Search for 7Be in the outbursts of four recent novae

Molaro, P.; Izzo, L.; Bonifacio, P.; Hernanz, M.; Selvelli, P.; della Valle, M.

Published in:
Monthly Notices of the Royal Astronomical Society

DOI:
10.1093/mnras/stz3587

Publication date:
2020

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC

Citation for published version (APA):
Search for ^7Be in the outbursts of four recent novae

P. Molaro 1,2, L. Izzo 3,4, P. Bonifacio 5, M. Hernanz 6, P. Selvelli 1 and M. della Valle 7

1INAF-Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste, Italy
2Institute of Fundamental Physics of the Universe, Via Beirat 2, 34151, Grignano, Trieste, Italy
3Instituto de Astrofísica de Andalucía, Glorieta de la Astronomía s/n, 18008, Granada, Spain
4DARK Cosmology Centre, Niels Bohr Institutet, Københavns Universitet, Lyngbyvej 2, 2100 København, Denmark
5GEPI, Observatoire de Paris, Université PSL, CNRS, Place Jules Janssen, 92195 Meudon, France
6Institute of Space Sciences (ICE, CSIC) and IEEC, Campus UAB, Camí de Can Magrans s/n, 08193 Cerdanyola del Valles (Barcelona), Spain
7Capodimonte Astronomical Observatory, INAF-Napoli, Salita Moiariello 16, 80131-Napoli, Italy

Accepted 2019 December 18. Received 2019 December 18; in original form 2019 August 14

ABSTRACT

Following the recent detection of ^7Be II in the outburst spectra of classical novae, we report the search for this isotope in the outbursts of four recent bright novae by means of high-resolution Ultraviolet and Visual Echelle Spectrograph (UVES) observations. The ^7Be II $\lambda\lambda$313.0583, 313.1228 nm doublet resonance lines are detected in the high-velocity components of Nova Mus 2018 and ASASSN-18fv during outbursts. However, ^7Be II is not detected in ASASSN-17hx and possibly not in Nova Cir 2018, which shows that ^7Be is not always ejected in the thermonuclear runaway. Taking into account the ^7Be decay, we find $X(\text{^7Be})/X(\text{H}) \approx 1.5 \times 10^{-5}$ and 2.2×10^{-5} in Nova Mus 2018 and ASASSN-18fv, respectively. A value of $^7\text{Be}/\text{H} \approx 2 \times 10^{-5}$ is found in five out of the seven extant measurements, and it can be considered as a typical ^7Be yield for novae. However, this value is almost one order of magnitude larger than predicted by current theoretical models. We argue that the variety of high $^7\text{Be}/\text{H}$ abundances could be the result of a higher than solar content of ^3He in the donor star. The cases with ^7Be not detected might be related to the small mass of the white dwarf (WD) or to relatively little mixing with the core material of the WD. The $^7\text{Be}/\text{H}$, or $^7\text{Li}/\text{H}$, abundance is ≈ 4 dex above meteoritic abundance, thus confirming the novae as the main sources of ^7Li in the Milky Way.

1 INTRODUCTION

In models of classical novae, hydrogen-rich material is transferred from a main-sequence star or evolved giant through an accretion disc on to a white dwarf (WD). The temperature on the WD surface rises until CNO cycle fusion starts (Starrfield, Iliadis & Hix 2016). It has been suggested that in the thermonuclear runaway ^7Be could also be made via the reaction $^3\text{He}(\alpha, \gamma)\text{^7Be}$ and then ejected (Arnould & Norgaard 1975; Starrfield et al. 1978). ^7Be is a radioactive nucleus and decays into ^7Li with a half-life of 53.22 d, so that all ^7Be is expected to decay into ^7Li. This suggestion dates back to the 1970s but it has been thwarted by the non-detection of ^7Li (Friedjung 1979). The long-sought ^7Li $\lambda\lambda$670.8 nm resonance line was recently identified in the slow nova V1369 Cen (Izzo et al. 2015). However, the resonance doublet of the parent nucleus ^7Be II was detected in few novae (Tajitsu et al. 2015, 2016; Molaro et al. 2016; Izzo et al. 2018a). By re-analysis of historical novae using archival International Ultraviolet Explorer (IUE) observations, ^7Be II has also been detected in emission in the very fast nova V838 Her (Selvelli, Molaro & Izzo 2018). This detection suggests that ^7Be is freshly created in the nova thermonuclear runaway and ejected in the outburst. It must be noted that in all these cases ^7Li at $\lambda\lambda$670.8 nm went undetected. So far, ^7Li has been detected only in V1369 Cen while the parent nuclei ^7Be has been detected in all the novae where it has been searched for. The persistent non-detection of neutral ^7Li after more than a decaying time has been explained by the capture of a K-shell electron by ^7Be, thus transforming into ^7Li II, which does not neutralize throughout the time of the outburst (Molaro et al. 2016).
The ^{7}Be II $\lambda\lambda313.1$ nm doublet shows a huge equivalent width (EW), comparable only to hydrogen and much greater than all other elements. The measured atomic fraction implies massive ^{7}Be ejecta with the final ^{7}Li product up to four and even five orders of magnitude above meteoritic abundance. With such an overproduction, novae could be an important ^{7}Li factory, and therefore does not show any enhancement.

