Mitogenomes Uncover Extinct Penguin Taxa and Reveal Island Formation as a Key Driver of Speciation

Cole, Theresa L.; Ksepka, Daniel T.; Mitchell, Kieren J; Tennyson, Alan J. D.; Thomas, Daniel B.; Pan, Hailin; Zhang, Guojie; Rawlence, Nicolas J.; Wood, Jamie R.; Bover, Pere; Bouzat, Juan L.; Cooper, Alan; Fiddaman, Steven R.; Hart, Tom; Miller, Gary; Ryan, Peter G.; Shepherd, Lara D.; Wilmshurst, Janet M.; Waters, Jonathan M.

Published in: MOLECULAR BIOLOGY AND EVOLUTION

DOI: 10.1093/molbev/msz017

Publication date: 2019

Document version
Peer reviewed version

Citation for published version (APA):
Mitogenomes uncover extinct penguin taxa and reveal island formation as a key driver of speciation

Theresa L. Colea,b, Daniel T. Ksepkac,1, Kieren J. Mitchelld,1, Alan J. D. Tennysone,1, Daniel B. Thomasf,1, Hailin Pang,h,i, Guojie Zhangg,h,i, Nicolas J. Rawlencea, Jamie R. Woodb, Pere Boverd,j, Juan L. Bouzatk, Alan Cooperd, Steven Fiddamanl, Tom Hartt, Gary Millerm,n, Peter G. Ryano, Lara D. Shepherde, Janet M. Wilmshurstb,p, Jonathan M. Watersa

a Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
b Manaaki Whenua Landcare Research, PO Box 69040, Lincoln, Canterbury 7640, New Zealand.
c Bruce Museum, Greenwich, Connecticut, 06830, USA.
d Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
e Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6011, New Zealand.
f Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand.
g State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
h China National Genebank, BGI-Shenzhen, 518083, Shenzhen, Guangdong, China.
i Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100, Copenhagen, Denmark.
j ARAID Foundation. IUCA-Grupo Aragosaurus. Universidad de Zaragoza. C/ Pedro Curbuna, 12. 50009 Zaragoza, Spain.
k Bowling Green State University, Department of Biological Sciences, Bowling Green, Ohio, 43402, USA.
l Department of Zoology, University of Oxford, South Parks Road, Oxford, OX13PS, UK.
m Division of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, 6009, Australia.
n Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia.
o FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa.
p School of Environment, University of Auckland, Auckland, New Zealand.

1 DTK, KJM, AJDT and DBT contributed equally to this work

Corresponding author: Theresa L. Cole, tesscole1990@gmail.com
Abstract

The emergence of islands has been linked to spectacular radiations of diverse organisms. Although penguins spend much of their lives at sea, they rely on land for nesting, and a high proportion of extant species are endemic to geologically-young islands. Islands may thus have been crucial to the evolutionary diversification of penguins. We test this hypothesis using a fossil-calibrated phylogeny of mitochondrial genomes (mitogenomes) from all extant and recently extinct penguin taxa. Our temporal analysis demonstrates that numerous recent island-endemic penguin taxa diverged following the formation of their islands during the Plio-Pleistocene, including the Galápagos (Galápagos Islands), northern rockhopper (Gough Island), erect-crested (Antipodes Islands), Snares crested (Snares) and royal (Macquarie Island) penguins. Our analysis also reveals two new recently extinct island-endemic penguin taxa from New Zealand’s Chatham Islands: *Eudyptes warhami* sp. nov. and a dwarf subspecies of the yellow-eyed penguin, *Megadyptes antipodes richdalei* ssp. nov. *Eudyptes warhami* diverged from the Antipodes Islands erect-crested penguin between 1.1 million years ago (Ma) and 2.5 Ma, shortly after the emergence of the Chatham Islands (~3 Ma). This new finding of recently-evolved taxa on this young archipelago provides further evidence that the radiation of penguins over the last 5 Ma has been linked to island emergence. Mitogenomic analyses of all penguin species, and the discovery of two new extinct penguin taxa, highlight the importance of island formation in the diversification of penguins, as well as the extent to which anthropogenic extinctions have affected island-endemic taxa across the Southern Hemisphere’s isolated archipelagos.

Keywords: Sphenisciformes, ancient DNA, fossil calibrations, *Eudyptes warhami*, *Megadyptes antipodes richdalei*
Introduction

Biologists have long considered oceanic islands as natural ‘laboratories’ for evolutionary studies (Darwin 1859), with archipelago formation underpinning dramatic biological radiations in many remote regions of the globe (Shaw and Gillespie 2016). In particular, numerous studies have highlighted island isolation as a crucial prerequisite for species formation and adaptive radiation (Darwin 1859; Cowie and Holland 2006; Losos and Ricklefs 2009; Bacon et al. 2012). Soon after emergence, islands (whether volcanic or tectonic in origin [Paulay 1994]) can be rapidly colonised by diverse arrays of dispersing taxa (Fleisher et al. 1998; Gathorne-Hardy and Jones 2000; Mendelson and Shaw 2005; Gillespie et al. 2012), presenting unique opportunities for local adaptation and diversification of species (Waters et al. 2013). The resultant island-endemic taxa can also be particularly prone to extinction (Shaw and Gillespie 2006; Cowie and Holland 2006; Wood et al. 2017).

Penguins (Sphenisciformes) are iconic flightless marine birds that inhabit all major landmasses and many islands in the Southern Hemisphere (Fig. 1 [a]). Approximately 20 extant species are recognized, with some debate over species boundaries between recently-diverged populations. The group has a rich fossil record extending back >60Ma (Slack et al. 2006), with over 50 extinct species documented (Ksepka et al. 2012). Several phylogenetic studies have attempted to pinpoint the timing, and thereby the drivers, of penguin diversification (Baker et al. 2006; Ksepka et al. 2006; Subramanian et al. 2013; Gavryushkina et al. 2017; Frugone et al. 2018). Previous studies have invoked circumpolar ocean currents and/or Antarctic cooling as key drivers of penguin evolution and biogeography (Baker et al. 2006; Frugone et al. 2018). However, one third of all extant penguin species are endemic to geologically young islands (<5 Ma; Maund et al. 1988; Gamble and Morris 1989; Adamson et al. 1996; Sinton et al. 2018) suggesting that founder speciation may also have played an important role in recent penguin cladogenesis. An alternative explanation is that island endemic penguins represent relictual populations of formerly more widespread species.

Here, we test these competing hypotheses using 41 near-complete mitochondrial genomes (mitogenomes), representing all extant and recently extinct penguin taxa. By using well-justified fossil calibrations, we resolve the timing and mechanisms of modern penguin diversification. We demonstrate that many penguin divergences correlate with the formation of islands, providing a new model for understanding penguin evolution. Furthermore, we describe two new recently extinct penguin taxa from the Chatham Islands, demonstrating that
while islands have been key in many recent penguin speciation events, the resulting restricted
distributions have also made such lineages particularly susceptible to anthropogenic
extinction.

