Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs

Susanna F. de Rezende
Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic

Jakob Nordström
University of Copenhagen, Denmark
Lund University, Sweden

Kilian Risse
KTH Royal Institute of Technology, Stockholm, Sweden

Dmitry Sokolov
St. Petersburg State University, Russia
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Russia

Abstract

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson ’01] and highly unbalanced, dense graphs as in [Raz ’04] and [Razborov ’03, ’04]. We obtain our results by revisiting Razborov’s pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases proof complexity, resolution, weak pigeonhole principle, perfect matching, sparse graphs

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.28

Funding The authors were funded by the Knut and Alice Wallenberg grant KAW 2016.0066. In addition, the second author was supported by the Swedish Research Council grant 2016-00782 and the Independent Research Fund Denmark (DFF) grant 9040-00389B, and the fourth author by the Knut and Alice Wallenberg grant KAW 2016.0433. Part of this work was carried out while visiting the Simons Institute for the Theory of Computing in association with the DIMACS/Simons Collaboration on Lower Bounds in Computational Complexity, which is conducted with support from the National Science Foundation.

Acknowledgements First and foremost, we are most grateful to Alexander Razborov for many discussions about pseudo-width, graph closure, and other mysteries of the universe. We also thank Paul Beame and Johan Håstad for useful discussions, and Jonah Brown-Cohen for helpful references on expander graphs. Finally, we gratefully acknowledge the feedback from participants of the Dagstuhl workshop 19121 Computational Complexity of Discrete Problems in March 2019.
1 Introduction

In one sentence, proof complexity is the study of efficient certificates of unsatisfiability for formulas in conjunctive normal form (CNF). In its most general form, this is the question of whether coNP can be separated from NP or not, and as such appears out of reach for current techniques. However, if one instead focuses on concrete proof systems, which can be thought of as restricted models of nondeterministic computation, this opens up the view to a rich landscape of results.

One line of research in proof complexity has been to prove superpolynomial lower bounds for stronger and stronger proof systems, as a way of approaching the distant goal of establishing $\text{NP} \neq \text{coNP}$. A perhaps even more fruitful direction, however, has been to study different combinatorial principles and investigate what kind of reasoning is needed to efficiently establish the validity of these principles. In this way, one can quantify the “depth” of different mathematical truths, measured in terms of how strong a proof system is required to prove them.

In this paper, we consider the proof system resolution \[10\], in which one derives new disjunctive clauses from the formula until an explicit contradiction is reached. This is arguably the most well-studied proof system in proof complexity, for which numerous exponential lower bounds on proof size have been shown (starting with \[19, 31, 13\]). Yet many basic questions about resolution remain stubbornly open. One such set of questions concerns the pigeonhole principle (PHP) stating that there is no injective mapping of m pigeons into n holes if $m > n$. This is one of the simplest, and yet most useful, combinatorial principles in mathematics, and it has been topic of extensive study in proof complexity.

When studying the pigeonhole principle, it is convenient to think of it in terms of a bipartite graph $G = (U \cup V, E)$ with pigeons $U = [m]$ and holes $V = [n]$ for $m \geq n + 1$. Every pigeon i can fly to its neighbouring pigeonholes $N(i)$ as specified by G, which for now we fix to be the complete bipartite graph $K_{m,n}$ with $N(i) = [n]$ for all $i \in [m]$. Since we wish to study unsatisfiable formulas, we encode the claim that there does in fact exist an injective mapping of pigeons to holes as a CNF formula consisting of pigeon axioms

$$P^i = \bigvee_{j \in N(i)} x_{ij} \quad \text{for } i \in [m] \quad (1a)$$

and hole axioms

$$H_{ij,ij'} = (\overline{x}_{ij} \vee \overline{x}_{ij'}) \quad \text{for } i \neq i' \in [m], j \in N(i) \cap N(i') \quad (1b)$$

(where the intended meaning of the variables is that x_{ij} is true if pigeon i flies to hole j).

To rule out multi-valued mappings one can also add functionality axioms

$$F_{ij,ij'} = (\overline{x}_{ij} \vee \overline{x}_{ij'}) \quad \text{for } i \in [m], j \neq j' \in N(i) \quad , \quad (1c)$$

and a further restriction is to include surjectivity or onto axioms

$$S_j = \bigvee_{i \in N(j)} x_{ij} \quad \text{for } j \in [n] \quad (1d)$$

requiring that every hole should get a pigeon. Clearly, the “basic” pigeonhole principle (PHP) formulas with clauses (1a) and (1b) are the least constrained. As one adds clauses (1c) to obtain the functional pigeonhole principle (FPHP) and also clauses (1d) to get the onto functional pigeonhole principle (onto-FPHP), the formulas become more overconstrained and thus (potentially) easier to disprove, meaning that establishing lower bounds becomes harder.
A moment of reflection reveals that onto-FPHP formulas are just saying that complete bipartite graphs with \(m \) left vertices and \(n \) right vertices have perfect matchings, and so these formulas are also referred to as perfect matching formulas.

Another way of varying the hardness of PHP formulas is by letting the number of pigeons \(m \) grow larger as a function of the number of holes \(n \). What this means is that it is not necessary to count exactly to refute the formulas. Instead, it is sufficient to provide a precise enough estimate to show that \(m > n \) must hold (where the hardness of this task depends on how much larger \(m \) is than \(n \)). Studying the hardness of such so-called weak PHP formulas gives a way of measuring how good different proof systems are at approximate counting. A second application of lower bounds for weak PHP formulas is that they can be used to show that proof systems cannot produce efficient proofs of the claim that \(\text{NP} \not\subseteq \text{P/poly} \) [24, 28].

Yet another version of more constrained formulas is obtained by restricting what choices the pigeons have for flying into holes, by defining the formulas not over \(K_{m,n} \) but sparse bipartite graphs with bounded left degree – such instances are usually called graph PHP formulas. Again, this makes the formulas easier to disprove in the sense that pigeons are more constrained, and it also removes the symmetry in the formulas that plays an essential role in many lower bound proofs.

Our work focuses on the most challenging setting in terms of lower bounds, when all of these restrictions apply: the PHP formulas contain both functionality and onto axioms, the number of pigeons \(m \) is very large compared to the number of holes \(n \), and the choices of holes are restricted by a sparse graph. But before discussing our contributions, let us review what has been known about resolution and pigeonhole principle formulas. We emphasize that what will follow is a brief and selective overview focusing on resolution only – see Razborov’s beautiful survey paper [26] for a discussion of upper and lower bounds on PHP formulas in other proof systems.

1.1 Previous Work

In a breakthrough result, which served as a strong impetus for further developments in proof complexity, Haken [19] proved a lower bound \(\exp(\Omega(n)) \) on resolution proof length for \(m = n + 1 \) pigeons. Haken’s proof was for the basic PHP formulas, but easily extends to onto-FPHP formulas. This result was simplified and improved in a sequence of works [12, 7, 8, 32] to a lower bound of the form \(\exp(\frac{n^2}{m}) \), which, unfortunately, does not yield anything nontrivial for \(m = \Omega(n^2) \) pigeons.

Buss and Pitassi [11] showed that the pigeonhole principle does in fact get easier for resolution when \(m \) becomes sufficiently large: namely, for \(m = \exp(\Omega(\sqrt{n \log n})) \) PHP formulas can be refuted in length \(\exp(O(\sqrt{n \log n})) \). This is in contrast to what holds for the weaker subsystem tree-like resolution, for which the formulas remain equally hard as the number of pigeons increases, and where the complexity was even sharpened in [11, 15, 17, 9] to an \(\exp(\Omega(n \log n)) \) length lower bound.

Obtaining lower bounds beyond \(m = n^2 \) pigeons for non-tree-like resolution turned out to be quite challenging. Haken’s bottleneck counting method fundamentally breaks down when the number of pigeons is quadratic in the number of holes, and the same holds for the celebrated length-width lower bound in [8]. Some progress was made for restricted forms of resolution in [30] and [22], leading up to an \(\exp(n^2) \) lower bound for so-called regular resolution. In a technical tour de force, Raz [23] finally proved that general, unrestricted resolution requires length \(\exp(n^2) \) to refute the basic PHP formulas even with arbitrary many pigeons. Razborov followed up on this in three papers where he first simplified and slightly strengthened Raz’s result in [25], then extended it to FPHP formulas in [27] and lastly established an analogous lower bound for onto-FPHP formulas in [28].
More precisely, what Razborov showed is that for any version of the PHP formula with \(m \) pigeons and \(n \) holes, the minimal proof length required in resolution is \(\exp(\Omega (n / \log^2 m)) \).

It is easy to see that this implies a lower bound \(\exp(\Omega(\sqrt{n})) \) for any number of pigeons – for \(m = \exp(O(\sqrt{n})) \) we can appeal directly to the bound above, and if a resolution proof would use \(\exp(\Omega(\sqrt{n})) \) pigeons, then just mentioning all these different pigeons already requires \(\exp(\Omega(\sqrt{n})) \) distinct clauses. It is also clear that considering complexity in terms of the number of holes \(n \) is the right measure. Since any formula contains a basic PHP subformula with \(n + 1 \) pigeons that can be refuted in length \(\exp(O(n)) \), we can never hope for exponential lower bounds in terms of formula size as the number of pigeons \(m \) grows to exponential.

So far we have stated results only for the standard PHP formulas over \(K_{m,n} \), where any pigeon can fly to any hole. However, the way Ben-Sasson and Wigderson [8] obtained their result was by considering graph PHP formulas over balanced bipartite expander graphs of constant left degree, from which the lower bound for \(K_{m,n} \) easily follows by a restriction argument. It was shown in [20] that an analogous bound holds for onto-FPHP formulas, i.e., perfect matching formulas, on bipartite expanders. In this context is is also relevant to mention the exponential lower bounds in [1, 16] on mutilated chessboard formulas, which can be viewed as perfect matching formulas on balanced, sparse bipartite graphs with very bad expansion. At the other end of the spectrum, Razborov’s PHP lower bound in [28] for highly unbalanced bipartite graphs also applies in a more general setting than \(K_{m,n} \), namely, for any graph where the minimal degree of any left vertex is \(\delta \), the minimal length of any resolution proof is \(\exp(\Omega(\delta / \log^2 m)) \). Thus, for graph PHP formulas we have exponential lower bounds on the one hand [8] for \(m \ll n^2 \) pigeons, where each pigeon is adjacent to a constant number of holes, and on the other hand [28] for any number of pigeons given that each pigeon is adjacent to a polynomial \(n^{\Omega(1)} \) number of holes, but nothing has been known in between these extremes. In [28], Razborov asks whether a “common generalization” of the techniques in [8] and [27, 28] can be found “that would uniformly cover both cases?” Urquhart [33] also discusses Razborov’s lower bound technique, but notes that “the search for a yet more general point of view remains a topic for further research.”