A major problem is that the abundances measured exceed what is foreseen by current models (Hernanz et al. 1996; José & Hernanz 1998). Initially, ^{7}Be detection occurred in slow novae, but it has also been found in fast novae such as V407 Lup, whose progenitor is likely an ONe WD (Izzo et al. 2018a), and V838 Her, which is one of the fastest ever observed (Selvelli et al. 2018). Thus, it seems that ^{7}Be is present in both fast and slow novae, and with comparable abundances.

The decay of ^{7}Be produces a high-energy line at 478 keV emitted during the de-excitation to the ground state of the fresh ^{7}Li produced in the ^{7}Be electron capture (Gomez-Gomar et al. 1998). Several unsuccessful attempts to detect the line with gamma ray satellites have been performed (Harris et al. 2001). The detection of the radioactive ^{7}Be nuclei in the nova outburst reopened the possibility of detectability of the 478-keV line with INTEGRAL for nearby novae. The distance should be less than \approx0.5 kpc, although the horizon will depend on the amount of ^{7}Be produced in the nova event (Siegent et al. 2018). The nova ASASSN-18fv was observed with INTEGRAL-Director Discretionary Time, during 2.8 ms. Although the complete data analysis is still ongoing, it is already clear that only upper limits to the 478-keV emission line have been obtained, which are not constraining for the models (Siegent et al., in preparation).

Following the recent detection of ^{7}Be II in the outburst spectra of classical novae, we activated a Target of Opportunity (ToO) programme at the European Southern Observatory (ESO) to target ^{7}Be in novae that, at maximum, reach magnitude $V < 9$. We report here on the search for the ^{7}Be isotope in high-resolution Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of four recent novae discovered in the years 2017 and 2018.

2 THE PROGRAM NOVAE

The four novae of this programme have been the brightest novae since 2017. Source brightness is required in order to study the resonance doublet lines ^{7}Be II that lie at $\lambda\lambda313.1$ nm, very close to the atmospheric cut-off where a significant atmospheric absorption is present.

Several UVES spectra for each nova were obtained following the maximum. The UVES settings were DIC1 346–564, with a central wavelength of 346 nm (range 305–388 nm) in the blue arm, to cover the ^{7}Be II $\lambda\lambda313.1$ nm lines, and 564 nm (460–665 nm) in the red arm. Every observation was followed by another with the setting DIC2 437–760, to cover in the blue arm the H&K Ca II lines and in the red arm to cover several metallic lines and the ^{7}Li I at $\lambda\lambda670.8$ nm. The journal of observations for each nova is provided in Table 1. The resolving power was typically $R = \lambda/\delta\lambda \approx 8000$ for the blue arm and ≈ 120000 for the red arm. Overlapping spectra have been combined for each epoch to maximize the signal-to-noise ratio.
Table 2. A list of single-ionized ions that are the main contributors to the absorption in the region around λ313.0 nm. Atomic data are taken from the NIST Lines data base. Those for Cr II are from Lawler et al. (2017).

