Connectedness: an incomplete encyclopedia of anthropocene views, thoughts, considerations, insights, images, notes & remarks
Rasmussen, Sune Olander

Published in:
Abrupt Climate Change

Publication date:
2020

Document version
Publisher’s PDF, also known as Version of record

Citation for published version (APA):
connectedness

An Incomplete Encyclopedia of the Anthropocene

Marianne Krogh (ed.)
An Incomplete Encyclopedia of the Anthropocene

Marianne Krogh (ed.)

connectedness

An Incomplete Encyclopedia of the Anthropocene
Foreword: Connectedness is about Sharing
9 Katherine Richardson

Connected-ness: An Introduction
12 Marianne Krogh

Abject Climate Change
30 Sune Olander Rasmussen

Aesthetics
34 Deilia Hannah

Agency
36 Tatjana Schneider

Agriculture
40 Sofie Isager Ahl

Air
42 Aerocene

Anthropocene
48 Gaia Vince

Architecture
52 Elke Krasny

Art
56 Line Marie Thorsen

Atmosphere
62 Gernot Böhme

Attachment
64 Emmy Laura Perez Fjälland

Attention
66 Polina Chebotareva Rasmus Hjorthahaj

Bacteria
74 Salla Sariola

Biodiversity
76 Minik Rosing

Body
82 Mwenza Biell

Borders
84 Tiffany Chung

Capitalocene
92 Thomas Hylland Eriksen

Care
94 Joanna Latimer

Cthulucene
100 Emmy Laura Perez Fjälland

City
104 David Gissen

Client: Earth
108 James Thornton

Climate
112 Bill McKibben

Climate Risk Communities
114 Anders Biok

Coexistence
118 Rosi Braidotti

Connectedness
122 Josefine Klossgård

Corals
126 Nils Bubandt

Creation
128 Liv Sæjbo Lidegaard

Declaration of Rebellion
132 Extinction Rebellion

Declarations of Climate Emergency
136

Denial
138 Simo Kappe

Description
140 April Vannini

Development
144 Gregers Andersen

Dystopia
146 Jesper Just

Earth Ethics
152 J. Baird Callicott

Earthlings
156 Jeff YanderMeer

Ecology
160 Timothy Morton

Energy
162 Kirsten Halsnæs

Environment
166 Cary Wolfe

Explicitation
170 NORRØN

Facts
174 Peter Weibel

Feminism
178 Meike Schalk Thérèse Kristiansson Ramia Mazé

Fire
182 Lars Stinebech

Flood
186 SUPERFLEX

Food
190 Alice Waters

Future
192 Andrei Snaer Magnason

Garden
198 Hu Fang

Geology
200 Minik Rosing

Geo-Social Classes
204 Nikolaj Schultz

Glaciers
208 Jesper Thelgaard

Global
210 Saskia Sassen

Heatwave
214 Jim Reed

Heritage
218 Ben Dibley

Home
222 lenschow & pihlmann

Imagine
228 Björk

Invisible
230 Rune Bosse

Local
240 Emmy Laura Perez Fjälland

Media
244 Paul Roquet

Migration Flows
246 Thomas Gammeltoft-Hansen

Modernism
250 Amund Havsteen-Mikkelsen

Moving Earths
254 Bruno Latour Nikolaj Schultz

Natureculture
266 Flemming Rahn

New Materialism
270 Diana Coole

Next Generation
274 Greta Thunberg

Object-Oriented Ontology
280 Graham Harman

Oil
282 Peter Adolphsen

Overpopulation
286 Betsy Hartmann

Oxymorons
290 Julius von Bismarck

Pandemic
298 Carsten Jensen

Plantationocene
300 Zachary Caple

Plastic
302 Heather Davis

Pollution
304 Frederick Rowe Davis

Posthuman
308 Tomas Saraceno

Power
312 Lars Tander

Production
314 Sidsel Kaerulf Rasmussen Till Rickert

Queer
318 Antke Engel

Resilience
324 Aditya Bahadur

Resources
328 Jaime Stapleton Rikke Luther

Sensitivity
340 Olga Tokarczuk

Soil
350 Vandana Shiva

Sun
352 SPACE10

Tenderness
358 Lundgaard & Tranberg Architects

Terraforming