1.2 Our Results

In this work, we give an answer to the questions raised in [28, 33] by presenting a general technique that applies for any number of pigeons \(m \) all the way from linear to weakly exponential, and that establishes exponential lower bounds on resolution proof length for all flavours of graph PHP formulas (including perfect matching formulas) even over sparse graphs.

Let us state below three examples of the kind of lower bounds we obtain – the full, formal statements will follow in later sections. Our first theorem is an average-case lower bound for onto-FPHP formulas with slightly superpolynomial number of pigeons.

Theorem 1 (Informal). Let \(G \) be a randomly sampled bipartite graph with \(n \) right vertices, \(m \ll n^{o(\log n)} \) left vertices, and left degree \(\Theta(\log^3 m) \). Then refuting the onto-FPHP formula (a.k.a. perfect matching formula) over \(G \) in resolution requires length \(\exp(\Omega(n^{1-o(1)})) \) asymptotically almost surely.

Note that as the number of pigeons grow larger, it is clear that the left degree also has to grow – otherwise we will get a small number of pigeons constrained to fly to a small number of holes by a birthday paradox argument, yielding a small unsatisfiable subformula that can easily be refuted by brute force.
If the number of pigeons increases further to weakly exponential, then randomly sampled graphs no longer have good enough expansion for our technique to work, but there are explicit constructions of unbalanced expanders for which we can still get lower bounds.

\textbf{Theorem 2 (Informal).} There are explicitly constructible bipartite graphs \(G \) with \(n \) right vertices, \(m = \exp(\Theta(n^{1/16})) \) left vertices, and left degree \(\Theta(\log^4 m) \) such that refuting the perfect matching formula over \(G \) requires length \(\exp(\Omega(n^{1/8-\varepsilon})) \) in resolution.

Finally, for functional pigeonhole principle formulas we can also prove an exponential lower bound for constant left degree even if the number of pigeons is a large polynomial.

\textbf{Theorem 3 (Informal).} Let \(G \) be a randomly sampled bipartite graph with \(n \) right vertices, \(m = n^k \) left vertices, and left degree \(\Theta((k/\varepsilon)^2) \). Then refuting the functional pigeonhole principle formula over \(G \) in resolution requires length \(\exp(\Omega(n^{1-\varepsilon})) \) asymptotically almost surely.

\section{Techniques}

At a very high level, what we do in terms of techniques is to revisit the pseudo-width method introduced by Razborov for functional \(\text{PHP} \) formulas in [27]. We strengthen this method to work in the setting of sparse graphs by combining it with the closure operation on expander graphs in [4, 3], which is a way to restore expansion after a small set of (potentially adversarially chosen) vertices have been removed. To extend the results further to perfect matching formulas, we apply a “preprocessing step” on the formulas as in [28]. In what remains of this section, we focus on graph \(\text{FPHP} \) formulas and give an informal overview of the lower bound proof in this setting, which already contains most of the interesting ideas (although the extension to onto-\(\text{FPHP} \) also raises significant additional challenges).

Let \(\text{FPHP}(G) \) denote the functional pigeonhole principle formula over the graph \(G \) consisting of clauses (1a)–(1e). A first, quite naive (and incorrect), description of the proof structure is that we start by defining a \textit{pseudo-width} measure on clauses \(C \) that counts pigeons \(i \) that appear in \(C \) in many variables \(x_{i,j} \) for distinct \(j \). We then show that any short resolution refutation of \(\text{FPHP}(G) \) can be transformed into a refutation where all clauses have small pseudo-width. By a separate argument, we establish that any refutation of \(\text{FPHP}(G) \) requires large pseudo-width. Hence, no short refutations can exist, which is precisely what we were aiming to prove.

To fill in the details (and correct) this argument, let us start by making clear what we mean by pseudo-width. Suppose that the graph \(G \) has left degree \(\Delta \). In what follows, we identify a mapping of pigeon \(i \) to a neighbouring hole \(j \) with the partial assignment \(\rho \) such that \(\rho(x_{i,j}) = 1 \) and \(\rho(x_{i,j'}) = 0 \) for all \(j' \in N(i) \setminus \{j\} \). We denote by \(d_i(C) \) the number of mappings of pigeon \(i \) that satisfy \(C \). Note that if \(C \) contains at least one negated literal \(\neg x_{i,j} \), then \(d_i(C) \geq \Delta - 1 \), and otherwise \(d_i(C) \) is the number of positive literals \(x_{i,j} \) for \(j \in N(i) \). Given a judiciously chosen “filter vector" \(\vec{d} = (d_1, \ldots, d_m) \) for \(d_i \approx \Delta \) and a “slack” \(\delta \approx \Delta / \log m \), we say that pigeon \(i \) is \textit{heavy} in \(C \) if \(d_i(C) \geq d_i - \delta \) and \textit{super-heavy} if \(d_i(C) \geq d_i \). We define the \textit{pseudo-width} of a clause \(C \) to be the number of heavy pigeons in \(C \).

With these definitions in hand, we can give a description of the actual proof:

\begin{enumerate}
 \item Given any resolution refutation \(\pi \) of \(\text{FPHP}(G) \) in small length \(L \), we argue that all clauses can be classified as having either low or high pseudo-width, where an important additional guarantee is that the high-width clauses not only have many heavy pigeons but actually many super-heavy pigeons.
\end{enumerate}
2. We replace all clauses C with many super-heavy pigeons with “fake axioms” $C' \subseteq C$ obtained by throwing away literals from C until we have nothing left but a medium number of super-heavy pigeons. By construction, the set A of such fake axioms is of size $|A| \leq L$, and after making the replacement we have a resolution refutation π' of $FPHP(G) \cup A$ in low pseudo-width.

3. However, since A is not too large, we are able to show that any resolution refutation of $FPHP(G) \cup A$ must still require large pseudo-width. Hence, L cannot be small, and the lower bound follows.

Part 1 is similar to [27], but with a slight twist. We show that if the length of π is $L < 2^w\log n/\log m$ and if we choose $\delta \leq \varepsilon \Delta \log n/\log m$, then there exists a vector $\bar{\vec{d}} = (d_1, \ldots, d_m)$ such that for all clauses in π either the number of super-heavy pigeons is at least w_0 or else the number of heavy pigeons is at most $O(w_0 \cdot n^c)$. The proof of this is by sampling the coordinates d_i independently from a suitable probability distribution and then applying a union bound argument. Once this has been established, part 2 follows easily: we just replace all clauses with at least w_0 super-heavy pigeons by (stronger) fake axioms. Including all fake axioms \mathcal{A} yields a refutation π' of $FPHP(G) \cup \mathcal{A}$ (since we can add a weakening rule deriving C from $C' \subseteq C$ to resolution without loss of generality) and clearly all clauses in π' have pseudo-width $O(w_0 \cdot n^c).

Part 3 is where most of the hard work is. Suppose that G is an excellent expander graph, so that for some value ϵ all left vertex sets U' of size $|U'| \leq r$ have at least $(1 - \varepsilon \log n/\log m)\Delta|U'|$ unique neighbours on the right-hand side. We show that, under the assumptions above, refuting $FPHP(G) \cup \mathcal{A}$ requires pseudo-width $\Omega(\epsilon r \cdot \log n/\log m)$. Tuning the parameters appropriately, this yields a contradiction with part 2.

Before outlining how the proof of part 3 goes, we remark that the requirements we place on the expansion of G are quite severe. Clearly, any left vertex set U can have at most $\Delta|U'|$ neighbours in total, and we are asking for all except a vanishingly small fraction of these neighbours to be unique. This is why we can establish Theorem 1 but not Theorem 2 for randomly sampled graphs. We see no reason to believe that the latter theorem would not hold also for random graphs, but the expansion properties required for our proof are so stringent that they are not satisfied in this parameter regime. This seems to be a fundamental shortcoming of our technique, and it appears that new ideas would be required to circumvent this problem.

In order to argue that refuting $FPHP(G) \cup \mathcal{A}$ in resolution requires large pseudo-width, we want to estimate how much progress the resolution derivation has made up to the point when it derives some clause C. Following Razborov’s lead, we measure this by looking at what fraction of partial matchings of all the heavy pigeons in C do not satisfy C (meaning, intuitively, that the derivation has managed to rule out this part of the search space). It is immediate by inspection that all pigeons mentioned in the real axiom clauses $(1a)$–$(1c)$ are heavy, and any matching of such pigeons satisfies the clauses. Thus, the original axioms in $FPHP(G)$ do not rule out any matchings. Also, it is easy to show that fake axioms rule out only an exponentially small fraction of matchings, since they contain many super-heavy pigeons and it is hard to match all of these pigeons without satisfying the clause. However, the contradictory empty clause \bot rules out 100% of partial matchings, since it contains no heavy pigeons to match in the first place.

What we would like to prove now is that for any derivation in small pseudo-width it holds that the derived clause cannot rule out any matching other than those already eliminated by the clauses used to derive it. This means that the fake axioms together need to rule out all partial matchings, but since every fake axiom contributes only an exponentially small fraction they are too few to achieve this. Hence, it is not possible to derive contradiction in small pseudo-width, which completes part 3 of our proof outline.
There is one problem, however: the last claim above is not true, and so what is outlined above is only a fake proof. While we have to defer the discussion of what the full proof actually looks like in detail, we conclude this section by attempting to hint at a couple of technical issues and how to resolve them.

Firstly, it does not hold that a derived clause C eliminates only those matchings that are also forbidden by one of the predecessor clauses used to derive C. The issue is that a pigeon i that is heavy in both predecessors might cease to be heavy in C—for instance, if C was derived by a resolution step over a variable $x_{i,j}$. If this is so, then we would need to show that any matching of the heavy pigeons in C can be extended to match also pigeon i to any of its neighbouring holes without satisfying both predecessor clauses. But this will not be true, because a non-heavy pigeon can still have some variable $x_{i,j}$ occurring in both predecessors. The solution to this, introduced in [27], is to do a “lossy counting” of matchings by associating each partial matching with a linear subspace of some suitable vector space, and then to consider the span of all matchings ruled out by C. When we accumulate a “large enough” number of matchings for a pigeon i, then the whole subspace associated to i is spanned and we can stop counting.

But this leads to a second problem: when studying matchings of the heavy pigeons in C we might already have assigned pigeons i'_1, \ldots, i'_w that occupy holes where pigeon i might want to fly. For standard PHP formulas over complete bipartite graphs this is not a problem, since at least $n - w$ holes are still available and this number is “large enough” in the sense described above. But for a sparse graph it will typically be the case that $w \gg \Delta$, and so it might well be the case that pigeons i'_1, \ldots, i'_w are already occupying all the Δ holes available for pigeon i according to G. Although it is perhaps hard to see from our (admittedly somewhat informal) discussion, this turns out to be a very serious problem, and indeed it is one of the main technical challenges we need to overcome.