Results

Genetic evidence for two extinct penguin lineages from the Chatham Islands
We analysed 65 bones (Table S1) from the Chatham Islands to test for the existence of an
extinct endemic crested penguin (Eudyptes) species, as proposed by Tennyson and Millener
(1994) based on morphological evidence. Most were poorly preserved, but we obtained
partial cytochrome oxidase subunit I (COI) sequences from 22, and partial control region
(CR) sequences from eight. Phylogenetic analyses of these data identified erect-crested
penguin (Eudyptes sclateri) and two other distinct genetic lineages: one corresponding to
Eudyptes clade X (Cole et al. 2019), and another within the yellow-eyed penguin genus
Megadyptes (Fig. S1–S4). The latter discovery was unexpected, as the bones had appeared
too small to belong to Megadyptes and thus had originally been identified as Eudyptes.

Mitochondrial phylogenetic analysis
Phylogenetic analysis of near-complete mitogenomes recovered a clade grouping the two
largest-bodied and most polar-adapted penguin genera, Aptenodytes and Pygoscelis, as sister
to all other extant penguins (Fig. S5–S9). This basal split was also found in two recent studies
(Subramanian et al. 2013; Gavryushkina et al. 2017), whereas others have recovered
Aptenodytes as an independent lineage, sister to all other extant penguins (Bertelli and Gianni
2005; Baker et al. 2006; Ksepka et al. 2006). Our phylogeny agrees with previous studies in
recovering Spheniscus + Eudyptula and Eudyptes + Megadyptes clades (Bertelli and Gianni
2005; Baker et al. 2006; Ksepka et al. 2006). The Chathams Eudyptes taxon is distinct, sister
to E. sclateri (posterior probability: 1.0). The individuals recognised as Eudyptes clade X
from mainland New Zealand belong to this newly-recognised species. We also found that
individuals belonging to the previously unrecognised dwarf Chathams Megadyptes taxon
form a monophyletic clade (posterior probability: 0.88), though their precise phylogenetic
relationship to the other Megadyptes lineages could not be confidently resolved (Fig. S5).

Pairwise distances and taxonomic status
To explore genetic divergences and potential taxonomic status of penguin lineages, we
compared mitogenomes in a pairwise matrix, excluding positions with missing data (Fig. 1
The Chathams Eudyptes and the erect-crested penguin (E. sclateri) are 1.9% divergent, with 268 differential SNPs between the two species. In contrast, we observed just 0.2% divergence between the closely-related (Christidis and Boles 2008) royal penguin (E. chrysolophus schlegeli) and macaroni penguin (E. c. chrysolophus). Despite clear phenotypic differences (Warham 1975; Shaughnessy 1975; Woehler 1995), it appears that these genetically similar lineages may still be in the earliest stages of diversification, supporting the conclusions of Frugone et al. (2018). Our data reveal more substantial divergences among three rockhopper penguin species (De Dinechin 2009): The southern rockhopper (E. chrysocome) and eastern rockhopper (E. filholi) penguins are 0.7% divergent, and both show 1.8% divergence relative to the northern rockhopper penguin (E. moseleyi). The recently proposed recognition of two little penguin taxa (Grosser et al. 2017) is supported by 2.9% divergence detected between Eudyptula minor and E. novaehollandiae.

Megadyptes antipodes and the new Chathams Megadyptes taxon had only 0.1% sequence divergence, and both were 0.3% divergent from M. waitaha. These values are substantially smaller than the divergences observed between some other sister species pairs of extant penguins (mean 2.2%, range 0.8–5.2%; Table S3). In contrast, the Chathams Eudyptes taxon was 1.9% divergent from its sister species E. sclateri, a value exceeding those between sister-pairs of several widely accepted penguin species (e.g. E. robustus and the Fiordland crested penguin [E. pachyrhynchus] are 0.8% divergent).

Calibrated phylogenetic analysis

Our divergence estimates of major phylogenetic clades are consistent with the proposed Miocene origin of crown penguins (Subramanian et al. 2013; Gavryushkina et al. 2017), and show that a large proportion of penguin species (16 out of 23 studied taxa) have diverged over the past 2 Ma (Fig. 1 [c]; Table S4). While some divergence time estimates substantially postdate island formation, we observed no instances where an island-endemic penguin diverged from its sister taxon prior to the corresponding island group emergence (see Fig. 1 [c]; Table S4; and Fig. S7–S9 for alternative calibration approaches).

Systematic palaeontology

Morphological observations (Table S5–S10), combined with our molecular results, support recognition of the Chathams Eudyptes (originally proposed by Tennyson and Millener 1994)
as a distinct species and the dwarf Chathams *Megadytes* as a subspecies of the extant *Megadytes antipodes* (Fig. 2).

Aves Linnaeus, 1758

Sphenisciformes Sharpe, 1891

Eudyptes Vieillot, 1816

Eudyptes warhami, n. sp. **Cole, Tennyson, Ksepka & Thomas**

Holotype. NMNZ S.33007. Skull (Fig. 2 [c1 and c2]).

Etymology. The specific epithet honours John Warham (1919–2010), who carried out pioneering studies on *Eudyptes* penguins.

Type locality. Foredune c.200 m west of Tahatika Creek, Chatham Island. Collected by P.R. Millener, 20 Jan 1993. Age: <7000 years BP; the maximum age of the dunes. An *Anas chathamica* bone from the site dates to 1529 ± 57 14C years BP (1405–1185 cal BP) (Millener 1999).

Paratype and Stratigraphic context. All bones in the type series are from Chatham Island unless otherwise stated: NMNZ S.24277, left carpometacarpus; NMNZ S.25157, right humerus; NMNZ S.26908, skull; NMNZ S.27259, right coracoid, Chatham Islands; NMNZ S.47917, left coracoid; NMNZ S.30440, mandible; NMNZ S.47921, left tibiotarsus, Mangere Island; CM Av.6816, largely complete skull, Chatham Islands; CM Av.27407, left humerus; CM Av.27867, left humerus (Fig. S10). Most bones in the type series were isolated elements collected from eroded dune surfaces. However, the paratype from Mangere Island was from a soil deposit that contained European-era remains (but had possible rabbit disturbance). No *E. warhami* bones were found in articulated association.

Diagnosis. Characterized by elongate ovoid premaxilla in dorsal view and relatively shallow mandible. Distinguished from *E. chrysocome*, *E. filholi* and *E. moseleyi* by larger size (Table S5). The largest specimens, including the holotype, rival the largest extant *Eudyptes* taxon (*E. chrysolophus schlegeli*). Distinguished from *E. pachyrhynchus* and *E. robustus* by relatively elongate premaxilla. Distinguished from *E. chrysolophus chrysolophus* and *E. chrysolophus schlegeli* by proportionally shallower mandible. Distinguished from *E. sclateri* by more bowed premaxilla (dorsally) and notably shallower mandible. Distinguished from the Pliocene *Eudyptes calauina* by smaller and more slender humerus (max. length 70 mm in *E. warhami* vs. ~81 mm in *E. calauina*).
Distribution. Presumably once widespread along coastlines of the Chatham archipelago. The type series includes specimens from northern Chatham Is. (43.71°S) to Mangere Is. (44.27°S). The referred specimen series (see Supplementary Information) indicates that the species ranged westward to the east coast of mainland New Zealand.