360 Emmy Laura Perez Fjälland

The Sharing Economy
364 Darren Sharp

Time
368 Barbara Adam

Violence
374 Niels Albertsen

Waste
380 Amanda Boetikes

Water
384 Astrida Neimanis

Weather
388 Astrida Neimanis Jennifer Mae Hamilton

Wilderness
392 Jason Mark

World Scientists’ Warning to Humanity
400

Xenophobia
404 Georg Metz

Note for the reader

The alphabetic structure of the book suggests a general reading sequence.
At the top of each contribution is a selection of words, concepts and brief sentences.
Black text marks key words related to the text, while red text offers references to other contributions in the book
where you can read more about the given topic.
Each contribution is thus connected to several others, offering an alternative approach to the logic of the alphabet.
A delicious revolution → Food
a machine for massifying life → Plantationocene
a reflexive force of nature → Aesthetics
a world where the mind never works without the body → Creation

Abrupt Climate Change Sune Olander Rasmussen
access over ownership → The Sharing Economy
action → Next Generation
aeronauts → Air
aesthetic indifference → Waste

Aesthetics Dehila Hannah
affirming connectedness under conditions of conflict → Queer

Agency Tatjana Schneider
agents of disease → Bacteria

Agriculture Sofie Isager Ahl
Air Aerocene
airnomads → Air
alternative visions of growth → Capitalocene
an inhabitor of life itself → Waste

Anthropocene Gaia Vince
Anthropocene sensibilities → Art
apocalyptic appeal → Overpopulation
appropriateness of action → Window of Opportunity

Architecture Elke Krasny
architecture as organization → Architecture
architecture as style → Architecture
architecture’s political dimension → Agency

Art Line Marie Thorsen
Atmosphere Gernot Böhme
Attachment Emmy Laura Perez Fjalland
Attention Polina Chebotareva and Rasmus Hjortshej
awareness → Attachment
An ice-core perspective
Snow falls, flake by flake, on the vast, flat, cold and empty surface of the Greenland Ice Sheet. On a clear summer day, some flakes turn back into vapour and escape back into the atmosphere, and winds may move the uppermost snow around, but most of the snow settles and is covered by another layer of snow. Layer by layer, year after year, the snow is gently but relentlessly compressed by the burden of the younger snow. The snow crystals are first rounded and then start to grow together, and meanwhile most of the air between the crystals is squeezed out. Two hundred years after the snow originally settled on the surface, the snow is buried under 58 metres of layers of later snowfall, and the compression has reduced the volume of the original snow to less than a fifth. One cubic metre now weighs 800 kilograms, and in the space between ice crystals, atmospheric air is enclosed and forms tiny bubbles that will remain unaltered as the ice is compressed further and makes its way into the deep, cold interior of the ice sheet. A snowflake falling near the crest of the Greenland Ice Sheet may continue its journey towards the bedrock in ever-thinning layers for hundreds of thousands of years, or it may end up flowing slowly towards the edge of the ice sheet, just to return to the ocean as meltwater or in an iceberg.