To address this problem we consider not only the heavy pigeons in C, but also any other pigeons in G that risk becoming far too constrained when the heavy pigeons of C are matched. Inspired by [4, 3], we define the closure to be a superset S of the heavy pigeons such that when S and the neighbouring holes of S are removed it holds that the residual graph is still guaranteed to be a good expander. Provided that G is an excellent expander to begin with, and that the number of heavy pigeons in C is not too large, it can then be shown that an analogue of the original argument outlined above goes through.

1.4 Outline of This Paper

We review the necessary preliminaries in Section 2 and introduce two crucial technical tools in Section 3. The lower bounds for weak graph FPHP formulas are then presented in Section 4, after which the perfect matching lower bounds follow in Section 5. We conclude with a discussion of questions for future research in Section 6. We refer to the full-length version of this paper for any details missing in this extended abstract.

2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its negation $\neg x$ (a negative literal). A clause $C = \ell_1 \lor \cdots \lor \ell_w$ is a disjunction of literals. We write \perp to denote the empty clause without any literals. A CNF formula $F = C_1 \land \cdots \land C_m$ is a conjunction of clauses. We think of clauses and CNF formulas as sets: order is irrelevant and there are no repetitions. We let $\text{Vars}(F)$ denote the set of variables of F.
A resolution refutation π of an unsatisfiable CNF formula F, or resolution proof for (the unsatisfiability of) F, is an ordered sequence of clauses $\pi = (D_1, \ldots, D_L)$ such that $D_L = \bot$ and for each $i \in [L]$ either D_i is a clause in F (an axiom) or there exist $j < i$ and $k < i$ such that D_i is derived from D_j and D_k by the resolution rule
\[
B \lor x \quad C \lor \bar{x} \quad \frac{B \lor C}{\bot}
\] (2)
We refer to $B \lor C$ as the resolvent of $B \lor x$ and $C \lor \bar{x}$ over x, and to x as the resolved variable.

For technical reasons it is sometimes convenient to also allow clauses to be derived by the weakening rule
\[
\frac{C}{D} \quad [C \subseteq D]
\] (3)
(and for two clauses $C \subseteq D$ we will sometimes refer to C as a strengthening of D).

The length $L(\pi)$ of a refutation $\pi = (D_1, \ldots, D_L)$ is L. The length of refuting F is $\min_{\pi : F \vdash \bot} \{L(\pi)\}$, where the minimum is taken over all resolution refutations π of F. It is easy to show that removing the weakening rule (3) does not increase the refutation length.

A partial assignment or a restriction on a formula F is a partial function $\rho : \text{Vars}(F) \to \{0,1\}$. The clause C restricted by ρ, denoted $C|\rho$, is the trivial 1-clause if any of the literals in C is satisfied by ρ and otherwise it is C with all falsified literals removed. We extend this definition to CNF formulas in the obvious way by taking unions. For a variable $x \in \text{Vars}(F)$ we write $\rho(x) = 1$ if $x \notin \text{dom}(\rho)$, i.e., if ρ does not assign a value to x.

We write $G = (V,E)$ to denote a graph with vertices V and edges E, where G is always undirected and without loops or multiple edges. Moreover, for bipartite graphs we write $G = (U \cup V, E)$, where edges in E have one endpoint in the left vertex set U and the other in the right vertex set V. A partial matching φ in G is a subset of edges that are vertex-disjoint. Let $V(\varphi) = \{v \mid \exists e \in \varphi : v \in e\}$ be the vertices of φ and for $v \in V(\varphi)$ denote by φ_v the unique vertex u such that $(u,v) \in \varphi$. A vertex v is covered by φ if $v \in V(\varphi)$. If φ is a partial matching in a bipartite graph $G = (U \cup V,E)$, we identify it with a partial mapping of U to V. When referring to the pigeonhole formula, this mapping will also be identified with an assignment ρ_φ to the variables defined by
\[
\rho_\varphi(x_{i,j}) = \begin{cases}
0 & \text{if } i \in \text{dom}(\varphi) \land \varphi(i) \neq j, \\
1 & \text{if } i \in \text{dom}(\varphi) \land \varphi(i) = j.
\end{cases}
\] (4)

Given a vertex $v \in V(G)$, we write $N_G(v)$ to denote the set of neighbours of v in the graph G and $\Delta_G(v) = |N_G(v)|$ to denote the degree of v. We extend this notion to sets and denote by $N_G(S) = \{v \mid \exists (u,v) \in E \text{ for } u \in S\}$ the neighbourhood of a set of vertices $S \subseteq V$. The boundary, or unique neighbourhood, $\partial_G(S) = \{v \in V \setminus S : |N_G(v) \cap S| = 1\}$ of a set of vertices $S \subseteq V$ contains all vertices in $V \setminus S$ that have a single neighbour in S. We will sometimes drop the subscript G when the graph is clear from context. We denote by $G \setminus U$ the subgraph of G induced by the vertex set $V \setminus U$.

A graph $G = (V,E)$ is an (r,Δ,c)-expander if all vertices $v \in V$ have degree at most Δ and for all sets $S \subseteq V$, $|S| \leq r$, it holds that $|N(S) \setminus S| \geq c \cdot |S|$. Similarly, $G = (V,E)$ is an (r,Δ,c)-boundary expander if all vertices $v \in V$ have degree at most Δ and for all sets $S \subseteq V$, $|S| \leq r$, it holds that $|\partial(S)| \geq c \cdot |S|$. For bipartite graphs, the degree and expansion requirements only apply to the left vertex set: $G = (U \cup V,E)$ is an (r,Δ,c)-bipartite expander if all vertices $u \in U$ have degree at most Δ and for all sets $S \subseteq U$, $|S| \leq r$, it holds that
\(|N(S)| \geq c \cdot |S| \), and an \((r, \Delta, c)\)-bipartite boundary expander if for all sets \(S \subseteq U \), \(|S| \leq r \), it holds that \(|\partial(S)| \geq c \cdot |S| \). For bipartite graphs we will only ever be interested in bipartite notions of expansions, and so which kind of expansion is meant will always be clear from context. A simple but useful observation is that

\[
|N(S) \setminus S| \leq |\partial(S)| + \frac{\Delta |S| - |\partial(S)|}{2} = \frac{\Delta |S| + |\partial(S)|}{2},
\]

since all non-unique neighbours in \(N(S) \setminus S \) have at least two incident edges. This implies that if a graph \(G \) is an \((r, \Delta, (1 - \xi)\Delta)\)-expander then it is also an \((r, \Delta, (1 - 2\xi)\Delta)\)-boundary expander.

We often denote random variables in boldface and write \(X \sim D \) to denote that \(X \) is sampled from the distribution \(D \).

For \(n, m, \Delta \in \mathbb{N} \), we denote by \(\mathcal{G}(m, n, \Delta) \) the distribution over bipartite graphs with disjoint vertex sets \(U = \{u_1, \ldots, u_m\} \) and \(V = \{v_1, \ldots, v_n\} \) where the neighbourhood of a vertex \(u \in U \) is chosen by sampling a subset of size \(\Delta \) uniformly at random from \(V \). A property is said to hold asymptotically almost surely on \(\mathcal{G}(f(n), n, \Delta) \) if it holds with probability that approaches 1 as \(n \) approaches infinity.

For the right parameters, a randomly sampled graph \(G \sim \mathcal{G}(m, n, \Delta) \) is asymptotically almost surely a good boundary expander as stated next.

Lemma 4. Let \(m, n \) and \(\Delta \) be large enough integers such that \(m > n \geq \Delta \). Let \(\xi, \chi \in \mathbb{R}^+ \) be such that \(\xi < 1/2 \), \(\xi \ln \chi \geq 2 \) and \(\xi \Delta \ln \chi \geq 4 \ln m \). Then for \(r = n/(\Delta \cdot \chi) \) and \(c = (1 - 2\xi)\Delta \) it holds asymptotically almost surely for a randomly sampled graph \(G \sim \mathcal{G}(m, n, \Delta) \) that \(G \) is an \((r, \Delta, c)\)-boundary expander.

We will also consider some parameter settings where randomly sampled graphs do not have strong enough expansion for our purposes, but where we can resort to explicit constructions as follows.

Theorem 5 ([18]). For all positive integers \(m, r \leq m \), \(\xi > 0 \), and all constant \(\nu > 0 \), there is an explicit \((r, \Delta, (1 - \xi)\Delta)\)-expander \(G = (U \cup V, E) \), with \(|U| = m \), \(|V| = n \), \(\Delta = O\left(\left(\log m/\log r\right) / \xi^{1+1/\nu}\right) \) and \(n \leq \Delta^2 \cdot r^{1+\nu} \).

Corollary 6. Let \(\kappa, \varepsilon, \nu \) be positive constants, \(\kappa < \frac{1}{2} \), and let \(n \) be a large enough integer. Then there is an explicit graph \(G = (U \cup V, E) \), with \(|U| = m = 2^\log n\kappa\) and \(|V| \leq n \), that is an \((n^{1+1/\nu} - \frac{\kappa}{\varepsilon}, (1 - 2\xi)\Delta)\)-boundary expander for \(\xi = \frac{\varepsilon \log n}{\log m} \) and \(\Delta = O(\log^{2(1+1/\nu)} m) \).

3 Two Key Technical Tools

In this section we review two crucial technical ingredients of the resolution lower bound proofs.

