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Abstract
The two most common paradigms for end-to-end speech recog-
nition are connectionist temporal classification (CTC) and
attention-based encoder-decoder (AED) models. It has been ar-
gued that the latter is better suited for learning an implicit lan-
guage model. We test this hypothesis by measuring temporal
context sensitivity and evaluate how the models perform when
we constrain the amount of contextual information in the audio
input. We find that the AED model is indeed more context sen-
sitive, but that the gap can be closed by adding self-attention to
the CTC model. Furthermore, the two models perform similarly
when contextual information is constrained. Finally, in contrast
to previous research, our results show that the CTC model is
highly competitive on WSJ and LibriSpeech without the help of
an external language model.
Index Terms: automatic speech recognition, end-to-end speech
recognition, connectionist temporal classification, attention-
based encoder-decoder

1. Introduction
Connectionist temporal classification (CTC) [1] and attention-
based encoder-decoder (AED) models [2, 3] are arguably the
most popular choices for end-to-end automatic speech recogni-
tion (E2E ASR). However, it has been unclear if CTC and AED
models process speech in qualitatively different ways. The use
of sentence-level context is important for human speech percep-
tion [4], but has not been studied for ASR. Previous research
has claimed that AED models learn a better implicit language
model given enough training data [5]. Furthermore, compar-
isons of the two models have suggested that CTC models are
inferior without the help of an external language model [5, 6],
which leads to the hypothesis that CTC models are incapable of
exploiting long temporal dependencies.

We study how the two E2E ASR models utilize tempo-
ral context. For this purpose, we consider first-order deriva-
tives [7, 8] and the occlusion of input features [9]. While these
methods have been frequently used to analyze natural language
processing models [10, 11, 12, 13] their application to speech
recognition has been limited [14, 15].

We first highlight three general architectural differences be-
tween the two approaches and argue that these may enable AED
models to utilize more temporal context than CTC models (sec-
tion 2). Further, we define an intrinsic measure of context sensi-
tivity based on the partial derivative of individual character pre-
dictions with respect to the input audio (section 3.1 and figure
1). This allows us to analyze the sensitivity across the temporal
dimension of the input for any E2E ASR model. Finally, we
devise an experiment to directly compare model performance
when context is constrained (section 3.2). For this, we use hand-
annotated word-alignments to accurately occlude temporal con-
text. Our contributions are as follows:

1. Through a derivative-based sensitivity analysis we show that
the AED model is more context sensitive than the CTC
model. Our ablation study attributes this difference to the
attention-mechanism which closes the gap when applied to
the CTC model.

2. Although the AED model is more context sensitive than the
CTC model without an attention-mechanism, we find that
the two models perform similarly when contextual informa-
tion is constrained by occluding surrounding words in the
input audio.

3. In contrast to previous comparisons, we show that the CTC
model is highly competitive with the AED model without
the help of an external language model. Using a deep and
densely connected architecture, both models reach a new
E2E state-of-the-art on the WSJ task.
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Figure 1: Sensitivity scores for the character “p” in the correctly predicted sentence “who is going to stop me” by the CTC model
trained on LibriSpeech. Hand-annotated word and phone alignments from the TIMIT dataset are shown in the bottom. The temporal
spans corresponding to different levels of accumulated sensitivity are shown in the top. By averaging these across all non-blank
character predictions in a test set, we obtain a measurement of the model’s context sensitivity.
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2. End-to-End Speech recognition
2.1. Connectionist Temporal Classification Models

Given a sequence of real valued input vectors x = (x1, ...,xT ),
CTC models compute an output sequence ŷ = (ŷ1, ..., ŷU ),
where each ŷu is a categorical probability distribution over the
target character set. Apart from the letters a-z, white-space and
apostrophe (’), the character set also includes the special blank
token (-). The input and output lengths, T and U , are related by
U = dT

R
e where R is a constant reduction factor achieved by

striding or stacking adjacent temporal representations. In this
study, we never use an external language model. Instead, we
rely on a simple greedy decoder β(·) that collapses repeated
characters and removes blank tokens (e.g., -c-aatt- 7→ cat).
The β(·) function operates on the predicted alignment path
q̂ = (q̂1, ..., q̂U ) obtained by letting q̂u = arg maxq ŷu,q .

This decoding mechanism results from the CTC loss func-
tion. The loss is computed by summing the probability of all
alignment paths q = (q1, ..., qU ) that translate to the target se-
quence y. The probability of a single path is given by:

P(q|x) =

U∏
u=1

ŷu,qu (1)

Given the set of paths {q | β(q) = y} = β−1(y) that translate
to a given target transcript, the total probability is:

P(y|x) =
∑

q∈β−1(y)

P(q|x) (2)

The loss is simply L(y, ŷ) = ln(P(y|x)) which can be com-
puted efficiently with dynamic programming [1].