Description. As typical of larger *Eudyptes* species, the beak of *E. warhami* is more elongate than in smaller congeneres. The rostral portion of the upper beak is markedly swollen as in *Eudyptes* and unlike *Megadyptes*. The jugal bar is strongly curved (Fig. 2 [c2]), Fig. S10) as in *Eudyptes*, and more so than in *Megadyptes*. The deep salt gland fossae are bounded by a shelf of bone. The mandibular ramus deepens strongly near the midpoint; a feature observed within *Eudyptes* and *Pygoscelis* penguins that is associated with a preference for planktonic prey (Zusi 1975). Similar to extant *Eudyptes* species, the coracoidal fenestra is completely enclosed by a bridge of bone extending from the procoracoid process. The humerus is relatively wide, lacks a pronounced notch between the head and the dorsal tubercle, and has a posterior trochlear process which projects beyond the ventral border of the shaft.

Megadyptes Milne-Edwards, 1880

Megadyptes antipodes (Hombron & Jacquinit, 1841)

Megadyptes antipodes richdalei n. ssp., Tennyson & Cole

Holotype. NMNZ S.26921. Partial skeleton (Fig. 2 [d]; Fig. S11).

Etymology. The subspecies epithet honours Lance Richdale (1900–1983), who carried out pioneering studies on *Megadyptes* ecology.

Paratype and Stratigraphic context. All bones in the type series were collected from eroded dune surfaces and were from the Chatham archipelago unless otherwise stated: NMNZ S.47918 right coracoid; NMNZ S.30968, mandible; NMNZ S.47765, premaxilla; NMNZ S.45876, skull Chatham Islands (Fig. 2 [b]); CM Av11287, left humerus; CM (ACAD12997; unregistered) (Fig. S12), left humerus; AM LB12063, proximal left tibiotarsus, Pitt Island.

Diagnosis. A *Megadyptes* penguin, smaller than both described *Megadyptes* taxa (*M. antipodes* and *M. waitaha*) (Tables S6–S10). *M. a. richdalei* n. ssp. represents a genetic lineage comprising distinct haplotypes (≥15 private mitochondrial SNPs) not detected in other living or extinct *Megadyptes* populations (Fig. S4 and Tables S2–S3).
Distribution. Chatham and Pitt Islands (from 43.73°S to 44.23°S). Presumably occurred around all coasts of the Chatham archipelago.

Description. *M. a. richdalei* is the smallest *Megadyptes* penguin, being on average smaller than *M. waitaha* (Fig. 2 [b]; Tables S6–S7) (though size distributions overlap; see Table S6). Both recently-extinct taxa are smaller than *M. antipodes*, with almost no overlap between the extant and extinct taxa in bone lengths. The skull closely resembles that of *M. antipodes* and differs from the contemporaneous *E. warhami* in its more slender upper beak and shallower mandible (without pronounced deepening at midpoint). We observed no osteological differentiation between the three *Megadyptes* taxa that could not be accounted for either by size or individual variation (as reflected in *M. antipodes* specimens), suggesting the proposed postcranial differences between *M. antipodes* and *M. waitaha* (Boessenkool et al. 2009a) cannot consistently differentiate these taxa. Thus, we consider the Chatham taxon to represent an instance of isometric dwarfing and recommend the two recently extinct forms be recognized as subspecies of *Megadyptes antipodes*. We follow the New Zealand Bird Checklist Committee (Gill et al. 2010) in defining subspecies using the Diagnostic Species Concept, where it is expected that a subspecies will meet a 75% diagnosable criterion (Amadon 1949; Patten and Unit 2002).

Discussion

Timing of penguin evolution linked to island emergence

While some studies have suggested that crown penguins began radiating in the Eocene (Baker et al. 2006), our divergence estimates (Fig. 1 [c]; Table S4) indicate a Miocene origin of crown penguins (Subramanian et al. 2013; Gavryushkina et al. 2017). Moreover, our results support the hypothesis that a large proportion of penguins diverged within the past 2 Ma (Gavryushkina et al. 2017). We propose that this diversification pulse was tied to the emergence of islands, which created new opportunities for isolation and speciation.

While island emergence can spawn diverse biological radiations, several studies have detected island endemic lineages substantially pre-dating island formation (Lewin 1985; Fraser et al. 2010). However, our estimated divergence dates for all island-endemic penguin taxa (i.e., those restricted to one island/archipelago) are consistently younger than the islands they inhabit (Table S4). While the ancestral distributions of clades are not always clear, the finding of numerous recently-evolved taxa endemic to geologically-young islands (Fleischer et al. 1998; Mendelson and Shaw 2005) strongly suggests that these lineages evolved *in situ,*
rather than being relicts of formerly widespread species. Our study thus provides clear
temporal genetic evidence linking penguin speciation to island formation (Fig. 1[c]).

Our analysis found that *Eudyptes sclateri*/*E. warhami* diverged from *E. robustus*/*E. pachyrhynchus* 3.5–1.7 Ma, following the emergence of the Antipodes Islands (5 Ma)
(Gamble and Morris 1989). Divergence estimates (95% Highest Posterior Densities) for both
Megadyptes antipodes richdalei (0.4–0.1 Ma) and *Eudyptes warhami* (2.5–1.1 Ma) similarly
post-date the emergence of the Chatham Islands 3 Ma (Campbell et al. 2008), and are
concordant with divergence estimates for many endemic Chatham lineages, including plants
(Heenan et al. 2010), insects (Trewick 2000) and birds (Mitchell et al. 2014a; Wood et al.
2014) (see Fig. S13). While the age of the Snares is unclear, our analysis of *E. robustus*
suggests that they have been emergent for at least 1.4–0.5 Ma. The divergence between *E.
moseleyi* and *E. chrysocome*/*E. filholi* 2.7–1.2 Ma corresponds with the emergence of Gough
Island around 2.5 Ma [Maund et al. 1988]), and populations presumably dispersed to the
younger islands of the Tristan da Cunha archipelago, Amsterdam Island, and St Paul Islands
(McDougall and Ollier 1982) via the Antarctic Circumpolar Current. The divergence between
E. chrysolophus chrysolophus and the Macquarie Island endemic *E. chrysolophus schlegeli*
(0.2–0.0 Ma) is concordant with the geological uplift of Macquarie Island 0.7 Ma (Adamson
et al. 1996). The Galápagos endemic *Spheniscus mendiculus* diverged from its sister taxon *S.
humboldti* 1.6–0.6 Ma shortly after the formation of several islands within this young
archipelago (3 Ma). Similar founder speciation has previously been inferred for numerous
Galápagos endemic taxa (Parent et al. 2008), including invertebrates (Parent and Crespi
2006; Sequeira et al. 2008), reptiles (Caccone et al. 1999) and birds (Bollmer et al. 2006).