3.1 Pigeon Filtering

The following lemma is a generalization of [27, Lemma 6]. The difference is that we have an additional parameter \(\alpha \) (which is implicitly fixed to \(\alpha = 2 \) in [27]) that allows us to get a better upper bound on the numbers \(r_i \). This turns out to be crucial for us – we discuss this in more detail in Section 4.
Lemma 7 (Filter lemma). Let \(m, L \in \mathbb{N}^+ \) and suppose that \(w_0, \alpha \in [m] \) are such that \(w_0 \gg L \) and \(w_0 \geq \alpha^2 \geq 4 \). Further, let \(\vec{r}(1), \ldots, \vec{r}(L) \) be integer vectors, each of the form \(\vec{r}(\ell) = (r_1(\ell), \ldots, r_m(\ell)) \). Then there exists a vector \(\vec{r} = (r_1, \ldots, r_m) \) of positive integers \(r_i \leq \left\lfloor \frac{\log m}{\log \alpha} \right\rfloor - 1 \) such that for all \(\ell \in [L] \) at least one of the following holds:
1. \(|\{ i \in [m] : r_i(\ell) \leq r_i \}| \geq w_0 \)
2. \(|\{ i \in [m] : r_i(\ell) \leq r_i + 1 \}| \leq \mathcal{O}(\alpha \cdot w_0) \)

Proof sketch. We first define a weight function \(W(\vec{r}) \) for vectors \(\vec{r} = (r_1, \ldots, r_m) \) as
\[
W(\vec{r}) = \sum_{i \in [m]} \alpha^{-r_i}.
\]

In order to establish the lemma, it is sufficient to show that there exist constants \(\gamma \) and \(\gamma' \) and a vector \(r = (r_1, \ldots, r_m) \) such that for all \(\ell \in [L] \) the implications
\[
W(\vec{r}(\ell)) \geq \frac{\gamma w_0}{\alpha} \implies |\{ i \in [m] | r_i(\ell) \leq r_i \}| \geq w_0 \quad (7a)
\]
\[
W(\vec{r}(\ell)) \leq \frac{\gamma' w_0}{\alpha} \implies |\{ i \in [m] | r_i(\ell) \leq r_i + 1 \}| \leq \gamma \alpha w_0 \quad (7b)
\]
hold. Let \(t = \left\lfloor \frac{\log m}{\log \alpha} \right\rfloor - 1 \) and let \(\mu \) be a probability distribution on \([t]\) given by \(\Pr[r = i] = \beta \cdot \alpha^{-i} \) for all \(i \in [t] \), where \(\beta = \frac{\alpha - 1}{\alpha - \frac{1}{\alpha}} \). Let us write \(\mathcal{F} = (r_1, \ldots, r_m) \) to denote a random vector with coordinates sampled independently according to \(\mu \). We claim that for every \(\ell \in [L] \) the implications (7a) and (7b) are true asymptotically almost surely. The proof of this fact follows by applying Chernoff bounds as in [27]. A union bound argument over all vectors in \(\{ \vec{r}(\ell) : \ell \in [L] \} \) for both cases shows that for \(\gamma' \geq 13 \) and \(\gamma \geq 5\gamma' \) there exists a choice of \(\vec{r} = (r_1, \ldots, r_m) \) such that both implications (7a) and (7b) hold.

3.2 Graph Closure

A key concept in our work will be that of a closure of a vertex set, which seems to have originated in [4, 3]. Intuitively, for an expander graph \(G \), the closure of \(T \subseteq V(G) \) is a suitably small set \(S \) that contains \(T \) such that \(G \setminus S \) is an expander. In order to have a definition that makes sense for both expanders and bipartite expanders, we define \(\text{Vexp}(G) \) to be the set of vertices of \(G \) that expand, that is, if \(G = (V, E) \) is an expander then \(\text{Vexp}(G) = V \), and if \(G = (U \cup V, E) \) is a bipartite expander then \(\text{Vexp}(G) = U \).

Definition 8 (Closure). For an expander graph \(G \) and vertex sets \(S \subseteq \text{Vexp}(G) \) and \(U \subseteq V(G) \), we say that the set \(S \) is \((U, r, \nu)\)-contained if \(|S| \leq r \) and \(|\partial(S) \setminus U| < \nu \cdot |S| \).

For any expander graph \(G \) and any set \(T \subseteq \text{Vexp}(G) \) of size \(|T| \leq r \), we will let \(\text{closure}_{r,\nu}(T) \) denote an arbitrary but fixed maximal set such that \(T \subseteq \text{closure}_{r,\nu}(T) \subseteq \text{Vexp}(G) \) and \(\text{closure}_{r,\nu}(T) \) is \((N(T), r, \nu)\)-contained.

Note that the closure of any set \(T \) of size \(|T| \leq r \) as defined above does indeed exist, since \(T \) itself is \((N(T), r, \nu)\)-contained.

Lemma 9. Suppose that \(G \) is an \((r, \Delta, c)\)-boundary expander and that \(T \subseteq \text{Vexp}(G) \) has size \(|T| \leq k \leq r \). Then \(|\text{closure}_{r,\nu}(T)| < \frac{k \Delta}{\nu \cdot \text{exp}} \).

Proof. By definition we have that \(|\partial(\text{closure}_{r,\nu}(T)) \setminus N(T)| < \nu \cdot |\text{closure}_{r,\nu}(T)| \). Furthermore, since \(|\text{closure}_{r,\nu}(T)| \leq r \) by definition, we can use the expansion property of the graph to derive the inequality \(|\partial(\text{closure}_{r,\nu}(T)) \setminus N(T)| \geq |\partial(\text{closure}_{r,\nu}(T)) \setminus N(T)| \geq c \cdot |\text{closure}_{r,\nu}(T)| - k \Delta \). Note that we also use the fact that the neighbourhood of \(T \) is of size at most \(k \Delta \). The conclusion follows by combining both statements.
Suppose G is an excellent boundary expander and that $T \subseteq V_{\text{exp}}(G)$ is not too large. Then Lemma 9 shows that the closure of T is not much larger. And if the closure is not too large, then after removing the closure and its neighbourhood from the graph we are still left with a decent expander, a fact which will play a key role in the technical arguments in later sections. The following lemma makes this intuition precise.

Lemma 10. For G an (r, Δ, c)-boundary expander, let $T \subseteq V_{\text{exp}}(G)$ be such that $|T| \leq r$ and $|\text{closure}_{r,\nu}(T)| \leq r/2$, let $G' = G \setminus (\text{closure}_{r,\nu}(T) \cup N(\text{closure}_{r,\nu}(T)))$ and $V_{\text{exp}}(G') = V_{\text{exp}}(G) \cap V(G')$. Then any set $S \subseteq V_{\text{exp}}(G')$ of size $|S| \leq r/2$ satisfies $|\partial_{G'}(S)| \geq \nu|S|$.

Proof. Suppose the set $S \subseteq V_{\text{exp}}(G')$ is of size $|S| \leq r/2$ and does not satisfy $|\partial_{G'}(S)| \geq \nu|S|$. Since $\text{closure}_{r,\nu}(T)$ is also of size at most $r/2$, we have that the set $(\text{closure}_{r,\nu}(T) \cup S)$ is $(N(T), r, \nu)$-contained in G. But this contradicts the maximality of $\text{closure}_{r,\nu}(T)$. □

4 Lower Bounds for Weak Graph FPHP Formulas

We now proceed to establish lower bounds on the length of resolution refutations of functional pigeonhole principle formulas defined over bipartite graphs. We write $G = (V_P \cup V_H, E)$ to denote the graph over which the formulas are defined and M to denote the set of partial matchings on G (also viewed as partial mappings of V_P to V_H). Let us start by making more precise some of the technical notions discussed in the introduction (which were originally defined in [25]).

For a clause C and a pigeon i we denote the set of holes j with the property that C is satisfied if i is matched to j by

$$N_C(i) = \{j \in V_H \mid e = \{i, j\} \in E \text{ and } p_{(e)}(C) = 1\} \quad (8)$$

and we define the ith pigeon degree $\Delta_C(i)$ of C as $\Delta_C(i) = |N_C(i)|$. We think of a pigeon i with large $\Delta_C(i)$ as a pigeon on which the derivation has not made any significant progress up to the point of deriving C, since the clause rules out very few holes. The pigeons with high enough pigeon degree in a clause are the **heavy pigeons** of the clause as defined next.

Definition 11 (Pigeon weight, pseudo-width and (w_0, \vec{d})-axioms). Let C be a clause and let $\vec{d} = (d_1, \ldots, d_m)$ and $\vec{\delta} = (\delta_1, \ldots, \delta_m)$ be two vectors of positive integers such that \vec{d} is elementwise greater than $\vec{\delta}$. We say that pigeon i is \vec{d}-super-heavy for C if $\Delta_C(i) \geq d_i$, and that pigeon i is $(\vec{d}, \vec{\delta})$-heavy for C if $\Delta_C(i) \geq d_i - \delta_i$. When \vec{d} and $\vec{\delta}$ are understood from context, which is most often the case, we omit the parameters and just refer to super-heavy and heavy pigeons. Pigeons that are not heavy are referred to as light pigeons. The set of pigeons that are super-heavy for C is denoted by

$$P_\vec{d}(C) = \{i \in [m] \mid \Delta_C(i) \geq d_i\}$$

and the set of pigeons that are heavy for C is denoted by

$$P_{\vec{d},\vec{\delta}}(C) = \{i \in [m] \mid \Delta_C(i) \geq d_i - \delta_i\}.$$

The pseudo-width of C is the number of heavy pigeons in C and the pseudo-width of a resolution refutation π, denoted by $w_{\vec{d},\vec{\delta}}(\pi)$, is $\max_{C \in \pi} w_{\vec{d},\vec{\delta}}(C)$. Finally, we will refer to clauses C with precisely w_0 super-heavy pigeons, i.e., such that $|P_\vec{d}(C)| = w_0$, as (w_0, \vec{d})-axioms.
Note that according to Definition 11 super-heavy pigeons are also heavy. Making the connection back to the introduction, the “fake axioms” mentioned there are nothing other than \((w_0, \vec{d})\)-axioms.

Now that we have all the notions needed, let us give a detailed proof outline. Given a short resolution refutation \(\pi\) of the formula \(\text{FPHP}(G)\), we use the Filter lemma (Lemma 7) to get a filter vector \(\vec{d} = (d_1, \ldots, d_m)\) such that each clause either has many super-heavy pigeons or there are not too many heavy pigeons (for an appropriately chosen vector \(\vec{d}\)). Clearly, clauses that fall into the second case of the filter lemma have bounded pseudo-width. On the other hand, clauses in the first case may have very large pseudo-width. In order to obtain a proof of low pseudo-width, these clauses are strengthened to \((w_0, \vec{d})\)-axioms and added to a special set \(\mathcal{A}\). This then gives a refutation \(\pi'\) that refutes the formula \(\text{FPHP}(G) \cup \mathcal{A}\) in bounded pseudo-width. The following lemma summarizes the upper bound on pseudo-width that we obtain.

Lemma 12. Let \(G = (V_P \cup V_H, E)\) be a bipartite graph with \(|V_P| = m\) and \(|V_H| = n\); let \(\pi\) be a resolution refutation of \(\text{FPHP}(G)\); let \(w_0, \alpha \in [m]\) be such that \(w_0 > \log L(\pi)\) and \(w_0 \geq \alpha^2 \geq 4\), and let \(\vec{d} = (\delta_1, \ldots, \delta_m)\) be defined by \(\delta_i = \frac{\Delta_G(i) \log \alpha}{\log m}\). Then there exists an integer vector \(\vec{d} = (d_1, \ldots, d_m)\), with \(\delta_i < d_i \leq \Delta_G(i)\) for all \(i \in V_P\), a set of \((w_0, \vec{d})\)-axioms \(\mathcal{A}\) with \(|\mathcal{A}| \leq L(\pi)\), and a resolution refutation \(\pi'\) of \(\text{FPHP}(G) \cup \mathcal{A}\) such that \(w_{\vec{d}, \vec{\delta}}(\pi') = O(\alpha \cdot w_0)\).