<table>
<thead>
<tr>
<th>Wavelength (Air) (nm)</th>
<th>Ion</th>
<th>Log(gf)</th>
<th>Low en. (eV)</th>
<th>Upper en. (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>311.0672</td>
<td>Ti II</td>
<td>−0.953</td>
<td>1.23</td>
<td>5.21</td>
</tr>
<tr>
<td>311.2049</td>
<td>Ti II</td>
<td>−1.157</td>
<td>1.22</td>
<td>5.21</td>
</tr>
<tr>
<td>311.4295</td>
<td>Fe II</td>
<td>−1.43</td>
<td>3.89</td>
<td>7.87</td>
</tr>
<tr>
<td>311.658</td>
<td>Fe II</td>
<td>−1.50</td>
<td>3.89</td>
<td>7.87</td>
</tr>
<tr>
<td>311.7666</td>
<td>Ti II</td>
<td>−0.494</td>
<td>1.23</td>
<td>5.21</td>
</tr>
<tr>
<td>311.8649</td>
<td>Cr II</td>
<td>−0.08</td>
<td>2.42</td>
<td>6.40</td>
</tr>
<tr>
<td>311.9799</td>
<td>Ti II</td>
<td>−0.485</td>
<td>1.24</td>
<td>5.22</td>
</tr>
<tr>
<td>312.0369</td>
<td>Cr II</td>
<td>0.10</td>
<td>2.43</td>
<td>6.41</td>
</tr>
<tr>
<td>312.4978</td>
<td>Cr II</td>
<td>0.26</td>
<td>2.45</td>
<td>6.42</td>
</tr>
<tr>
<td>312.8700</td>
<td>Cr II</td>
<td>−0.53</td>
<td>2.43</td>
<td>6.40</td>
</tr>
<tr>
<td>313.0583</td>
<td>Be II</td>
<td>−0.178</td>
<td>0.00</td>
<td>3.96</td>
</tr>
<tr>
<td>313.1228</td>
<td>Be II</td>
<td>−0.479</td>
<td>0.00</td>
<td>3.96</td>
</tr>
<tr>
<td>313.2056</td>
<td>Cr II</td>
<td>0.43</td>
<td>2.48</td>
<td>6.44</td>
</tr>
<tr>
<td>313.3048</td>
<td>Fe II</td>
<td>−1.9</td>
<td>3.89</td>
<td>7.84</td>
</tr>
<tr>
<td>313.6681</td>
<td>Cr II</td>
<td>−0.44</td>
<td>2.45</td>
<td>6.41</td>
</tr>
</tbody>
</table>

The 7Be II resonance lines are at 313.1 nm in a particularly challenging region, because of both the Earth’s atmosphere absorption and the transmission optical components of the spectrographs. The identification was made using the close correspondence in the position of the 7Be II lines with that of other ions that are known to be present in the outburst spectra. Coincidences are always possible and the most strong lines in the 7Be region are listed in Table 2. The detection becomes robust only when the other line of the 7Be resonance doublet at 313.1228 nm is also visible. Unfortunately, narrow components are not always present in the outburst spectra. When seen, the UVES resolution of ≈ 4 km s$^{-1}$ allows us to distinguish even between 7Be and 9Be isotopes. 9Be transitions fall at $\lambda\lambda313.04219$ and 313.10667 nm at 15.6 km s$^{-1}$ from the lighter isotope. However, 9Be is not synthesized in the nova thermonuclear runaway and, if present, it would be the one from the companion at a level of $^{9}\text{Be}/H = 2.4 \times 10^{-11}$ (Lodders, Palme & Gail 2009). Such a small abundance would be undetectable in the outburst spectra and 7Be is found at an abundance of six orders of magnitude higher.

