in two groups [17,

§4]. The first (respectively, second) group handles the case that the

longest 𝑥-gap (i.e., a path 𝐷 of 𝐶 such that 𝐺 [𝐷 ∪ {𝑥}] is a hole of
𝐺) over all 𝐶-major vertices 𝑥 for a shortest odd hole 𝐶 is shorter

(respectively, longer) than one half of 𝐶 . We give a two-phase algo-

rithm to handle both cases in𝑂 (𝑛8) time. For the first case, Phase 1

tries all𝑂 (𝑛5) choices of 5 vertices to obtain an approximate cleaner

for 𝐶 , with which a shortest odd hole can be found in 𝑂 (𝑛3) time

via Lemma 6.5. For the second case, Phase 2 tries all 𝑂 (𝑛6) choices
of six vertices to obtain an approximate cleaner for 𝐶 , with which

a shortest odd hole can be identified in 𝑂 (𝑛2) time.

6.4 Even Hole
Chang et al.’s algorithm consists of two𝑂 (𝑛11)-time phases. Phase 1

detects beetles in 𝑂 (𝑛11) time, which is reduced to 𝑂 (𝑛7) time by

Theorem 1.5. Phase 2 maintains a set T of induced subgraphs of 𝐺

with the property that if 𝐺 is even-hole-free, then so is each graph

in T until T becomes empty or an 𝐻 ∈ T is found to contain even

holes. The initial T consists of𝑂 (𝑛5) graphs obtained from guesses

of (1) a 3-path 𝑃 on a shortest even hole𝐶 of𝐺 , (2) an𝑋 ⊆ 𝑉 (𝐺) that
contains the major vertices of𝐶 disjoint from𝐶 , and (3) a𝑌 ⊆ 𝑉 (𝐺)
that contains 𝑁

2,2
𝐺

(𝐶) disjoint from 𝐶 . Each iteration of Phase 2

takes𝑂 (𝑛4) time to ensure that an𝐻 ∈ T is an extended clique tree

that contains even holes or replace 𝐻 with 0 (resp., 1 and 2) smaller

graphs via ensuring that 𝐻 is an even-hole-free extended clique

tree (resp., decomposing 𝐻 by a star-cutset and decomposing 𝐻 by

a 2-join). The guessed 𝑃 and 𝑌 are crucial in arguing that 𝐻 can

be decomposed by a star-cutset without increasing |T |, implying

that each initial 𝐻 ∈ T incurs𝑂 (𝑛) decompositions by star-cutsets.

Therefore, the overall time for decompositions by star-cutsets is

𝑂 (𝑛10), i.e., 𝑂 (𝑛5) times the initial |T |. Each initial 𝐻 ∈ T incurs

𝑂 (𝑛2) decompositions by 2-joins, implying that the overall time for

detecting even holes in extended clique trees and decompositions

by 2-joins is 𝑂 (𝑛11), i.e., 𝑂 (𝑛6) times the initial |T |. We reduce the

time of Phase 2 from 𝑂 (𝑛11) to 𝑂 (𝑛9). A factor of 𝑛 is removed by

reducing the initial |T | from 𝑂 (𝑛5) to 𝑂 (𝑛4) via ignoring 𝑌 and

the internal vertex of 𝑃 . Guessing only 𝑋 and the end-vertices of 𝑃

does complicate the task of decomposing 𝐻 by a star-cutset, but we

manage to handle each decomposition by a star-cutset in the same

time bound. Another factor of 𝑛 is removed by reducing the number

of decompositions by 2-joins incurred by each initial 𝐻 ∈ T from

𝑂 (𝑛2) to 𝑂 (𝑛) via carefully handling the boundary cases.

7 CONCLUDING REMARKS
We solve the three-in-a-tree problem on an 𝑛-vertex𝑚-edge undi-

rected graph in 𝑂 (𝑚 log
2 𝑛) time, leading to improved algorithms

for recognizing perfect graphs and detecting thetas, pyramids, bee-

tles, and odd and even holes. It would be interesting to see if the

complexity of the three-in-a-tree problem can be further reduced.

The amortized cost of maintaining the connectivity information for

the dynamic graph 𝐺 − 𝑋 can be improved to 𝑂 (log
2 𝑛/log log𝑛)

using [63] or even to𝑂 (log𝑛 log log
𝑂 (1) 𝑛) using [57]. Since𝐺 −𝑋

is purely decremental, we can use the randomized algorithm in [56]

for further speedup. However, this is not our only 𝑂 (log
2 𝑛) bottle-

neck: At the moment we pay 𝑂 (log𝑛) time for each neighbor of a

vertex in 𝑋 when it changes color, so if it changes color 𝑂 (log𝑛)
times, then it will be hard to beat the 𝑂 (log

2 𝑛) factor.
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