Our finding that many recent speciation events among penguins are temporally linked to
island formation may provide important clues for understanding evolutionary patterns in
other island-endemic taxa. Islands are clearly speciation hotspots for terrestrial taxa, but the
role of island emergence as a driver of speciation in marine taxa remains less clear (however
see Mitchell et al. 2014a). The shag genus *Leucocarbo* similarly has endemic taxa associated
with almost every sub-Antarctic island (Marchant and Higgins 1990), providing a possible
parallel example of recent founder speciation in the Southern Ocean. Time-calibrated
genomic analysis provides an exceptional new tool for understanding the origins of such
iconic southern biodiversity.
Vulnerability of island taxa to human-induced extinctions

Our study uncovered two new island-endemic penguin taxa: *Eudyptes warhami* and *Megadyptes antipodes richdalei*. The presence of their bones in middens, and lack of reliable historical sightings, suggests that these taxa were extirpated shortly after human settlement on the Chatham Islands (post 13th century AD; Maxwell and Smith 2015). These findings thus potentially represent important new examples of human-driven, Holocene extinction in the Pacific. *Eudyptes warhami* bones (cf. *E. clade X*) excavated from coastal middens demonstrate that the species was also hunted on mainland New Zealand (Cole et al. 2019). However, this does not prove the presence of a local breeding colony. In fact, many extant island endemic *Eudyptes* disperse widely during the non-breeding period: *E. pachyrhynchus* (breeds only on mainland New Zealand) and *E. robustus* (breeds only on the Snares) are commonly observed in southern Australia during winter (Woehler 1992; Cole et al. 2017; Mattern et al. 2018); and *E. sclateri* (breeds only on the Antipodes Islands) is commonly observed in New Zealand (Robertson et al. 2017). As *E. warhami* is relatively rare in mainland subfossil penguin assemblages (represented by only seven specimens among hundreds of genetically-identified penguin bones [Boessenkool et al. 2009a; Rawlence et al. 2015a; Grosser et al. 2016; Cole et al. 2019]), these mainland records fit the pattern that would be expected for non-breeding individuals. In contrast, no *Megadyptes antipodes richdalei* bones have been detected in mainland subfossil assemblages (Boessenkool et al. 2009a; Rawlence et al. 2015a; Cole et al. 2019). This pattern fits with the limited dispersal exhibited by extant *Megadyptes* populations (Boessenkool et al. 2009b).

Conclusions

We find strong evidence for a Neogene radiation of crown penguins, and provide the first compelling evidence that island emergence drove Plio-Pleistocene penguin diversification. Such processes may also have driven diversification in the deeper past, as fossil data show much higher penguin diversities than present once existed in New Zealand (Ksepka and Ando 2011), Antarctica (Jadwiszczak 2006), Australia (Park and Fitzgerald 2012), and Africa (Thomas and Ksepka 2013). However, as most fossils from these regions are restricted to continental localities, and many islands have scant fossil records, the role of island formation in penguin diversification in the deep past remains obscured. Accordingly, if rates of island-mediated speciation were as high throughout the Cenozoic as in the Plio-Pleistocene, it is conceivable that fossils for a major proportion of extinct penguin taxa will never be found.
Previous studies based on traditional species concepts have struggled to account for recently-evolved biological diversity. Particularly relevant are scenarios of species ‘divergence with geneflow’, where introgression may occur among closely-related linages (Rheindt and Edwards; 2011). Although hybridisation between closely related penguin species within *Spheniscus* and *Eudyptes* have occasionally been reported, solid confirmatory genetic evidence is lacking (White and Clausen 2002; Simeone et al. 2009; Morrison and Sagar 2014). While our study does not address the possibility of introgression among penguin taxa, future genome-wide analyses will provide insights into this question for penguins.

While our results reinforce the importance of islands in generating biodiversity, they also underscore the role of humans as agents of biodiversity loss, especially via the extinction of island-endemic taxa (Duncan et al. 2013). Today only *Eudyptula minor* breeds on the Chatham Islands, yet 500 years ago the archipelago held substantial penguin diversity, with two endemic taxa (*Eudyptes warhami* and *Megadyptes antipodes richdalei*) alongside *Eudyptula minor* and possibly *Eudyptes sclateri*. As many of the bones were from middens, our results provide direct evidence that *E. warhami* was hunted by humans. Although no *Megadyptes antipodes richdalei* remains examined in this study were directly associated with human activity, the near-simultaneous disappearance of both this subspecies and *Eudyptes warhami* suggests that both extirpations were linked to the arrival of humans to the Chatham Islands. Our results further emphasise the value of ancient DNA for elucidating biodiversity shifts, including the dramatic rise and fall of island avifauna (Waters and Grosser 2016).

Materials and Methods

DNA extraction, amplification and sequencing from historical samples

Historical skin samples from *Eudyptes filholi*, *E. robustus*, *E. sclateri*, *E. chrysolophus schlegeli* and *E. c. chrysolophus* were obtained from the Museum of New Zealand Te Papa Tongarewa (Te Papa). Holocene fossil and archaeological bones from the Chatham Islands identified as *Eudyptes* based on morphology (*n*=37), and two each of *Megadyptes antipodes antipodes*, *M. a. waitaha*, *M. a. richdalei* and *Eudyptes* clade X (Cole et al. 2019) were sourced from Te Papa, Canterbury Museum, and Auckland War Memorial Museum (Table S1). To avoid duplicate sampling of individuals, either left or right elements were sampled from any one site, or bones were sampled from different stratigraphic units within a site. DNA extractions were performed following rigorous ancient DNA protocols (Cooper and Poinar 2000) at four purpose-built ancient DNA laboratories: Department of Zoology...
(University of Otago, Dunedin) following Rohland et al. (2010) (bone) or Rawlence et al. (2015b) (museum skins); Landcare Research (Lincoln) following Thomson et al. (2014) (bone); Te Papa (Wellington) using the manufacturer’s protocol from the Qiagen DNeasy Tissue Kit (Qiagen) (museum skins); and the Australian Centre for Ancient DNA (ACAD) following Brotherton et al. (2013).

For species identification we followed Boessenkool et al. (2009a), Cole et al. (2017) and Cole et al. (2019), amplifying \(\leq 499 \) bp of cytochrome oxidase 1 (COI) (four overlapping 140–164 bp regions), 131 bp of control region (CR) in *Eudyptes*, and \(\leq 402 \) bp of CR in *Megadyptes* (two overlapping 229–255 bp regions). PCRs (total volume = 12.5 μL) were performed using 2mg/mL BSA (Sigma), 1 x PCR buffer, 2 mM MgSO\(_4\), 80 μM dNTP, 0.4 μM each primer, 0.625 U HiFi Platinum Taq (Invitrogen) and 1 μL DNA extract on a BIO-RAD MyCycler thermal cycler as follows: 94°C for 3 min; 55 cycles of 94°C for 30 s, 55°C for 30 s and 68°C for 45 s; 68°C for 10 min. PCR products were purified using SPRIselect (Beckman Coulter, Inc., Indianapolis, IN, USA) and sequenced at the Manaaki Whenua Landcare Research sequencing facility (Auckland) on an Applied Biosystems 3500xL Genetic Analyzer.