As mentioned above, this upper bound is a straightforward application of Lemma 7. We defer the formal proof to a later point in this section. What we will need from Lemma 12 is that a resolution refutation of \(\text{FPHP}(G)\) in length less than \(2^w_0\) can be transformed into a refutation of \(\text{FPHP}(G) \cup \mathcal{A}\) in pseudo-width at most \(O(\alpha \cdot w_0)\).

The second step in the proof is to show that any resolution refutation \(\pi\) of \(\text{FPHP}(G) \cup \mathcal{A}\) requires large pseudo-width. The high-level idea is to define a progress measure on clauses \(C \in \pi\) by counting the number of matchings on \(P_{\vec{d}, \vec{\delta}}(C)\) that do not satisfy \(C\). We then show that in order to increase this progress measure we need large pseudo-width. The following lemma states the pseudo-width lower bound.

Lemma 13. Let \(\xi \leq 1/4\) and \(m, n, r, \Delta \in \mathbb{N}\); let \(G = (V_P \cup V_H, E)\) with \(|V_P| = m\) and \(|V_H| = n\) be an \((r, \Delta, (1 - 2\xi)\Delta)\)-boundary expander, and let \(\vec{d} = (\delta_1, \ldots, \delta_m)\) be defined by \(\delta_i = 4\Delta_G(i)\xi\). Suppose that \(d = (d_1, \ldots, d_m)\) is an integer vector such that \(\delta_i < d_i \leq \Delta_G(i)\) for all \(i \in V_P\). Let \(w_0\) be an arbitrary parameter and \(\mathcal{A}\) be an arbitrary set of \((w_0, \vec{d})\)-axioms with \(|\mathcal{A}| \leq (1 + \xi)^m\). Then every resolution refutation \(\pi\) of \(\text{FPHP}(G) \cup \mathcal{A}\) must satisfy \(w_{\vec{d}, \vec{\delta}}(\pi) \geq r\xi/4\).

In one sentence, the lemma states that if the set of “fake axioms” \(\mathcal{A}\) is not too large, then resolution requires large pseudo-width to refute \(\text{FPHP}(G) \cup \mathcal{A}\). Note that this lemma holds for any filter vector and not just for the one obtained from Lemma 12.

In order to prove Lemma 13, we wish to define a progress measure on clauses that indicates how close the derivation is to refuting the formula (i.e., it should be small for axiom clauses but large for contradiction). A first attempt would be to define the progress of a clause \(C\) as the number of ruled-out matchings (i.e., matchings that do not satisfy \(C\)) on the pigeons mentioned by \(C\). This definition does not quite work, but we can refine it by counting matchings less carefully. Namely, if for a pigeon \(i\) there are more than \(\Delta_G(i) - d_i + \delta_i/4\) holes to which it can be mapped without satisfying \(C\), then we think of \(C\) as ruling out all holes for this pigeon. Since the pigeon degree of a light pigeon \(i\) is at most \(d_i - \delta_i\), such a pigeon will certainly have at least \(\Delta_G(i) - d_i + \delta_i \geq \Delta_G(i) - d_i + \delta_i/4\) holes to which it can be mapped, and the “lossy counting” will ensure that all holes are considered as ruled out.
We realize this “lossy counting” through a linear space \(\Lambda \), in which each partial matching \(\varphi \) is associated with a subspace \(\lambda(\varphi) \). Roughly speaking, the progress \(\lambda(C) \) of a clause \(C \) is then defined to be the span of all partial matchings that are ruled out by \(C \). We design the association between matchings and subspaces so that the contradictory empty clause \(\bot \) has \(\lambda(\bot) = \Lambda \) but so that the span of all the axioms \(\text{span}\{\{\lambda(A) \mid A \in \text{FPHP}(G) \cup A\} \} \) is a proper subspace of \(\Lambda \). This implies that in a refutation \(\pi \) of \(\text{FPHP}(G) \cup A \) there must exist a resolution step deriving a clause \(C \) from clauses \(C_0 \) and \(C_1 \) such that the linear space of the resolvent \(\lambda(C) \) is not contained in \(\text{span}(\lambda(C_0), \lambda(C_1)) \). But the main technical lemma of this section (Lemma 20) says that for any derivation in low pseudo-width the linear space of the resolvent is contained in the span of the linear spaces of the clauses being resolved. Hence, in order for \(\pi \) to be a refutation it must contain a clause with large pseudo-width, and this establishes Lemma 13.

So far our argument follows that of Razborov very closely, but it turns out we cannot realize this proof idea if we only keep track of heavy and light pigeons. Let us attempt a proof of the claim in Lemma 20 that low-width resolution steps cannot increase the span to be a refutation it must contain a clause with large pseudo-width, the problem, though, is that \(\varphi \) may send all heavy pigeons to the neighbourhood of pigeon \(i \). In this scenario, there might be very few holes, or even no holes, to which \(i \) can be mapped when extending \(\varphi \), and even our lossy counting will not be able to pick up enough holes for the argument to go through. We resolve this problem by not only considering the heavy pigeons but a larger set of relevant pigeons including all pigeons \(i' \) that can become overly constrained when some matching on the heavy pigeons shrinks the neighbourhood of \(i' \) too much. Formally, the closure of the set of heavy pigeons, as defined in Definition 8, is the notion that we need.

4.1 Formal Statements of Graph FPHP Formula Lower Bounds

Deferring the proofs of all technical lemmas for now, let us state our lower bounds for graph FPHP formulas and see how they follow from Lemmas 12 and 13 above.

Theorem 14. Let \(m = |U| \) and \(n = |V| \) and suppose that \(G = (U \cup V, E) \) is an \((r, \Delta, (1 - \log \alpha / 2 \log m) \Delta)\)-boundary expander for \(\alpha \in [m] \) such that \(8 \leq \frac{\alpha^2}{\log \alpha} = \Omega\left(\frac{r \log^2 \alpha}{\alpha \log^2 m}\right) \). Then resolution requires length \(\exp \left(\Omega\left(\frac{r \log^2 \alpha}{\alpha \log^2 m}\right) \right) \) to refute \(\text{FPHP}(G) \).

Note that, on the one hand, the larger \(\alpha \) is, the more relaxed we can be with respect to the expansion requirements, and hence the set of formulas to which the lower bound applies becomes larger. On the other hand, the strength of the lower bound deteriorates with \(\alpha \). Hence, we need to choose \(\alpha \) carefully to find a good compromise between these two concerns.

Proof of Theorem 14. Let \(\xi = \frac{\log \alpha}{4 \log m} \) and let \(w_0 = \frac{\text{arc} \xi}{\alpha} \) for some small enough \(\xi_0 > 0 \). We note that the choice of parameters and the condition on \(\alpha \) ensure that \(4 \leq \alpha^2 \leq w_0 \). Furthermore, in terms of \(\xi \), the graph \(G \) is an \((r, \Delta, (1 - 2 \xi) \Delta)\)-boundary expander.

We proceed by contradiction. Suppose \(\pi \) is a resolution refutation with \(L(\pi) < 2^{e' w_0 \xi} \) for a small enough constant \(e' > 0 \). Applying Lemma 12 we get a set of \((w_0, \tilde{d})\)-axioms \(A \) with \(|A| \leq L(\pi) \) and a resolution refutation \(\pi' \) of \(\text{FPHP}(G) \cup A \) such that \(w_{d,\tilde{d}}(\pi') \leq K \omega w_0 \) for some large enough constant \(K \).
Note that \(|A| \leq L(\pi) < 2^{\epsilon/\omega_0} \leq (1 + \xi)^{\omega_0}\) for \(\epsilon' < 1/2\). Applying Lemma 13 to \(\pi'\) yields a pseudo-width lower bound of \(r\xi/4\). We conclude that
\[
r\xi/4 \leq w_{\tilde{G}, \tilde{\Delta}}(\pi') \leq K\omega_0 = \varepsilon_0 K r \xi.
\]
Choosing \(\varepsilon_0 < 1/4r\) yields a contradiction. ▶

The following corollary summarizes our claims for random graphs.

Corollary 15. Let \(m\) and \(n\) be positive integers and let \(\Delta : \mathbb{N}^+ \to \mathbb{N}^+\) and \(\varepsilon : \mathbb{N}^+ \to [0, 1]\) be any monotone functions of \(n\) such that \(n < m \leq n^{(\epsilon/16)^2 \log n}\) and \(n \geq \Delta \geq (16 \log m)^2/\varepsilon \log n\). Then asymptotically almost surely resolution requires length \(\exp(O(n^{-\epsilon}))\) to refute \(\text{FPHP}(G)\) for \(G \sim \mathcal{G}(m, n, \Delta)\).

Proof sketch. We first note that it is sufficient to prove the claim for \(m = n^{(\epsilon/16)^2 \log n}\) and \(\Delta = ((16 \log m)/\varepsilon \log n)^2\). By applying Lemma 4 for \(\chi = \alpha = n^\epsilon/4\) and \(\xi = 16 \log m/\varepsilon \log n\), we conclude that asymptotically almost surely, \(G \sim \mathcal{G}(m, n, \Delta)\) is an \((n^{1-\epsilon}/2, \Delta, (1 - 2\xi)\Delta)\)-boundary expander. Theorem 14 then gives a length lower bound of \(\exp(O(n^{-\epsilon}))\). ▶

The following two corollaries are simple consequences of Corollary 15, optimizing for different parameters. The first corollary gives the strongest lower bounds, while the second minimizes the degree.

Corollary 16. Let \(m, n\) be such that \(m \leq n^{o(\log n)}\). Then asymptotically almost surely resolution requires length \(\exp(O(n^{1-o(1)}))\) to refute \(\text{FPHP}(G)\) for \(G \sim \mathcal{G}(m, n, \log m)\).

Proof. Let \(m = n^{f(n)}\), where \(f(n) = o(\log n)\). Applying Corollary 15 for \(\varepsilon = 16\sqrt{\frac{f(n)}{\log n}} = o(1)\) we get the desired statement. ▶

Corollary 17 (Restatement of Theorem 3). Let \(k\) and \(n\) be positive integers and let \(m = n^k\) and \(\varepsilon \in \mathbb{R}^+\). Then asymptotically almost surely resolution requires length \(\exp(O(n^{1-\varepsilon}))\) to refute \(\text{FPHP}(G)\) for \(G \sim \mathcal{G}(m, n, (16k/\varepsilon)^2)\).

Proof. We appeal to Corollary 15 with \(\Delta = (16k/\varepsilon)^2\), \(m = n^k\) and \(\varepsilon\) constant. A short calculation shows that all conditions are met. ▶

Our final corollary shows that we can get meaningful lower bounds even for a weakly exponential number of pigeons. Unfortunately, the statement does not hold for random graphs.