2.2. Attention-based Encoder-Decoder Models

AED models first encode the input x to a sequence of vectors
h = (h1, ...,hU ) = ENCODE(x) which is passed to an autore-
gressive decoder function DECODE(·). We reuse U to denote
the length of h to emphasize that, as with CTC models, it is de-
fined by a constant reduction factor R. However, AED models
are typically robust to a high reduction factor (R ≤ 24) com-
pared to CTC models (R ≤ 21) [5]. Operating at a lower tem-
poral resolution should make it easier for recurrent encoder lay-
ers (section 2.3) to pass information across longer time spans.
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Figure 2: Default encoder architecture used for both CTC and
AED models. * Only applied in the bottleneck layer of the first
dense LSTM block for the AED model to achieve R = 4.

Roughly speaking, we could write the decoder as ŷk =
DECODE(h, ŷk−1, sk−1,ak−1) where ŷk is a probability dis-
tribution over characters, sk is the decoder state and ak is the at-
tention vector. Unlike CTC models, there are no repeated char-
acters or blank tokens to interleave the final predictions. Thus,
given the same output sequence, we have K ≤ U . As with
the encoder, lower temporal resolution between decoder steps
could make it easier to pass information between predictions.

Emphasizing more detail, we split the DECODE(·) function
into the following sequence of computations:

sk = RECURRENT(sk−1, [Φ(ŷk−1);ak−1]) (3)
ak = ATTEND(sk,h) (4)
ŷk = PREDICT(ak) (5)

Here [ · ; · ] denotes the concatenation of two vectors and Φ(·)
is a non-differentiable embedding lookup.1 The RECURRENT(·)
function can take the form of any recurrent neural network ar-
chitecture. We use a single LSTM [16] cell for all our exper-
iments. The PREDICT(·) function is a single fully-connected
layer followed by the softmax function. The following steps
define the ATTEND(·) function:

ek,u = v>tanh(Wssk + Whhu) (6)

αk,u =
exp(ek,u)∑U

u′=1 exp(ek,u′)
(7)

ck =

U∑
u=1

αk,uhu (8)

ak = tanh(Wa[ck; sk]) (9)

Where v, Ws, Wh and Wa are trainable parameters. The
computation of the energy coefficient ek,u is taken from [17].
Note that each energy coefficient, and thus each attention
weight αk,u, is computed identically for all encoder representa-
tions hu. Unlike recurrent network connections, combining in-
formation from time steps far apart does not require propagating
the information through a number of computations proportional
to the distance between the time steps.

Thus, we have highlighted three components that could
make AED models more context sensitive: (I) Encoder resolu-
tion, (II) decoder resolution and (III) the attention-mechanism.

2.3. Encoder Architecture

Whereas the main contribution of the CTC framework is the loss
function, the AED model relies on a more complex architecture
that allows it to be trained with a simple cross-entropy loss. To
see this, note that the CTC forward pass can be stated as a subset
of the functions introduced in section 2.2:

h = ENCODE(x) (10)
ŷu = PREDICT(hu) (11)

As in previous work, we use convolutions followed by a se-
quence of bidirectional recurrent neural networks [18, 19, 20].
Our final encoder has 10 bidirectional LSTM layers with skip-
connections inspired by [21]. The outputs of the forward and
backward cells are summed after each LSTM layer. Default is
R = 2 for CTC and R = 4 for AED. See figure 2.

1The lookup is not captured by the gradient-based sensitivity analy-
sis presented in 3.1.
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Model clean other type params

Li et al., 2019 [22] 3.86 11.95 CTC 333 M
Kim et al., 2019 [23] 3.66 12.39 AED ~320 M
Park et al., (2019) [18] 2.80 6.80 AED ~280 M

Irie et al., (2019) [24]
Small - Grapheme 7.9 21.3 AED 7 M
Small - Word-piece 6.1 16.4 AED 20 M
Medium - Grapheme 5.6 15.8 AED 35 M
Medium - Word-piece 5.0 14.1 AED 60 M

Our work:
Deep LSTM 5.13 16.03 CTC 17.7 M
Deep LSTM 5.45 17.05 AED 19.8 M

Table 1: Word error rates on the clean and other test sets of Lib-
riSpeech. None of the above use an external language model.