For more than half a century, scientists have taken advantage of this natural archive of snowfall. With a method originally conceived by Danish physicist Willi Dansgaard, Danish-Icelandic physicist Siguur Johnsen, and their colleagues at the University of Copenhagen, Denmark, scientists drill through the kilometre-thick ice sheet and retrieve a cylindrical rod of ice, an ice core, and perform measurements that reveal past climate conditions. Subtle variations in the ratio between the isotopes of the hydrogen and oxygen atoms that make up the ice molecules reflect past atmospheric temperatures around the ice-core site and document climatic changes on all scales: at the surface, the differences between winters and summers are clearly detectable, and half-way to the base of the ice sheet, the isotope-based temperature reconstructions show how the Greenland climate changed from glacial to interglacial conditions 11,700 years ago. Ice sheets are among the cleanest reserves of water on Earth, but still the ice core contains minuscule traces of volcanic eruptions, forest fires, dust storms and other processes that pollute the atmosphere with tiny particles that end up in the snowflakes. While the isotopes of the ice itself reveal past temperatures and the minute impurities in the ice can tell their story, the ice also acts as a sample container for the tiny bubbles of air that were once formed from the ambient air during the transformation of snow to ice. By melting or crushing the ice samples in the laboratory, this air is released and analysed to reveal how the atmosphere’s composition has changed across the wide range of climatic conditions of the past. Ice cores from different areas highlight different time periods particularly well, and by piecing these records together and carefully dating the ice by identifying and counting each year’s snowfall, scientists have reconstructed climatic variations year by year 60,000 years back through our current interglacial period, the Holocene, and halfway into the glacial. Even when the annual layers are no longer discernible, the ice cores still document climatic changes in outstanding resolution. The longest Greenland records go back 128,000 years, while the cores from Central Antarctica reach even further back and cover many glacial-interglacial cycles due to the very sparse snowfall on the East Antarctic Plateau. When tied together by layers of tiny volcanic glass particles found in several ice cores and variations of methane in the bubbles that are common to all ice cores (because the bubbles were formed from the very same atmosphere), the ice cores form a comprehensive set of records of both greenhouse-gas concentrations and past climate changes as manifested in the high southern and northern latitudes over more than a full glacial cycle.

The records from the Greenland and Antarctic ice cores allow us to place the recent changes in climate and greenhouse-gas concentrations into a perspective that reaches far beyond historical records. Continuous monitoring of the atmospheric composition only commenced about six decades ago, and accurate thermometer measurements go back at best a couple of centuries. Further back, climate-relevant information can be inferred from historical records, which document local and regional climate variations, sometimes with large impact on past societies. The ice cores paint a picture of more radical climate change, with the last major global shift taking place 18,000 to 11,000 years ago, more than twice as far back in time as the oldest written records of any civilization on Earth. To find the ice in the Greenlandic Ice Sheet that originated from snow that fell on the surface 18,000 years ago, we would have to drill to more than a kilometre and a half below the surface, and each annual layer will have thinned to just a centimetre or two. However, the layering is intact, and from the isotope ratios in each layer we can extract an

Sune Olander Rasmussen (born 1974, located in Copenhagen, DK) is an associate professor at the Niels Bohr Institute, University of Copenhagen. He holds a PhD in Geophysics and works with ice-core research. He is mainly interested in the development of methods for ice-core dating and synchronization, as well as the analysis of climate records from a wide variety of palaeoclimate archives with the aim of understanding the governing mechanisms of past abrupt climate changes.
estimate of the temperature in the North Atlantic region. Over the following many thousand years, recorded in more than a hundred metres of Greenland ice core, Earth went from a deep glacial to a mild interglacial climate. In ice of the same age found in Antarctic ice cores, we can see how the temperatures gradually grew over seven millennia in close concert with the CO₂ content of the atmosphere. Although the differences between cores show regional variations, and in particular show that the polar regions warmed more than average, Earth as a whole reacted to small and slow changes in the amount and distribution of energy from the Sun and warmed by somewhere around 6 °C on average. This change was not likely initiated by CO₂, but the ice cores show how CO₂ concentrations rose together with – or were slightly lacking after – the temperature over many thousands of years and was most likely closely tied to temperature via positive feedbacks, involving, among other processes, the exchange of CO₂ between the atmosphere and ocean. The impact was dramatic: the large ice sheet that covered North America all the way down to the Great Lakes melted back and eventually disappeared, and ice caps covering the British Isles, Scandinavia and northern Siberia all decayed and left nothing more than a few mountain glaciers. The global ocean rose on average 120 metres due to the meltwater from these immense amounts of ice, and even today Earth’s crust is still adjusting to the removal of the enormous load of the now-vanished ice sheets. Despite the obvious differences to today’s situation, the observed climate change since the onset of the Industrial Revolution shares essential features with the glacial-to-interglacial transition: the changes were gradual and relatively smooth in most places, the CO₂ concentration changes were of a similar magnitude, and because the greenhouse-gas concentrations played such a large role, no region on Earth was unaffected.