2.1 Nova ASASSN-17hx

ASASSN-17hx was discovered on 2017 June 19 (Stanek et al. 2017a,b,c) in the Scutum constellation by the All-Sky Automated Survey for SuperNovae (ASASSN; Shappee et al. 2014). Initially of $V = 12$ mag, ASASSN-17hx brightened continuously to reach $V \approx 8$ mag on 2017 July 31. The nova showed a long pre-maximum plateau. This is characteristic of slow novae and produced by an optically thick expanding envelope that undergoes cooling during the expansion. After peak, the nova declined and re-brightened several times up to 100 d after maximum. The detailed light curve of ASASSN-17hx is shown in Fig. 1. The nova was initially classified as a He/N nova, but later developed strong Fe ii features, thus showing features of both He/N and Fe ii novae at different epochs (Guarro et al. 2017; Munari et al. 2017; Pavana et al. 2017; Williams & Dartly 2017; Poggiani 2018). ASASSN-17hx is at low Galactic latitude ($b = −2^\circ22442$) and it is highly reddened. The reddening maps of Schlafly & Finkbeiner (2011) provide $E(B−V) = 1.565$ mag while those of Schlegel, Finkbeiner & Davis (1998) provide $E(B−V) = 1.820$ mag; the latter value becomes $E(B−V) = 1.218$ mag when corrected according to the prescription of Bonifacio,
Monai & Beers (2000). Our spectra provide an independent estimate of the reddening from the diffuse interstellar band (DIB) at 578.0 nm using the relation of Friedman et al. (2011). We measure an EW of the DIB of 0.05797 nm that implies $E(B-V) = 1.139$ mag. Adopting this value and $E(GP - GYP) = 0.41595 AV$, we derive a colour for the likely nova progenitor ($GYP - GP = -0.202$ mag), which corresponds to a black-body with a temperature of about 17 000 K.

The UVES spectra of ASASSN-17hx have been taken at four epochs starting from day 15 after the maximum at JD 245 7964.4886 until day 91. The region around 7Be at these epochs is shown in Fig. 2. The spectra of day 15 and day 23 are very similar but quite different from the other epochs. In the early spectra, common features are strong absorptions with relatively low velocity at ≈ -300 km s$^{-1}$ and a broad high-velocity component spanning 200 km s$^{-1}$ with a mean velocity at ≈ -1000 km s$^{-1}$.

The spectrum of day 23 is shown in the left panel of Fig. 3 where the 7Be II, Ca II K, Fe II $\lambda \lambda 516.90$ nm and Hγ regions are plotted on to a common velocity space. A close correspondence could be found only for the -450 km s$^{-1}$ component, as marked in the figure. However, the correspondence is lost for the other absorptions and we conclude that 7Be II is probably not present in the spectrum of the nova outburst. The spectra of later epochs look quite different, showing a marked evolution of the outburst. The spectrum at day 48 is shown in the right panel of Fig. 3. In addition to the -460 km s$^{-1}$ component, it shows the presence of a new and very strong component at -700 km s$^{-1}$, while the very-high-velocity component has vanished. In the last epoch, the new component has decreased considerably, although remaining quite strong, and has moved slightly to ≈ -800 km s$^{-1}$. In both these epochs, no correspondence is found between Ca II and a possible presence of 7Be and we conclude that there is no evidence for the presence of 7Be II in the spectrum. Because of the general weakening of the absorption, there are several absorption features that can be identified in the 7Be regions as Cr II lines of $\lambda \lambda 313.668$, 313.206 and 312.870 nm. This supports the conclusion that 7Be II is either weak or totally absent. Of the few novae investigated so far, this is the first nova for which it is possible to rule out, with some confidence, the presence of 7Be II in the outburst spectra. The failure to detect 7Be should have an important bearing on the thermonuclear mechanisms leading to the 7Be synthesis and ejection.

2.2 Nova Mus 2018

Nova Mus 2018, also PNV J11261220–6531086, was discovered on 2018 January 14 by Rob Kaufman (2018, AAVSO Alert Notice 609) in the Musca constellation with a visual magnitude of ≈ 7.0 mag, and then confirmed as a Fe II nova. Archival data of ASASSN Sky Patrol observations show that the nova eruption began approximately two weeks earlier (P. Schmeer, AAVSO Alert Notice 609). The light curve of Nova Mus 2018 is shown in Fig. 1.