3. Method
We used two different approaches for analyzing temporal con-
text utilization of the two E2E ASR models. The derivative-
based sensitivity analysis (3.1) can be used to compare a set of
models on any dataset. However, as we will see, there is no
guarantee that the differences found with this approach trans-
late to better performance. The occlusion-based analysis (3.2)
allows us to evaluate how the models respond when we remove
temporal context. This measure is easy to interpret and can
be used to directly asses the importance of temporal context,
but requires hand-annotated word-alignments which are rarely
available in publicly available datasets.

3.1. Derivative-based Sensitivity Analysis

We define a sequence of sensitivity scores rk (ru for CTC mod-
els) across the temporal dimension of the input space for each
predicted character. Let F be number of spectral input features
and Q the size of the output character set:

rk,t =

Q∑
q=1

F∑
f=1

∣∣∣∣∂ŷk,q∂xt,f

∣∣∣∣ (12)

An example is shown in figure 1. Our goal is to measure the
dispersion of these scores across the input time steps. We do
so by summing the scores from largest to smallest and mea-
sure the temporal span of the scores accumulated for a cer-
tain percentage of the total sensitivity. For example, the set of
scores needed to account for 10% of the total sensitivity may
be {rk,3, rk,7, rk,8, rk,10}. The temporal span would then be
10− 3 = 7 time steps corresponding to 0.07 seconds. We take
the mean of this span for a fixed percentage across all character
predictions in a given data set to summarize the temporal con-
text sensitivity of a model. This allows us to evaluate how the
sensitivity disperses as we increase the accumulated percentage.
A higher dispersion of sensitivity scores equals a higher context
sensitivity. The derivative-based measure considers a lineariza-
tion of the models and, thus, does not capture non-linear effects.

3.2. Occlusion-based Analysis

To directly test the dependence on contextual information, we
use hand-annotated word-alignments to systematically occlude
context. Given a word wt, we test how well a model recognizes

Model eval92 type

Chorowski & Jaitly, (2016) [25] 10.60 AED
Zhang et al., (2017) [20] 10.53 AED
Chan et al., (2016) [26] 9.6 AED
Sabour et al., (2018) [27] 9.3 AED

Our work:
Deep LSTM 9.25 CTC
Deep LSTM 9.25 AED

Table 2: Word error rates on the eval92 test set of WSJ. None of
the above use an external language model.

the word given different levels of context. That is, we crop out
the audio segment corresponding to wt−C , ..., wt+C where C
is the maximum number of context words visible on each side.2

If the target word wt is in the predicted sequence, we accept
the hypothesis. To avoid ambiguous situations where the target
word is identical to one of the 2C context words, we only make
use of sentences that consist of a sequence of unique words.

4. Experiments
4.1. Data and Training

We trained the models on the Wall Street Journal CSR corpus
(WSJ) [28] and the LibriSpeech ASR corpus [29]. WSJ con-
tains approximately 81 hours of read newspaper articles and
LibriSpeech contains 960 hours of audio book samples. We
used 80-dimensional log-mel spectrograms as input. The mod-
els were trained for 600 epochs on WSJ and 120 epochs on
LibriSpeech. We used Adam [30] with a fixed learning rate
of 3 · 10−4 for the first 100 epochs on WSJ and 20 epochs on
LibriSpeech, before annealing it to 1/6 of its original size. We
used dropout after each convolutional block [31] and each bidi-
rectional LSTM layer [32]. The dropout rate was set to 0.10
for models trained on LibriSpeech and 0.40 for WSJ. Similar
to [33], we constructed batches of similar length samples, such
that one batch consisted of up to 320 seconds of audio and con-
tained a variable number of samples. For the AED model, we
used teacher-forcing with a 10% sampling rate.

For the occlusion-based analysis, we considered the hand-
annotated word-alignments from the TIMIT dataset [34]. We
excluded all sentences repeated by multiple speakers in order to
avoid biasing the results towards certain sentence constructions
(i.e., we only use the SI-files of the TIMIT dataset).

4.2. ASR results

We compare the default configuration of our CTC and AED
models trained on WSJ and LibriSpeech to other notable E2E
ASR models in table 1 and 2. Both the CTC and AED model
compare favorably to more sophisticated approaches on WSJ.
On LibriSpeech, our models do not perform as well as larger
models, but are still on par with models of comparable size from
[24] which is the same model as in [18] at smaller scale. The
slightly worse performance of the AED model on LibriSpeech
can be attributed to longer sentences which have a tendency to
destabilize training. Similar issues have been reported in prior
work [2, 5].