Contiguous sequences of COI and CR were assembled using Geneious v8.1.8 (Biomatters; Kearse et al. 2012) from high quality bi-directional reads and checked manually. Due to post-mortem DNA damage, when inconsistency between sequences from a given individual was observed (e.g. G-A and C-T transitions), additional PCRs and bidirectional sequencing were conducted, and a majority rule consensus was applied (Brotherton et al. 2007).

Phylogenetic trees were created using BEAST v2.4.7 (Bouckaert et al. 2014), with a relaxed log-normal clock and yule speciation model, 100 million MCMC generations sampling tree parameters every 1000 generations, and a burn-in of 10%. Analyses were run in triplicate and combined using Log Combiner v2.4.7. We implemented the Akaike Information Criterion in JmodelTest2 (Darriba et al. 2012) to determine the most appropriate model of sequence evolution (Jukes Cantor for all genetic markers). We created two maximum clade credibility phylogenies using COI (Fig. S1-S2), and one using the *Megadyptes* CR (Fig. S4). As is typical with ancient DNA, our data contained some missing sequence data. We constructed the first phylogeny which contained all COI data (Fig. S2), and a second phylogeny that contained only samples with 3–4 of the 4 overlapping fragments (75–100% of the four fragments) (Fig. S1). In addition, we included one sequence representative of all extant sphenisciform species, and wandering albatross (*Diomedea exulans*) as outgroup. For the
Megadyptes phylogeny, we obtained 20 and 25 *M. antipodes antipodes* and *M. a. waitaha* sequences from GenBank, and one *Eudyptes chrysocome* sequence as outgroup (Fig. S4; Table S11). We used PopArt (Leigh and Bryant 2015) to create the minimum spanning haplotype network (Bandelt et al. 1999) that included all *Eudyptes* CR sequences (Fig. S3).

Enriched mitogenomes from sub-fossil bones and museum skins

One to two Illumina libraries were created for *Eudyptes filholi* (AD253), *E. robustus* (AD270), *E. pachyrhynchus* (AD266), *E. sclateri* (AD302), *E. chrysolophus schlegeli* (AD415, AD416, AD417, AD419), *E. warhami* (cf. *E. clade X*; AD156, AD157, AD161, AD162, AD309, AD342), *Megadyptes antipodes antipodes* (AD93, AD94), *M. a. waitaha* (AD91, AD289), and *M. a. richdalei* (AD88, AD95, ACAD12997) following Meyer and Kircher (2010), but using truncated adapters with unique 7-mer barcode sequences and a partial uracil-DNA-glycosylase treatment (Rohland et al. 2015). We used real-time PCR (rtPCR) to determine the appropriate number of cycles to amplify each library (see Carøe et al. 2018): two 10 µL reactions were run per library containing 1 µL of a 1:5 dilution of post-Bst product, 1x High Fidelity PCR Buffer, 2 mM MgSO4, 0.25 mM dNTPs, 0.2 µM IS7 and IS8 primers (see Meyer and Kircher 2010), 0.004x ROX (Life Tech), 0.2x SYBR (Life Tech), 0.56 M DMSO (Sigma-Aldrich), and 0.2 U Platinum Taq DNA Polymerase High Fidelity (ThermoFisher). The rtPCRs were run on a LightCycler 96 (Roche) as follows: 94°C for 6 min; 40 cycles of 94°C for 30 sec, 60°C for 30 sec, and 68°C for 40 sec; and a high resolution melt (95°C for 1 min, 40°C for 1 min, then a ramp from 65°C to 97°C). Each library was divided into 8 x 25 µL PCRs containing 3 µL of post-Bst library product, 1x High Fidelity PCR Buffer, 2 mM MgSO4, 0.25 mM dNTPs, 0.2 µM IS7 and IS8 primers, and 0.5 U Platinum Taq DNA Polymerase High Fidelity (ThermoFisher). PCRs were run in a heated-lid thermal cycler as follows: 94°C for 6 min; 10 to 22 cycles (determined by rtPCR) of 94°C for 30 sec, 60°C for 30 sec, and 68°C for 40 sec; and 68°C for 10 min.

Libraries were enriched for avian mitochondrial DNA (except the CR) with commercially synthesised biotinylated 80-mer RNA baits (Arbor Biosciences, MI, USA), designed from published mitogenome sequences for 27 modern birds (Neornithes), including two penguins (*Eudyptes* and *Megadyptes*) (see Mitchell et al. 2014b). DNA-hybridisation enrichment was performed according to the manufacturer’s recommendations (myBaits protocol v1) except the incubation step, which we extended to 44 hr (2 hr at 60°C, 12 hr at 55°C, 12 hr at 50°C, 17 hr at 55°C). After washing the bound DNA, the baits and DNA library were eluted in PCR
master mix, which was then divided into 5 x 25 μL reactions comprising: 1x AmpliTaq Gold Buffer, 2.5 mM MgCl2, 0.25 mM dNTPs, 0.4 μM indexed full-length adapter primers (IS4 and indexing primer; see Meyer and Kircher 2010), 1.25 U AmpliTaq Gold DNA Polymerase (Thermo Fisher). PCRs were run in a heated-lid thermal cycler as follows: 94°C for 6 min; 15 cycles of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 45 sec; and 72°C for 10 min. Each amplified library was diluted to 2 nM and run on an Illumina MiSeq using 2 x 150 bp (paired-end) sequencing chemistry.

Reads were demultiplexed using ‘sabre’ (http://github.com/najoshi/sabre) (default parameters: no mismatches allowed). Adapter sequences were removed and paired-end reads were merged using AdapterRemoval v2.1.2 (Schubert et al. 2016). Low quality bases were trimmed (<Phred20—minquality 4) and merged reads <25 bp were discarded (--minlength 25). Read quality was visualised using fastQC v0.10.1 (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) before and after trimming to make sure the trimming was efficient. Collapsed reads from _Eudyptes sclateri_ (AD302), _E._ warhami (AD342) and _Megadyptes antipodes richdalei_ (ACAD12997) were mapped against the _Eudyptes chrysocome_ mitogenome (GenBank accession AP009189) using BWA v0.7.8 (Li and Durbin 2009) (aln -l 1024, -n 0.01, -o 2). Reads with a mapping quality Phred score >30 were selected using the SAMtools v.1.4 (Li et al. 2009) view command (-q 30), and duplicate reads were discarded using ‘FilterUniqueSAMCons.py’ (Kircher 2012). We created 50% (majority-rule) consensus sequences in Geneious. Collapsed reads from all other samples were mapped to these three new reference sequences (as described above), preliminary species assignments were made based on the reference to which the most reads mapped, and 50% consensus sequences were created based on the closest matching reference: _E. sclateri_ (AD302) for all non-warhami _Eudyptes_ samples, _E. warhami_ (AD342) for all _E._ warhami samples and _Megadyptes antipodes richdalei_ (ACAD12997) for all _Megadyptes_ samples. All reads for each sample were then re-mapped to their respective consensus (as described above) and final higher-stringency consensus sequences were created: 85% majority for all samples except _Eudyptes warhami_, which were called at 100% majority. A nucleotide was only called for sites with ≥3x coverage depth (sites with insufficient depth were called as 'N'). For one _Megadyptes antipodes richdalei_ sample (AD161 and AD88), we were able to combine the two sets of reads from the two libraries to create one sequence. For these samples, there were no ambiguities between reads that overlapped. We used
MapDamage v.2.0.6 (Jónsson et al. 2013) to ensure that damage patterns in our data were consistent with authentic ancient DNA (Fig. S14–S17; Table S12).