Corollary 18. Let \(k < 3/2 - \sqrt{2}\) and \(\varepsilon > 0\) be constant and \(n\) be integer. Then there is a family of explicitly constructible graphs \(G\) with \(m = 2^{O(n^\varepsilon)}\) and left degree \(O(\log^{1/2} n\sqrt{m})\) such that resolution requires length \(\exp(O(n^{1-2\sqrt{2}-\sqrt{\log n}}))\) to refute \(\text{FPHP}(G)\).

Proof. Let \(G\) be the graph from Corollary 6 with \(\nu = \frac{2\sqrt{\pi}}{1-2\sqrt{2}}\). An appeal to Theorem 14 using the graph \(G\) yields the desired lower bound. ▶
4.2 A Pseudo-Width Upper Bound for Graph FPHP Formulas with Extra Axioms

Let us now prove Lemma 12. For this proof, let us identify V_T with $[m]$. For every clause C in the refutation π, let $\vec{r}(C) = (r_1(C), \ldots, r_m(C))$ be the vector where each coordinate is given by

$$r_i(C) = \left\lceil \frac{\Delta_C(i) - \Delta_C(\hat{i})}{\delta_i} \right\rceil + 1.$$ \hspace{1cm} (10)

We apply the filter lemma (Lemma 7) to the set of vectors $\{\vec{r}(C) \mid C \in \pi\}$. Denote by $\vec{r} = (r_1, \ldots, r_m)$ a vector as guaranteed to exist by Lemma 7. Let

$$d_i = \Delta_C(i) - [\delta_i r_i] + 1.$$ \hspace{1cm} (11)

A short calculation establishes that d_i is the smallest integer such that $\left\lceil \frac{\Delta_C(i) - d_i}{\delta_i} \right\rceil + 1 \leq r_i$.

Note that every pigeon $i \in [m]$ such that $r_i(C) \leq r_i$ also satisfies $\Delta_C(i) \geq d_i$, we can strengthen this clause to a (w_0, \vec{d})-axiom and add it to A.

To obtain a refutation π' that satisfies the conclusions of the lemma, we consider every clause $C \in \pi$ and either add a strengthening of C to the (w_0, \vec{d})-axiom set A or conclude that the pseudo-width of C is small enough that the clause can stay in π'. More concretely, we make a case distinction whether $\vec{r}(C)$ satisfies case 1 of Lemma 7 or only case 2. In one case C can be strengthened to a (w_0, \vec{d})-axiom, while in the other the pseudo-width of C is bounded:

1. C satisfies $\left|\{i \in [m] \mid r_i(C) \leq r_i\}\right| \geq w_0$: As every pigeon $i \in [m]$ with $r_i(C) \leq r_i$ also satisfies $\Delta_C(i) \geq d_i$, we can strengthen this clause to a (w_0, \vec{d})-axiom and add it to A.

 This reduces the pseudo-width of this clause to w_0.

2. C satisfies $\left|\{i \in [m] \mid r_i(C) \leq r_i + 1\}\right| \leq O(\alpha \cdot w_0)$: As every heavy pigeon always satisfies $r_i(C) \leq r_i + 1$, the pseudo-width of C is $O(\alpha \cdot w_0)$.

 This concludes the proof as $|\mathcal{A}| \leq L(\pi)$ and the pseudo-width of π' is $O(\alpha \cdot w_0)$ by construction.

4.3 A Pseudo-Width Lower Bound for Graph FPHP Formulas with Extra Axioms

We continue to the proof of Lemma 13. Using Definition 8, we define the set of relevant pigeons of a clause C as

$$\text{closure}(C) = \text{closure}_{r, (1-3\xi)\Delta}(P_{\vec{d}, \vec{\delta}}(C)),$$ \hspace{1cm} (12)

where $P_{\vec{d}, \vec{\delta}}(C)$ denotes the set of $(\vec{d}, \vec{\delta})$-heavy pigeons for C as defined in Definition 11. By definition, the closure of a set T contains T itself but is only defined if $|T| \leq r$. However, if $|P_{\vec{d}, \vec{\delta}}(C)| \geq r \geq r\xi/4$ then we already have the lower bound claimed in the lemma, and so we may assume that the closure is well defined for all clauses in the refutation π. This implies, in particular, that for every clause $C \in \pi$ we have $P_{\vec{d}, \vec{\delta}}(C) \subseteq \text{closure}(C)$.

Let us next construct the linear space Λ and describe how matchings are mapped into it. Fix a field \mathbb{F} of characteristic 0 and for each pigeon $i \in V_T$ let Λ_i be a linear space over \mathbb{F} of dimension $\Delta_C(i) - d_i + \delta_i/4$. Let Λ be the tensor product $\Lambda = \bigotimes_{i \in V_T} \Lambda_i$ and denote by $\lambda_j : V_H \rightarrow \Lambda_i$ a function with the property that any subset of holes $J \subseteq V_H$ of size at least $\dim(\Lambda)$ spans Λ_i. In other words, for J as above we have that $\Lambda_i = \text{span}(\lambda_j(j) : j \in J)$.

This is how we will realize the idea of “lossy counting.” For $J \subseteq V_H$ such that $|J| \leq \dim(\Lambda_i)$ we have exact counting $\text{dim(span}(\lambda(j) : j \in J))) = |J|$, but when $|J| > \dim(\Lambda_i)$ gets large enough we have $\text{dim(span}(\lambda(j) : j \in J) = \dim(\Lambda_i)$.

\hspace{1cm} CCC 2020
In order to map functions $V_P \mapsto V_H$ into Λ, we define $\lambda : V_H^{V_P} \mapsto \Lambda$ by $\lambda(j_1, \ldots, j_m) = \bigotimes_{i \in V_P} \lambda_i(j_i)$, where will we abuse notions slightly in that we identify a vector with the 1-dimensional space spanned by this vector. For a partial function $\varphi : V_P \mapsto V_H$, we let $\lambda(\varphi)$ be the span of all total extensions of φ (not necessarily matchings), or equivalently

$$\lambda(\varphi) = \bigotimes_{i \in \text{dom}(\varphi)} \lambda_i(\varphi_i) \otimes \bigotimes_{i \notin \text{dom}(\varphi)} \lambda_i .$$

Recall that M is the set of all partial matchings on the graph G and that we interchangeably think of partial matchings as partial functions $\varphi : V_P \mapsto V_H$ or as Boolean assignments ρ_φ as defined in (4). For each clause C, we are interested in the partial matchings $\varphi \in M$ with domain $\text{dom}(\varphi) = \text{closure}(C)$ such that ρ_φ does not satisfy C. We refer to the set of such matchings as the zero space of C and denote it by

$$Z(C) = \{ \varphi \in M \mid \text{dom}(\varphi) = \text{closure}(C) \land \rho_\varphi(C) \neq 1 \} .$$

We associate C with the linear space

$$\lambda(C) = \text{span}(\{ \lambda(\varphi) \mid \varphi \in Z(C) \}) .$$

Note that contradiction is mapped to Λ, i.e., $\lambda(\bot) = \Lambda$.

We assert that the span of the axioms $\text{span}(\{ \lambda(A) \mid A \in \text{FPHP}(G \cup A) \})$ is a proper subspace of Λ.

Lemma 19. If $|A| \leq (1 + \xi)^{\omega_0}$, then $\text{span}(\{ \lambda(A) \mid A \in \text{FPHP}(G \cup A) \}) \subsetneq \Lambda$.

Accepting this claim without proof for now, this implies that in π there is some resolution step deriving C from C_0 and C_1 where the subspace of the resolvent is not contained in the span of the subspaces of the premises, or in other words $\lambda(C) \not\subseteq \text{span}(\lambda(C_0), \lambda(C_1))$. Our next lemma, which is the heart of the argument, says that this cannot happen as long as the closures of the clauses are small.

Lemma 20. Let C be a clause derived from clauses C_0 and C_1. If it is the case that $\max(|\text{closure}(C_0)|, |\text{closure}(C_1)|, |\text{closure}(C)|) \leq r/4$, then $\lambda(C) \subseteq \text{span}(\lambda(C_0), \lambda(C_1))$.

Since contradiction cannot be derived while the closure is of size at most $r/4$, any refutation π must contain a clause C with $|\text{closure}(C)| > r/4$. But then Lemma 9 implies that C has pseudo-width at least $r\xi/4$, and Lemma 13 follows. All that remains for us is to establish Lemmas 19 and 20.

Proof of Lemma 19. We need to show that the axioms $\text{FPHP}(G) \cup A$ do not span all of Λ. We start with the axioms in $\text{FPHP}(G)$.

Let A be pigeon axiom P^i as in (1a) or a functionality axiom $F^i_{j,j'}$ as in (1c). Note that i is a heavy pigeon for A. Clearly, there are no pigeon-to-hole assignments for pigeon i that do not satisfy A. Thus there are no matchings on $\text{closure}(A)$ that do not satisfy A. We conclude that $\lambda(A) = \emptyset$. If instead A is a hole axiom $H^i_{j,j'}$ as in (1b), then we can observe that $\Delta_G(i) - 1 \geq d_i - \delta_i$ since $\delta_i = 4\xi \Delta_G(i) \geq 2\xi \Delta \geq 1$ (by boundary expansion). This implies that A has two heavy pigeons. Observe that there are no matchings on these two pigeons that do not satisfy A. Thus $Z(A) = \emptyset$ and we conclude that $\lambda(A) = \emptyset$.

Now consider the (w_0, \vec{d})-axioms in A. We wish to show that any $A \in A$ can only span a very small fraction of Λ. We can estimate the the number of dimensions $\lambda(A)$ spans by

$$\dim \lambda(A) \leq \prod_{i \notin P^i_2(A)} \dim \Lambda_i \cdot \prod_{i \in P^i_2(A)} (\Delta_G(i) - d_i) .$$

(16)
Hence the fraction of the space Λ that A may span is bounded by
\[
\frac{\dim \lambda(A)}{\dim \Lambda} \leq \prod_{i \in P_d(\mathcal{A})} \frac{\Delta_C(i) - d_i}{\Delta_C(i) - d_i + \delta_i/4} \leq (1 - \xi)\omega.
\] (17)
As $|A| \leq (1 + \xi)\omega$ we can conclude that not all of Λ is spanned by the axioms.

Proof of Lemma 20. For conciseness of notation, let us write $S_{01} = \text{closure}(C_0) \cup \text{closure}(C_1)$ and $S = \text{closure}(C)$. In order to establish the lemma, we need to show for all $\phi \in Z(C)$ that
\[
\lambda(\phi) \subseteq \text{span}(\lambda(C_0), \lambda(C_1)).
\] (18)
To comprehend the argument that will follow below, it might be helpful to refer to the illustration in Figure 1.