2We also add the silence from the start and end of the original sen-
tence to the audio segment as it improves model performance.
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Figure 3.1: CTC vs. AED (test source: WSJ)

CTC, Train source: WSJ
AED, Train source: WSJ
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Figure 3.2: CTC vs. AED (test source: LibriSpeech)

CTC, Train source: LibriSpeech
AED, Train source: LibriSpeech
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Figure 3.3: CTC vs. AED (test source: TIMIT)

CTC, Train source: WSJ
CTC, Train source: LibriSpeech
AED, Train source: WSJ
AED, Train source: LibriSpeech
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Figure 3.4: Temporal resolution (test source: WSJ)

AED, R= 2, K · 1, Train source: WSJ
AED, R= 4, K · 1, Train source: WSJ
AED, R= 8, K · 1, Train source: WSJ
AED, R= 4, K · 2, Train source: WSJ
AED, R= 4, K · 3, Train source: WSJ
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Figure 3.5: Attention-mechanism (test source: WSJ)

CTC, Train source: WSJ
CTC w/ self-attention, Train source: WSJ
AED, Train source: WSJ
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Figure 3.6: Occlusion performance (test source: TIMIT)

CTC, Train source: WSJ
CTC, Train source: LibriSpeech
AED, Train source: WSJ
AED, Train source: LibriSpeech

Figure 3: Sensitivity analysis (figures 3.1-3.5) and occlusion-based analysis (figure 3.6). See corresponding subsections.

4.3. CTC vs. AED

As hypothesized, figure 3.1 and 3.2 reveal that our AED models
utilized a larger temporal context than the CTC models based on
the sensitivity scores. The trend was consistent across all levels
of accumulated sensitivity scores. In figure 3.3, we see the same
pattern when evaluated on the TIMIT dataset which will be used
for the occlusion-based analysis.

4.4. Temporal resolution

We trained the AED model with three different temporal en-
coder resolutions R = 2, 4, 8 on the WSJ dataset. R was con-
figured by increasing stride in each of the three convolutional
layers. As seen in figure 3.4, encoder resolution had no impact
on context sensitivity.

To test decoder resolution, we interleaved the target tran-
script with one or two redundant blank tokens to effectively in-
crease the target length to K · 2 or K · 3. Figure 3.4 shows that
decoder resolution had no impact on context sensitivity.

4.5. Attention-mechanism

To test how the attention-mechanism affects context sensitivity,
we incorporated the ATTEND(·) function in the CTC architec-
ture. Instead of passing hu directly to PREDICT(·), we first
applied self-attention:

ŷu = PREDICT(ATTEND(hu,h)) (13)

We trained this model on the WSJ dataset and compared it to
the AED model and the CTC model without attention in figure
3.5. The attention-mechanism closed the gap in context sen-
sitivity between the two models. Thus, the difference found in
sections 4.3 is likely a result of this architectural component that
can be easily incorporated in a CTC model. However, a large
U results in high memory consumption. Therefore, we used a
smaller model where the two dense LSTM blocks are replaced
by three LSTM layers with 128 units for the experiments shown
in figures 3.4 and 3.5.

4.6. Occlusion performance

Figure 3.6 shows how model performance is affected under dif-
ferent context constraints. We see that both the CTC and AED
model suffered severely when contextual information was com-
pletely removed. The models came close to optimal perfor-
mance when approximately three words were allowed on each
side of the target word. Thus, temporal context is an important
factor for both models. This result aligns well with the common
n-gram size (3-4) when decoding with the help of a statistical
language model [25, 35, 36].

Based on the results in section 4.3, we would expect that
the AED models rely more on the temporal context than the
CTC model. However, we do not see such a trend in figure 3.6.
Indeed, there was no pronounced or consistent difference be-
tween the two models regardless of training source. This result
implies that the architectural differences between the AED and
CTC models do not necessarily translate to a performance dif-
ference. It may be that the AED model included more evidence
from context than the CTC model, but the results in figure 3.6
indicate that this did not add any additional value in terms of
lowering word error rate.

5. Conclusions

We show that AED models are generally more context sensitive
than CTC models and that this difference is largely explained
by the attention-mechanism of AED models. Adding a self-
attention layer to the CTC model bridges the gap between the
models. Analyzing performance by constraining temporal con-
text, we also find that the initial difference between the two
models is not crucial in terms of word error rate performance,
although both models rely heavily on context for optimal per-
formance. Our experiments on WSJ and LibriSpeech show that
CTC models are capable of delivering state-of-the-art results
on par with AED models without an external language model.
Because of its simplicity and more stable training, CTC is our
preferred E2E ASR framework.
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