Mitogenomes from contemporary blood

We created mitogenomes from whole blood of *Aptenodytes patagonicus* (Fortuna Bay, South Georgia), *Eudyptes moseleyi* (Amsterdam Island), *E. chrysolophus chrysolophus* (Marion Island) and *E. c. schlegeli* (Green Gorge, Macquarie Island) at the Beijing Genomics Institute, Hong Kong. DNA was extracted at BGI Hong Kong or the University of Oxford using a HiPure Blood DNA Midi Kit II or the Qiagen DNeasy Tissue Kit, respectively. We constructed 250 bp insert size libraries, and performed whole-genome paired-end sequencing on a BGISeq 500 platform with 150 bp read length. Mitogenomes were *de novo* assembled using SOAPdenovo-Trans (Xie et al. 2014) with approximately 6 Gb data for each species. We raised the linkage support during the scaffolding step to improve accuracy and to avoid connections between mitochondrial reads and nuclear mitochondrial DNA segments (NUMTs). We used a hidden Markov model method (Krogh et al. 1994; Durbin et al. 1998; Wheeler and Eddy 2013) to filter candidate mitochondrial sequences and remove potential false positive mitochondrial scaffolds, NUMTs, or sequences that did not map to avian mitochondrial genes, which we considered contamination.

Phylogenetic analysis

We aligned all mitogenomes (including 15 obtained from GenBank; Table S11) using the MUSCLE algorithm implemented in Geneious. As most of the mitogenomes were not enriched for the CR, we excluded this from genomes sequenced on the BGISeq 500 platform or those from GenBank. We provided PartitionFinder v2.1.1 (Lanfear et al. 2016) with an input of 30 regions: for each protein coding gene, a region corresponding to every third position counting from the first position (i.e. position 1, 4, 7, etc.) and a region corresponding to every third position counting from the second position (i.e. position 2, 5, 8, etc.); 12S rRNA; 16S rRNA; concatenated tRNAs; and concatenated non-coding regions (108 bp) (Table S13). The two regions we defined for each protein coding gene correspond to the first and second codon positions, except for the last 178 bp of ND3, which are frameshifted by one position due to a single nucleotide insertion. Regions were defined by aligning our sequences with the *E. chrysocome* mitogenome (GenBank accession AP009189) using Geneious, and extracting and concatenating the gene regions for downstream analyses. Optimal partitioning schemes were chosen based on the Bayesian Information Criterion.
without a maximum likelihood starting tree (Lanfear et al. 2012; Guindon et al. 2010). We used Geneious to calculate genetic divergences among species using both the entire alignment (Table S2) and excluding any positions with missing data in the alignment (Table S3). We analysed all partitioned alignments in BEAST to infer the topology of Sphenisciformes under a phylogenetic framework (Fig. S5–S6). We explored two rooting strategies, using the outgroup Phoebastria albatrus (a member of Procellariiformes, commonly recognised as the sister order to penguins; Ksepka et al. 2006) and rooting the tree between Aptenodytes/Pygoscelis and all other penguins. All initial phylogenetic analyses were implemented with a Yule process speciation prior, under a single lognormal relaxed clock model. All phylogenetic analyses were conducted via the CIPRES Science Gateway v3.3 (Miller et al. 2010).

Phylogenetic analysis using fossil calibrations

To calibrate mitogenomic evolution, we implemented a single lognormal relaxed clock model and constrained the ages of five nodes (four when Phoebastria albatrus was excluded) based on fossils (Fig. 1 [c] and Fig. S7–S9; (see Fossil calibrations section for details). To test the relative contribution of including the calibration stem penguin Waimanu manneringi we ran multiple phylogenetic tests using the alignment that sampled one individual per species, with Phoebastria albatrus as an outgroup (Fig. S7). The tests used the following calibration points: 1) only Waimanu manneringi (Fig. S7 [c]); 2) all initial calibrations (including W. manneringi) (Fig. S7 [b]); and 3) all initial calibrations (without W. manneringi) (Fig. S7 [a]). The performance of each test was assessed by running the analysis without the data (i.e. priors only, see Warnock et al. 2015) to determine the relative contribution of the data and the priors to the posterior node age estimates. With W. manneringi the effective priors for the crown nodes were much older than the initial specifications, yet without W. manneringi the split between Sphenisciformes and Procellariiformes became unrealistically young (based on fossil evidence) (see Fig. S7). This conflict could be due to a rate slowdown in the large-bodied penguin clade (Ksepka and Phillips 2015) and may be exacerbated by the long branch separating crown penguins from Procellariiformes (see Fig. S7). Therefore, we removed the outgroup Phoebastria albatrus, and ran the analysis on just Sphenisciformes without the Waimanu manneringi calibration point. Each test was run at a minimum of 50 million MCMC, and for each new alignment we re-ran Partition Finder and a single uncalibrated phylogenetic analysis was performed (as above) to determine the topology (especially for Aptenodytes/Pygoscelis placements [which remained as sister taxa in all analyses]). To assess
the impact of tree prior choice we ran all analyses (with and without *Phoebastria albatrus*) using either a birth-death or calibrated Yule process (Fig. S8–S9). Results did not differ substantially, so we consider only those that used the birth-death speciation prior (Fig. 1 [c] and Fig. S8–S9 [a]). After comparing the performance of each test, the final analyses were run using only the penguin taxa, with four internal calibration points (including a uniform prior for crown penguins) (Fig. 1 [c]). This final analysis was run for 100 million generations, and we sampled trees and parameter values every 1000 generations. Parameter values were monitored and compared between chains in Tracer v1.6 to ensure convergence and ESSs >200. We combined sampled trees and parameter values from each chain using Log Combiner. The first 10% of each chain was discarded as burn-in using TreeAnnotator v1.8.3. We visualised the maximum clade credibility tree using FigTree v1.4.2.