Denote by ϕ' the restriction of ϕ to the domain $S \cap S_{01}$ and note that C is not satisfied under $\rho_{\phi'}$. Also, observe that if a matching η extends a matching η', then $\lambda(\eta)$ is contained in $\lambda(\eta')$. This is so since for any pigeon $i \in \text{dom}(\eta) \setminus \text{dom}(\eta')$ we have from (13) that η' picks up the whole subspace Λ_i while η only gets a single vector. Thus, if we can show that $\lambda(\phi') \subseteq \text{span}(\lambda(C_0), \lambda(C_1))$, then we are done as ϕ extends ϕ' and hence $\lambda(\phi) \subseteq \lambda(\phi')$.

Let $\mathcal{D} = S_{01} \setminus S$ and denote by $\mathcal{M}_\mathcal{D}$ the set of matchings that extend ϕ' to the domain \mathcal{D} and do not satisfy C. Since each matching $\psi \in \mathcal{M}_\mathcal{D}$ fails to satisfy C, by the soundness of the resolution rule we have that it also fails to satisfy either C_0 or C_1. Assume without loss of generality that ψ does not satisfy C_0 and denote by ψ' the restriction of ψ to the domain of $\text{closure}(C_0)$. From (14) we see that $\psi' \in Z(C_0)$ and therefore $\lambda(\psi') \subseteq \lambda(\psi') \subseteq \lambda(C_0)$.

So far we have argued that for all $\psi \in \mathcal{M}_\mathcal{D}$ it holds that $\lambda(\psi) \subseteq \text{span}(\lambda(C_0), \lambda(C_1))$. Let $\lambda(\mathcal{M}_\mathcal{D}) = \text{span}(\lambda(\psi) \mid \psi \in \mathcal{M}_\mathcal{D})$. If we can show that the set of matchings $\mathcal{M}_\mathcal{D}$ is large enough for $\lambda(\mathcal{M}_\mathcal{D}) = \lambda(\phi')$ to hold, then the lemma follows. In other words, we want to show that $\lambda(\mathcal{M}_\mathcal{D})$ projected to $\Lambda_\mathcal{D} = \bigotimes_{i \in \mathcal{D}} \Lambda_i$ spans all of the space $\Lambda_\mathcal{D}$.

To argue this, note first that \mathcal{D} is completely outside the $\text{closure}(C)$. Furthermore, by assumption we have $|\text{closure}(C)| \leq r/4$ and $|\mathcal{D}| \leq |S_{01}| \leq r/2$. An application of Lemma 10 now tells us that
\[
|D_{\mathcal{D}}(\text{closure}(C) \cup \text{N(closure}(C))))| \geq (1 - 3\xi)\Delta|\mathcal{D}|.
\] (19)
By an averaging argument, there must exist a pigeon $i_1 \in D$ that has more than $(1 - 3\xi)\Delta$ unique neighbours in $\partial_{G[(\text{clause}(C) \cup N(\text{clause}(C)))]}(D)$. The same argument applied to $D \setminus \{i_1\}$ show that some pigeon i_2 has more than $(1 - 3\xi)\Delta$ unique neighbours on top of the neighbours reserved for pigeon i_1. Iterating this argument, we derive by induction that for each pigeon $i \in D$ we can find $(1 - 3\xi)\Delta$ distinct holes in $N(D)$. Since all pigeons in D are light in C, it follows that at most $d_i - \delta_i$ mappings of pigeon i can satisfy the clause C. Hence, there are at least

$$(1 - 3\xi)\Delta - (d_i - \delta_i) \geq (1 - 3\xi)\Delta_C(i) - d_i + 4\xi\Delta_C(i) \geq \Delta_C(i) - d_i + \delta_i/4$$ \hspace{1cm} (20)$$

many holes to which each pigeon in D can be sent, independently of all other pigeons in D, without satisfying C. As we have that $\dim(\Lambda_i) = \Delta_C(i) - d_i + \delta_i/4$, we conclude that $\lambda(M_D)$ projected to Λ_D spans the whole space. This concludes the proof of the lemma.

5 Lower Bounds for Perfect Matching Principle Formulas

In this section, we show that the perfect matching principle formulas defined over even highly unbalanced bipartite graphs require exponentially long resolution refutations if the graphs are expanding enough.

Just as in [28], our proof is by an indirect reduction to the FPHP lower bound, and therefore there is a significant overlap in concepts and notation with Section 4. However, since there are also quite a few subtle shifts in meaning, we restate all definitions in full below to make the exposition in this section self-contained and unambiguous.

We first review some useful notions from [25]. Let $G = (V, E)$ denote the graph over which the formulas are defined. For a clause C and a vertex $v \in V(G)$, let the clause-neighbourhood of v in C, denoted by $N_C(v)$, be the vertices $u \in V(G)$ with the property that C is satisfied if v is matched to u, that is,

$$N_C(v) = \{ u \in V \mid \exists e = \{u, v \} \in E \text{ and } \rho(e)(C) = 1 \} .$$ \hspace{1cm} (21)$$

For a set $V \subseteq V(G)$ let $N_C(V)$ be the union of the clause-neighbourhoods of the vertices in V, i.e., $N_C(V) = \bigcup_{v \in V} N_C(v)$ and let the vth vertex degree of C be

$$\Delta_C(v) = |N_C(v)| .$$ \hspace{1cm} (22)$$

We think of a vertex v with large degree $\Delta_C(v)$ as a vertex on which the derivation has not made any progress up to the point of deriving C, since the clause rules out very few neighbours. The vertices with high enough vertex degree in a clause are the heavy vertices of the clause as defined next.

Definition 21 (Vertex weight, pseudo-width and (w_0, \bar{d})-axioms). Let $\vec{d} = (d_1, \ldots, d_{m+n})$ and $\vec{\delta} = (\delta_1, \ldots, \delta_{m+n})$ be two vectors such that \vec{d} is elementwise greater than $\vec{\delta}$. We say that a vertex v is \vec{d}-super-heavy for C if $\Delta_C(v) \geq d_v$ and that vertex v is $(\vec{d}, \vec{\delta})$-heavy for C if $\Delta_C(v) \geq d_v - \delta_v$. When \vec{d} and $\vec{\delta}$ are understood from context we omit the parameters and just refer to super-heavy and heavy vertices. Vertices that are not heavy are referred to as light vertices. The set of vertices that are super-heavy for C is denoted by

$$V_{\vec{d}}(C) = \{ v \in V \mid \Delta_C(v) \geq d_v \}$$ \hspace{1cm} (23)$$

and the set of heavy vertices for C is denoted by

$$V_{\vec{d}, \vec{\delta}}(C) = \{ v \in V \mid \Delta_C(v) \geq d_v - \delta_v \} .$$ \hspace{1cm} (24)$$
The pseudo-width \(w_{\vec{d},\vec{\delta}}(C) = |V_{\vec{d},\vec{\delta}}(C)| \) of a clause \(C \) is the number of heavy vertices in it, and the pseudo-width of a resolution refutation \(\pi \) is \(w_{\vec{d},\vec{\delta}}(\pi) = \max_{C \in \pi} w_{\vec{d},\vec{\delta}}(C) \). We refer to clauses \(C \) with precisely \(w_0 \) super-heavy vertices as \((w_0, \vec{d}) \)-axioms.

To a large extent, the proof of the lower bounds for perfect matching formulas follows the general idea of the proof of Theorem 14: given a short refutation we first apply the filter lemma to obtain a refutation of small pseudo-width; we then prove that in small pseudo-width contradiction cannot be derived and can thus conclude that no short refutation exists. In more detail, given a short resolution refutation \(\pi \), we use the filter lemma (Lemma 7) to get a filter vector \(\vec{d} = (d_1, \ldots, d_{m+n}) \) such that each clause either has many super-heavy vertices or not too many heavy vertices (for an appropriately chosen vector \(\vec{\delta} \)). Clearly, clauses that fall into the second case of the filter lemma have bounded pseudo-width. Clauses in the first case, however, may have very large pseudo-width. In order to obtain a proof of low pseudo-width, these latter clauses are strengthened to \((w_0, \vec{d}) \)-axioms and added to a special set \(\mathcal{A} \). This then gives a refutation \(\pi' \) that refutes the formula \(PM(G) \cup \mathcal{A} \) in bounded pseudo-width as stated in the next lemma.

Lemma 22. Let \(G = (V_L \cup V_R, E) \) be a bipartite graph with \(|V_L| = m \) and \(|V_R| = n \); let \(\pi \) be a resolution refutation of \(PM(G) \); let \(w_0, \alpha \in [m+n] \) be such that \(w_0 > \log L(\pi) \) and \(w_0 \geq \alpha^2 \geq 4 \), and let \(\vec{\delta} = (\delta_1, \ldots, \delta_{m+n}) \) be defined by \(\delta_v = \Delta_G(v) \log n \log(m+n) \) for \(v \in V(G) \). Then there exists an integer vector \(\vec{d} = (d_1, \ldots, d_{m+n}), \) with \(\delta_v < d_v \leq \Delta_G(v) \) for all \(v \in V(G) \), a set of \((w_0, \vec{d}) \)-axioms \(\mathcal{A} \) with \(|\mathcal{A}| \leq L(\pi) \), and a resolution refutation \(\pi' \) of \(PM(G) \cup \mathcal{A} \) such that \(L(\pi') \leq L(\pi) \) and \(w_{\vec{d},\vec{\delta}}(\pi') \leq O(\alpha \cdot w_0) \).

The proof of the above lemma is omitted as it is syntactically equivalent to the proof of Lemma 12. Until this point, we have almost mimicked the proof of Theorem 14. The main differences will appear in the proof of the counterpart to Lemma 22, which states a pseudo-width lower bound.

Lemma 23. Assume for \(\xi \leq 1/64 \) and \(m, n, r, \Delta \in \mathbb{N} \) that \(G = (V_L \cup V_R, E) \) is an \((r, \Delta, (1-2\xi) \Delta)\)-boundary expander with \(|V_L| = m, |V_R| = n, \Delta \geq \log m/\xi^2 \), and \(\min \{ \Delta_G(v) : v \in V_R \} \geq r/\xi \). Let \(\vec{\delta} = (\delta_v \mid v \in V(G)) \) be defined by \(\delta_v = 64 \Delta_G(v) \xi \) and suppose that \(\vec{d} = (d_v \mid v \in V(G)) \) is an integer vector such that \(\delta_v < d_v \leq \Delta_G(v) \) for all \(v \in V(G) \). Fix \(w_0 \) such that \(64 \leq w_0 \leq r \xi - \log n \) and let \(\mathcal{A} \) be an arbitrary set of \((w_0, \vec{d}) \)-axioms with \(|\mathcal{A}| \leq (1+16\xi)^{w_0/8} \). Then every resolution refutation \(\pi \) of \(PM(G) \cup \mathcal{A} \) has either length \(L(\pi) \geq 2^{w_0/32} \) or pseudo-width \(w_{\vec{d},\vec{\delta}}(\pi) \geq r \xi \).