Drilling a few hundred metres deeper into the Greenland ice, we find repeated evidence of climate change of a radically different nature. During most of the glacial period, which lasted about 100,000 years, Greenland did not experience stable glacial climate conditions for more than a few millennia at a time. Instead, the same pattern of climate change interrupted the cold glacial conditions about 30 times, and although the duration of these interruptions varies widely, they share so many features that they have been given a common label: the Dansgaard-Oeschger events. Each event starts with an abrupt warming of typically around 10–15 °C in Greenland and takes place over a few decades, after which the temperature drops more slowly for a while before returning abruptly to the cold glacial level. The Greenland ice cores do not provide many direct hints about the reason for these extreme changes, but when compared to similar records from Antarctica, a persistent pattern emerges: within a century or two after the abrupt warming sets in over Greenland, Antarctica starts cooling gradually, and conversely Antarctica starts warming slowly after Greenland has returned to its cold state. Records of the ocean circulation from ocean-floor sediment cores show variations that to the best of our knowledge appear contemporaneous with the changes observed in the polar regions, and climate models support that the climate of the hemispheres was coupled via the ocean heat transport. This interpretation is known as the ‘bipolar seesaw’, as it invokes a seesaw between the North and South Atlantic. When the northward heat transport in the Atlantic is strong, heat is drawn away from the South Atlantic and exported to the high-latitude North Atlantic by oceanic and atmospheric currents, causing Greenland to experience relatively warm conditions while the interior of the Earth’s other oceans and the southern hemisphere slowly is losing heat, leading to gradual cooling in and around Antarctica. When the ocean heat transport is relatively weak, the opposite scenario occurs, which again is in line with the ice-core evidence. What causes the ocean circulation to change strength abruptly is still not fully understood, although it seems clear that the amount of fresh water added to the ocean, sea-ice dynamics and variability in both wind and ocean currents play important roles. Greenland gases, on the other hand, do not vary enough, and especially not fast enough to play a main role for these changes. While the exact mechanisms behind the changes are still not fully known, it is thus clear that the Dansgaard-Oeschger events represent a different type of climate change than the gradual climate change of the glacial transition and the current warming: the main mechanisms of the Dansgaard-Oeschger events was an abrupt change in the redistribution of heat that occurred when the climate system reached a threshold that allowed it to shift from one mode to another.

What is the relevance of Dansgaard-Oeschger events for the current and future climate situation? Although Dansgaard-Oeschger events proper were a glacial phenomenon, they are indirectly relevant to us because they demonstrate a type of variability that has occurred naturally and thus serves as a training ground for climate scientists and the computer models used to describe the most important physical processes in the climate system. They also directly exemplify that when Earth’s climate is in a state that is prone to change, it does not take much forcing to initiate a sequence of events that leads to dramatic climate changes, potentially with regionally highly heterogeneous manifestations. During the Dansgaard-Oeschger events, particularly Greenland and Northern Europe experienced climate change on a scale that would probably have rendered all human adaptation strategies except migration infratable. It does not seem likely that we will see Dansgaard-Oeschger events in the foreseeable future, but the physical governing mechanisms of the events can also lead to changes on smaller scales, and there are also other elements of the climate system that are able to exhibit abrupt changes and could be triggered by humanity’s alterations of Earth’s surface and atmospheric composition. I therefore consider it worth considering if just a small increase in the risk of large-scale abrupt climate change is not just as worrying and thus merits just as much action as the gradual and relatively well-understood climate changes that we are already observing and must expect based on projections of future climate.