Fossil calibrations

Calibrated Node 1: Sphenisciformes-Procellariiformes; **Taxon:** Waimanu manneringi; **Specimen:** CM zfa35, part skeleton (holotype); **Justification:** Phylogenetic analyses (all based on CM zfa35 as the only published specimen of *W. manneringi*) universally support *Waimanu* being along the stem penguin lineage (e.g. Slack et al. 2006; Ksepka et al. 2006; Gavryushkina et al. 2017; Chávez Hoffmeister 2014a). **Minimum Age Constraint:** 60.5 Ma; **Maximum Age Constraint:** 72.1 Ma; **Prior Distribution:** lognormal; **Mean:** 3.7 (in real space); **Standard Deviation:** 1.0; **Offset:** 60.5; **Justification:** Biostratigraphy (*Hornibrookina teuriensis* and *Chaismolithus bidens*) indicates a minimum age for the type locality of 60.5 Ma (Cooper 2004; Slack et al. 2006; Ogg et al. 2008). The maximum age constraint is the lower bound of the Maastrichtian Stage. Maastrichtian sites have yielded fossil diving birds such as the Northern Hemisphere hesperornithids and the Southern Hemisphere *Neogaeornis*, *Vegavis*, and *Polarornis*, indicating preservation potential for marine diving birds globally, and specifically within the geographic range of modern penguins.

Calibrated Node 2: Crown Spheniscidae; **Taxon:** Madrynornis mirandus; **Specimen:** MEF-PV 100, part skeleton (holotype); **Justification:** *M. mirandus* was originally considered a close relative of *Eudyptes* (Acosta Hospitaleche et al. 2007; Ksepka and Clarke 2010) and later to possibly represent the sister taxon to crown Spheniscidae (Chávez Hoffmeister 2014a; Chávez Hoffmeister 2014b). The most recent phylogenetic analysis using new characters from the holotype suggests that *Madrynornis* is more closely related to *Spheniscus* and *Eudyptula*, though this was weakly supported (trees placing the fossil with *Eudyptes* were
only one step longer). Nevertheless, seven synapomorphies support crown status for
Madrynornis, most compellingly the widely separated fossa temporalis, elongate processus
retroarticularis, and small foramen ilioischiadicum (Degrange et al. 2018). Given the strong
evidence that *Madrynornis* is a crown penguin but uncertainty over the precise relationships
of this taxon, we use *Madrynornis* to calibrate the penguin crown; **Minimum Age Constraint:**
9.7 Ma; **Maximum Age Constraint:** 25.2 Ma; **Prior Distribution:** uniform; **Justification:** The
single specimen of *M. mirandus* was collected from the “Enterrriense” sequence of the
Puerto Madryn Formation (Acosta Hospitaleche et al. 2007); deposited at 10.0 ± 0.3 Ma
(Scasso et al. 2001). The maximum age is the upper boundary of New Zealand’s Kokoamu
Greensand, which has yielded many penguin specimens of a wide range of body sizes and at
least five different species (all stem taxa). Because the boundary between the Kokoamu
Greensand and the overlying Otekaike Limestone likely occurs near the upper
Whaingaroan/Duntroonian boundary, we use the age of this boundary (25.2 Ma) in lieu of a
more refined date. This maximum age for the crown is consistent with observations that
Oligocene units in Australia and South America have also yielded exclusively stem penguins
(no Oligocene penguins have yet been reported from Antarctica or Africa).

Calibrated Node 3: Spheniscus-Eudyptula; Taxon: *Spheniscus muizoni; Specimen:* MNHN
PPI 147, part skeleton (holotype); **Justification:** Göhl (2007) listed characters supporting
placement in the genus *Spheniscus*. This has been supported by subsequent phylogenetic
analyses (e.g. Ksepka and Clarke 2010; Chávez Hoffmeister 2014b). Unambiguous
synapomorphies of *Spheniscus* in the calibrating specimen include the straight proximal
border of the fossa tricipitalis in ventral view (only seen in *Spheniscus* and some
Palaeospheniscus specimens) and extremely deep sulcus longitudinalis dorsalis medialis
(only seen in *Spheniscus* and the otherwise very dissimilar *Aptenodytes*); **Minimum Age
Constraint:** 9.2 Ma; **Maximum Age Constraint:** 23.03 Ma; **Prior Distribution:** lognormal;
Mean: 4.4 (in real space); **Standard Deviation:** 1.0; **Offset:** 9.2; **Justification:** PPI 147 was
collected from the Cerro la Bruja locality of the Pisco Formation in Peru. The original age
estimate of 11–13 Ma for *Spheniscus muizoni* was based on general faunal divisions (Göhl 2007).
However, subsequent work (Brand et al. 2011) provides a revised age of 9.2 Ma for
Cerro la Bruja. The maximum age is the base of the Miocene (23.03 Ma [Gradstein 2012]).
This encompasses: 1) The well-studied South American early Miocene Gaiman Formation,
which has yielded abundant stem penguin fossils (e.g. *Palaeosphneiscus, Paraptenodytes,
Eretiscus*) but no crown penguins. 2) Miocene record of Australia, which has yielded
specimens interpreted as being either stem penguins or too incomplete to be assigned to
either the stem or crown (Park et al. 2016). 3) Miocene-Pliocene record of New Zealand,
which has yielded crown species, none of which fall within the *Spheniscus-Eudyptula* clade.
4) The African record, which is limited to middle/late Miocene penguins of indeterminate
status (Thomas and Ksepka 2013) and several early Pliocene crown species, none of which
fall within the *Spheniscus-Eudyptula* clade (Ksepka and Thomas 2012).

Calibrated Node 4: *Eudyptes-Megadyptes*; Taxon: *Eudyptes* sp.; Specimen: NMMNZ
S.046318, part skeleton; Justification: The strongly arched jugal bar in this specimen is a
derived feature of *Eudyptes* (Thomas et al. unpublished data). Although it also occurs in
some *Pygoscelis* species, tarsometatarsi referred to this species have the derived condition of
the foramen vasculare proximale medialis perforating the crista medialis hypotarsi (rather
than exiting distal to the crest) supporting a position close to *Eudyptes* and ruling out a
relationship with *Pygoscelis*; Minimum Age Constraint: 3.06 Ma; Maximum Age Constraint:
25.2 Ma; Prior Distribution: lognormal; Mean: 7.04 (in real space); Standard Deviation: 1.0;
Offset: 3.06; Justification: S.046318 is from the Late Pliocene Tangahoe Formation,
Taranaki, New Zealand (Naish et al. 2005). The Tangahoe Formation has been tightly
constrained between 3.36 and 3.06 Ma and is within the local Waipipian stage (3.7–3.0 Ma)
and the international Piacenzian stage (3.6–2.58 Ma) (Naish et al. 2005; Raine et al. 2015).
The formation was dated using magnetostratigraphic correlation to the δ18O timescale from
Ocean Drilling Program Site 846, and the presence of Waipipian stage macro- and
microfossils (Naish et al. 2005). *Eudyptes calauina* from the Horcón Formation of Chile is of
similar age but is known from less complete material. Chávez Hoffmeister (2014b) recovered
E. calauina within a polytomy including all extant species of *Eudyptes*. The Horcón
Formation is considered Late Pliocene but no tighter dates are available for the horizon from
which *E. calauina* is known. Thus, that species may be slightly older or younger than the
Taranaki *Eudyptes*. Because many species of the *Eudyptes + Megadyptes* clade occur on
islands and have no pre-Holocene fossil records, we used a conservative Oligocene maximum
that follows the same justification as that for crown penguins as a whole.