The proof of the above lemma is based on a sort of reduction to the FPHP\((G)\) case. The idea, due to Razborov [28], is to first pick a partition of the vertices of \(G \) that looks random to every clause in the refutation and then simulate the FPHP\((G)\) lower bound on this partition. In our setting, however, this process gets quite involved. Already implementing the partition idea of Razborov is non-trivial: for a fixed clause \(C \) some vertices that are light may be super-heavy with respect to the partition, and we do not have an upper bound on the pseudo-width any longer. The insight needed to solve this issue is to show that by expansion there are not too many such vertices per clause, and then adapt the closure definition to take these vertices into account.

Another issue we run into is that the span argument from Section 4 cannot be applied to all the vertices in the graph. Instead, for the vertices in \(V_R \), we need to resort to the span argument from [27]. Moreover, vertices in the neighbourhood of \(D \) (as defined in the proof of Lemma 20) may already be matched and we are hence unable to attain enough
matchings. Our solution is to consider a “lazy” edge removal procedure from the original matching, which with a careful analysis can be shown to circumvent the problem. We refer to the full-length version of this paper for the proof of Lemma 23.

5.1 Formal Statements of Perfect Matching Formula Lower Bounds

Let us state the lower bounds we obtain for the perfect matching formulas.

Theorem 24. Let $G = (U \cup V, E)$ be a bipartite graph with $m = |U|$ and $n = |V|$. Suppose that G is an $(r, \Delta, (1 - 2\xi)\Delta)$-boundary expander for $\Delta \geq \frac{\log(m+n)}{2}$ and $\xi = \frac{\log \alpha}{64 \log(m+n)}$ where $\alpha \geq 2$ and $\alpha^3 = 0\left(\frac{r}{\log(m+n)}\right)$, which furthermore satisfies the degree requirement $\min\{\Delta_G(v) : v \in V\} \geq r/\xi$. Then resolution requires length $\exp\left(\Omega\left(\frac{r\log^2 \alpha}{\log^2(m+n)}\right)\right)$ to refute the perfect matching formula $PM(G)$ defined over G.

We remark that this theorem also holds if we replace the minimum degree constraint of V with an expansion guarantee from U to V. We state the theorem in the above form as we want to apply it to the graphs from [18] for which we have no expansion guarantee from V to U.

Proof of Theorem 24. Let $w_0 = \frac{\varepsilon_0 \xi}{\alpha}$, for some small enough $\varepsilon_0 > 0$. Suppose for the sake of contradiction that π is a resolution refutation of $PM(G)$ such that $L(\pi) < (1 + 16\xi)^{w_0/8}$. Since $w_0 > \log L(\pi)$, by Lemma 22 we have that there exists an integer vector $d = (d_1, \ldots, d_{m+n})$, with $d_\ell < \Delta_G(v)$, a set of (w_0, d)-axioms A with $|A| \leq L(\pi) < (1 + 16\xi)^{w_0/8}$, and a resolution refutation π' of $PM(G) \cup A$ such that $L(\pi') \leq L(\pi)$ and $w_{\pi', G}(\pi') \leq Knw_0$ for some large enough constant K. Since $L(\pi') < (1 + 16\xi)^{w_0/8} \leq 2^{w_0/32}$, by Lemma 23, we have that $w_{\pi', G}(\pi'') \geq r\varepsilon_0 \geq \alpha w_0/\varepsilon_0$. Choosing $\varepsilon_0 < 1/K$, we get a contradiction and, thus, $L(\pi) \geq (1 + 16\xi)^{w_0/8} = \exp\left(\Omega\left(\frac{\xi^2}{\alpha}\right)\right)$.

As in Section 4, we have a general statement for random graphs.

Corollary 25. Let m and n be positive integers, let $\Delta : \mathbb{N}^+ \to \mathbb{N}^+$ and $\varepsilon : \mathbb{N}^+ \to [0, 1]$ be any monotone functions of n such that $n^3 < m \leq n^{(\varepsilon/128)^2} \log n$ and $n \geq \Delta \geq \log(m+n)\left(\frac{128 \log(m+n)}{\varepsilon \log n}\right)^2$. Then asymptotically almost surely resolution requires length $\exp(\Omega(n^{1-\varepsilon}))$ to refute $PM(G)$ for $G \sim G(m, n, \Delta)$.

Proof sketch. It suffices to prove the claim for $m \leq n^{(\varepsilon/128)^2} \log n$ and $\Delta = \log(m+n) \cdot \left((128 \log(m+n))/\varepsilon \log n\right)^2$. By applying Lemma 4 for $\chi = \alpha = n^{\varepsilon/4}$ and $\xi = \frac{\log \alpha}{64 \log m}$, we conclude that asymptotically almost surely, $G \sim G(m, n, \Delta)$ is an $(n^{1-\varepsilon/2}, \Delta, (1 - 2\varepsilon)\Delta)$-boundary expander. Furthermore, by the Chernoff inequality asymptotically almost surely all right vertices have degree at least $n - \frac{64 \log(m+n)}{\varepsilon \log n}$. Thus, Theorem 24 gives a length lower bound of $\exp(\Omega(n^{1-\varepsilon}))$ as claimed.

The following corollary is a simple consequence of Corollary 25, optimizing for the strongest lower bounds.

Corollary 26 (Restatement of Theorem 1). Let m, n be such that $m \leq n^{o(\log n)}$. Then asymptotically almost surely resolution requires length $\exp(\Omega(n^{1-o(1)}))$ to refute $PM(G)$ for $G \sim G(m, n, 8 \log^2 m)$.
Proof. Let \(m = n^{f(n)} \), where \(f(n) = o(\log n) \). Applying Corollary 25 for \(\varepsilon = 128 \sqrt{\frac{f(n)}{\log n}} = o(1) \), we get the desired statement.

Our final corollary shows that we even get meaningful lower bounds for highly unbalanced bipartite graphs. As was the case for \(\text{FPHP}(G) \), the required expansion is too strong to hold for random graphs with such large imbalance, but does hold for explicitly constructed graphs from [18].

\[\text{Corollary 27 (Restatement of Theorem 2).} \] Let \(\kappa < \frac{3}{2} - \sqrt{2} \) and \(\varepsilon > 0 \) be constants, and let \(n \) be an integer. Then there is a family of (explicitly constructible) graphs \(G \) with \(m = 2^{\Omega(n^{\varepsilon})} \) and left degree \(O(\log \frac{1}{\sqrt{\kappa}}(m)) \), such that resolution requires length \(\exp(\Omega(n^{1-2\sqrt{\kappa}(2-\sqrt{\kappa})-\varepsilon})) \) to refute \(\text{PM}(G) \).

Proof. Let \(G \) be the graph from Corollary 6 with \(\nu = \frac{2\sqrt{\kappa}}{1-2\sqrt{\kappa}} \). In order to apply Theorem 24 we need to satisfy the minimum right degree constraint. A simple way of doing this is by adding \(n^2 \) edges to \(G \) such that each vertex on the right has exactly \(n \) incident edges added while each vertex on the left has at most one incident edge added. This will leave us with a graph which has large enough right degree while each left degree increased by at most one. The additional edges may reduce the boundary expansion a bit, but a short calculation shows that by choosing \(\xi = \frac{\log n}{128 \log (m+n)} \) in Corollary 6, we can still guarantee the needed boundary expansion for Theorem 24. The corollary bound follows.

\[\text{CCC 2020} \]

6 Concluding Remarks

In this work, we extend the pseudo-width method developed by Razborov [27, 28] for proving lower bounds on severely overconstrained CNF formulas in resolution. In particular, we establish that pigeonhole principle formulas and perfect matching formulas over highly unbalanced bipartite graphs remain exponentially hard for resolution even when these graphs are sparse. This resolves an open problem in [28].

The main technical difference in our work compared to [27, 28] goes right to the heart of the proof, where one wants to argue that resolution in small pseudo-width cannot make progress towards a derivation of contradiction. Here Razborov uses the global symmetry properties of the formula, whereas we resort to a local argument based on graph expansion. This argument needs to be carefully combined with a graph closure operation as in [4, 3] to ensure that the residual graph always remains expanding as matched pigeons and their neighbouring holes are removed. It is this change of perspective that allows us to prove lower bounds for sparse bipartite graphs with the size \(m \) of the left-hand side (i.e., the number of pigeons) varying all the way from linear to exponential in the size \(n \) of the right-hand side (i.e., the number of pigeonholes), thus covering the full range between [8] on the one hand and [23, 27, 28] on the other.

One shortcoming of our approach is that the sparse expander graphs are required to have very good expansion – for graphs of left degree \(\Delta \), the size of the set of unique neighbours of any not too large left vertex set has to scale like \((1 - o(1))\Delta\). We would like to prove that graph PHP formulas are hard also for graphs with constant expansion \((1 - \varepsilon)\Delta\) for some \(\varepsilon > 0 \), but there appear to be fundamental barriers to extending our lower bound proof to this setting.

Another intriguing problem left over from [28] is to determine the true resolution complexity of weak PHP formulas over complete bipartite graphs \(K_{n,n} \) as \(m \to \infty \). The best known upper bound from [11] is \(\exp(O(\sqrt{n \log n})) \), whereas the lower bound in [27, 28] is...
exp(Ω(√n)). It does not seem unreasonable to hypothesize that exp(Ω(√n)) should be the correct lower bound (ignoring lower-order terms), but establishing such a lower bound again appears to require substantial new ideas.

We believe that one of the main contributions of our work is that it again demonstrates the power of Razborov’s pseudo-width method, and we are currently optimistic that it could be useful for solving other open problems for resolution and other proof systems.

For resolution, an interesting question mentioned in [28] is whether pseudo-width can be useful to prove lower bounds for formulas that encode the Nisan–Wigderson generator [3, 29]. Since the clauses in such formulas encode local constraints, we hope that techniques from our paper could be helpful. Another long-standing open problem is to prove lower bounds on proofs in resolution that k-clique free sparse graph do not contain k-cliques, where the expected length lower bound would be nΩ(k). Here we only know weakly exponential lower bounds for quite dense random graphs [6, 21], although an asymptotically optimal nΩ(k) lower bound has been established in the sparse regime for the restricted subsystem of regular resolution [5].

Finally, we want to highlight that for the stronger proof system polynomial calculus [2, 14] no lower bounds on proof size are known for PHP formulas with n ≥ n² pigeons. It would be very interesting if some kind of “pseudo-degree” method could be developed that would finally lead to progress on this problem.

References