Nova Mus 2018 faded quite rapidly and we are able to take four epochs, which include one epoch on the maximum brightness and the other three covering up to 45 d after maximum when the nova was already of 14 mag, just before the beginning of the observed dust formation dip. The nova became a very difficult target for observations at 7Be II $\lambda \lambda 313.1$ nm and the spectra at days 40 and 45 are severely underexposed in the region. The early spectra are shown in Fig. 4. The spectrum at day 35 in the 7Be II region is compared with the Ca II K, Fe II $\lambda \lambda 516.903$ nm and Hγ lines in Fig. 5. The spectrum shows a relatively simple structure with three main absorption components at -820, -920 and -1150 km s$^{-1}$ and a number of smaller ones. All these components have a clear correspondence with the stronger of the 7Be II $\lambda \lambda 313.1$ doublet and often show evidence for the fainter one as well. A zoom of the spectrum of Nova Mus 2018 at day 35 is shown in Fig. 6. Thus, there are no doubts about the identification and we consider it to be a robust detection of 7Be II.

2.3 Nova Cir 2018

Nova Cir 2018, also PNV J13532700–6725110, was discovered by John Seach on 2018 January 19, in the constellation of Circinus. The nova brightened slowly from magnitude $V \approx 8.5$ to 6.3 mag by January 27. Then it fluctuated between magnitudes $V \approx 6.5$ and 8.5 mag for about three months, before fading to below magnitude $V \approx 9$ mag on June 25, as can be seen from its light curve shown in Fig. 1. Spectroscopic observations obtained on January 30 show a number of Fe II lines with absorption troughs at about -1300 km s$^{-1}$ (Strader et al. 2018a). SALT optical spectroscopy also reported a component at -500 km s$^{-1}$ (Aydi et al. 2018).

The evolution of the spectral features around the 7Be II $\lambda \lambda 313.1$ nm region is shown in Fig. 7. At day -15 from the maximum taken at JD 245 8157.0024, there is a huge absorption spanning more than 1000 km s$^{-1}$, which in the observation at day 12 breaks down into two main absorption features centred at -400 and -1500 km s$^{-1}$, respectively. Later observations show relatively little change in the profile, with the main absorption feature shifting to higher expansion velocities. It is only in the relatively late spectra, because of the weakening of the absorption, that some fine structure becomes visible.

Fig. 8 shows the 7Be II region compared, in velocity space, with other lines for days 66 and 75. At first glance, there is some possible 7Be absorption corresponding in velocity to the Ca II K features. However, the peak intensity does not correspond precisely and most of the absorption could be ascribed to Cr II. In particular, there are narrow features, which become visible only at this stage, without corresponding features of the weaker of the 7Be II doublet. Thus,
Figure 3. Left: spectrum of ASASSN-17hx at day 23 in the region of 7Be II, compared with the Ca II K, Fe II λ 516.903 nm and Hγ lines. All identifications shown in the panels refer to the -450 km s$^{-1}$ component. At zero and slightly positive velocities, there are multiple components as a result of the interstellar Ca II K line. Right: the spectrum of the nova at day 48. Note that at this epoch the main absorption component is found at -460 km s$^{-1}$. The x-axis is the same as in Fig. 2.

Figure 4. Evolution of Nova Mus 2018 in the region of 7Be. The x-axis is the same as in Fig. 2.

we conclude that 7Be is possibly absent or very weak in the outburst spectra of this nova.

2.4 Nova ASASSN-18fv

ASASSN-18fv is an exceptionally bright nova discovered in the Carina constellation on 2018 March 20 (Stanek et al. 2018), by the ongoing ASASSN. It reached $V \approx 6$ mag on March 22. The light curve is characterized by substantial jittering above the base level on a time-scale of days. According to the classification by Strope, Schaefer & Henden (2010), it was classified as a J-class nova. ASASSN-18fv was clearly detected by NuSTAR in both the FPMA and FPMB instruments but not in the Swift XRT observation (Nelson et al., 2018). The progenitor of ASASSN-18fv was identified by Strader et al. (2018b) in the Gaia Data Release 1 (DR1; Prusti et al. 2016) and in the VST Photometric Hα Survey (VPHAS) DR2 (Drew et al. 2014). The object in Gaia DR1 is at an angular distance of less than 0.11 from the nova, with no other objects in the catalogue within a radius of 5 arcsec. The object is also present in Gaia DR2 (Arenou et al. 2018; Brown et al. 2018) that provides a parallax of 0.151 mas with an error of 0.488 mas. It also provides
Figure 5. Spectrum of Nova Mus 2018 at day 35. The blends identified in the 7Be II panel refer to the three main components with velocities of -820, -920 and -1150 km s$^{-1}$, respectively. The x-axis is the same as in Fig. 2.