Calibrated Node 5: *Aptenodytes-Pygoscelis*; Taxon: *Pygoscelis calderensis*; Specimen: SGO-
PV 790, part skull; Justification: *P. calderensis* was described on the basis of three partial
skulls. The holotype preserves a very shallow temporal fossa; a derived feature which is
present only in *Aptenodytes* and *Pygoscelis*. It also preserves a shelf of bone bordering the
supraorbital salt gland fossa, a derived feature which occurs in *Pygoscelis* (as well as
Megadyptes and *Eudyptes*), but is absent in *Aptenodytes*. Together, these features support
placement at least to the stem of *Pygoscelis*; **Minimum Age Constraint**: 6.3 Ma; **Maximum
Age Constraint**: 25.2 Ma; **Prior Distribution**: lognormal; **Mean**: 6.0 (in real space); **Standard
Deviation**: 1.0; **Offset**: 6.3; **Justification**: SGO-PV 790 was collected from a phosphatic
horizon in the Bahía Inglesa Formation, several meters beneath an ash layer in the uppermost
Lechero Member which gave a K-Ar age of 7.6 ± 1.3 Ma (Marquardt et al. 2000; Godoy et
al. 2003). The ash layer thus provides a minimum age for the fossil. Because both *Pygoscelis*
and *Aptenodytes* occur predominantly in Antarctica and sub-Antarctic islands today, and the
fossil record from Antarctica is relatively poor, we used a conservative Oligocene maximum
that follows the same justification as that for crown penguins as a whole.

Systematic Palaeontology

We measured 12 elements from eight *Eudyptes* taxa (*n*=87) (Table S5), and up to 23 elements
from each *Megadyptes* subspecies (*n*=57) (Tables S6–S10). Radiocarbon dates of terrestrial
birds from the same localities as described material (Millener 1999) were re-calibrated using
the SHCal13 atmospheric curve (Hogg et al. 2013) via OxCal v4.3.2 (Bronk Ramsey 2017).

Acknowledgements and Funding Information

We thank M. Rayner (Auckland War Memorial Museum) for bone measurements; V. De
Pietri, P. Scofield, E. Burns and T. Webster for access to Canterbury and Otago Museum
collections; J-C. Stahl for photographs; E. Fordyce, J. Scott, W. Lee, N. Mortimer, M. Knapp
and P. Scofield for discussions; and S. Petersen and A. Black for field assistance. Ethics
approval came from the University of Otago, University of Oxford, University of Cape
Town, Zoological Society of London and BGI Hong Kong. Collection permits were provided
by the Government of South Georgia and the South Sandwich Islands and the South African
National Antarctic Programme. This work was supported by the Marsden Fund (UOO1112,
LCR1102), BGI Hong Kong, Australian Research Council, a National Science Fund Award
(DEB 1556615), a Rutherford Discovery Fellowship (RDF-MNZ1201), Landcare Research
and the University of Otago. TLC was funded by an Otago University Postgraduate
Scholarship. Sequences and calibrated tree files are available on GenBank (MK290241–
MK290284) and/or Figshare (DOI: 10.6084/m9.figshare.c.4329029), and nomenclatural acts
have been registered in ZooBank (urn:lsid:zoobank.org:act:640EE978-13B5-4913-BB4E-
Figure Legends

Fig. 1. (a) Maps of penguin breeding ranges, adapted from Ramos et al. (2018). Only the pre-human breeding range of *Megadyptes antipodes antipodes* is shown. GAL: Galápagos Islands; FAL: Falkland Islands; SG: South Georgia; SS: South Sandwich Islands; SO: South Orkney Islands; BOU: Bouvet; GOU: Gough Island; TDC: Tristan da Cunha; PEI: Prince Edward Islands; CRZ: Crozet Islands; KER: Kerguelen Islands; HEA: Heard Island; AMS: Amsterdam and St Paul Islands; MAC: Macquarie Island; CAM: Campbell Island; SNA: Snares; AUC: Auckland Islands; ANT: Antipodes Islands; CHA: Chatham Islands; NZ: New Zealand. (b) Heatmap showing the percentage of pairwise genetic similarity calculated from 14,117 bp of 23 crown penguin mitogenomes (excluding all alignment columns containing missing data). (c) Dated phylogeny of penguins inferred from mitogenomes. Fossil calibrations are marked with large yellow circles. Posterior probabilities for all clades were >0.99, except those marked with orange squares (0.88 for *Megadyptes* and 0.74 for *Eudyptes*). 95% Highest Posterior Densities are shown as bars associated with each node. The divergence dates of the emergence of the five island archipelagos (coloured in concordance to their respective taxa) are shown under the phylogeny. Taxon-specific symbols are consistent between (a), (b) and (c).

Fig. 2. Skulls of (a) *Megadyptes antipodes antipodes*: NMNZ OR.24638; (b) *Megadyptes antipodes richdalei* paratype: NMNZ S.45876 (AD88); (c) *Eudyptes warhami* holotype: NMNZ S.33007 (AD161) in (c1) dorsal view and (c2) left lateral view (jugal bar is disarticulated); (d) *Megadyptes antipodes richdalei* holotype: NMNZ S.26921 (AD95); (d1) mandible in ventral view, (d2) right and (d3) left coracoid in ventral view, (d4) sternum in ventral view, (d5) left and (d6) right side of pelvis in medial view, (d7) right and (d8) left femur in cranial view, (d9) right and (d10) tibiotarsus in cranial view, (d11) right tarsometatarsus in cranial view, (d12) left and (d13) right humerus in caudal view, (d14) left and (d15) right radius in dorsal view, (d16) left and (d17) right ulna in dorsal view, (d18) left and (d19) right carpometacarpus in dorsal view. Photos: Jean-Claude Stahl, Te Papa.

References

Millener PR. 1999. The history of the Chatham Islands' bird fauna of the last 7000 years—a chronicle of change and extinction. Sm C Paleob. 89.

Morrison KW, Sagar PM. 2014. First record of interbreeding between a Snares crested
(Eudyptes robustus) and erect-crested penguin (E. sclateri). Notornis. 61:109–112.

Naish TR, Wehland F, Wilson GS, Browne GH, Cook RA, Morgans HE, Rosenberg M, King
PR, Smale D, et al. 2005. An integrated sequence stratigraphic, palaeoenvironmental, and
chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with
implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea-level changes. J Roy Soc
New Zeal 35:151–196.

Cambridge University Press.

Parent CE, Crespi BJ. 2006. Sequential colonization and diversification of Galápagos
endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution. 60:2311–
2328.

Park TR, Fitzgerald EM. 2012. A review of Australian fossil penguins (Aves:

Park T, Fitzgerald EMG, Gallagher SJ, Tomkins E, Allan T. 2016. New Miocene Fossils and
the History of Penguins in Australia. Plos One. 11:e0153915.

Patten MA, Unit P. 2002. Diagnosability versus mean differences of sage sparrow
subspecies. The Auk. 119:26-35.

34:134–144.

Figures