Figure 6. Magnification of the spectrum of Nova Mus 2018 at day 35 to show the 7Be II identifications.

Figure 7. Evolution of Nova Cir 2018 in the region of 7Be. The x-axis is the same as in Fig. 2.

We succeeded in triggering the ToO programme on 2018 March 22, achieving one of the few spectra of a nova during its maximum ever taken. A first report of the spectroscopic observations close to the maximum was given in Izzo et al. (2018b). The optical spectrum shows a bright continuum and is characterized by several narrow absorption features and significant Balmer and Paschen jumps. The hydrogen lines, O I 777.3 nm and several multiplets of Fe II are in emission with a P Cygni profile. The main component in absorption is centred at $v \sim -250$ km s$^{-1}$, which is a relatively modest velocity for a nova and suggests a possible peculiar nature.

Our spectra allow us to obtain an independent estimate of the reddening in the direction of the nova. The reddening maps of Schlafly & Finkbeiner (2011) provide $E(B - V) = 1.1046$ mag for the position of the nova. In our spectra, we were able to detect several interstellar features. The velocity span by the Na I D lines and the Ca II H&K lines was much smaller than the span by the H I 21-cm emission. This strongly suggests that the light from the nova goes through only a part of the Galactic interstellar medium along that line of sight. The Na I D lines are saturated and not well suited to estimating the reddening, so we used the DIB at 578.0 nm instead. We measure an EW of 0.01917 nm that, using the relations of Friedman et al. (2011), implies $E(B - V) = 0.37$ mag (i.e. $A_V = 1.15$ mag), in good agreement with the value from the maps of Schlafly & Finkbeiner (2011).

Adopting this value and $E(G_{BP} - G_{RP}) = 0.41595A_V^2$ we thus derive a colour for the nova progenitor $(G_{BP} - G_{RP}) = 0.39066$ mag that corresponds to a black-body of about 8200 K.

2See http://stev.oapd.inaf.it/cgi-bin/cmd; this value is derived using the O'Donnell (1994) extinction curve.
Search for ^7Be in novae

Figure 8. Spectra of Nova Cir 2018 at day 66 in the left panel and at day 75 in the right panel. The Cr II blends identified in the ^7Be II panel refer to the five main components with velocities of −615, −705, −1380, 1500 and −1710 km s$^{-1}$, respectively.

In early epochs, the UVES spectral region around ^7Be shows a broad unresolved absorption. The main contribution is possibly ^7Be II but it cannot be proved. It is only for epochs later than day 63 that the weakening of general absorption reveals structure and the ^7Be doublet can be recognized in several discrete components, as can be seen in Fig. 9. The day 98 spectrum is plotted in Fig. 10 and shows five discrete components at −395, −490, −780, −805 and −880 km s$^{-1}$, respectively. Corresponding to these components, there is a feature at the position of the ^7Be II λ313.0583 nm line and also in several components of the ^7Be II λ313.1228 nm line. A magnification of the spectrum of this epoch is shown in Fig. 11. At this epoch, the 7Be decay has reduced by a factor of 2–3 the original abundance contributing to the blanketing reduction in the region. The components of the other lines present in the region as the Cr II λ312.870, 313.206 and 313.668 nm lines also become visible.

3 ^7Be ABUNDANCE ESTIMATE

The 7Be abundance in the nova ejecta can be estimated relatively to Ca, which is not a nova product. Single ionization is the main stage for both species in the expanding shell with no evidence of neutral or double ionized stages. However, column densities can be derived with confidence only when discrete and unsaturated components are seen. These are not always present in the outburst spectra and sometimes a sequence of observations lasting about 100 d from maximum are required for their detection (Molaro et al. 2016). Moreover, the presence of several blends and the possibility of emissions make the placement of the continuum in the ^7Be II region quite problematic. To reduce the effects of possible contaminants, it is convenient to measure the sum of the ^7Be II λ313.0583 + 7Be II λ313.1228 doublet and to compare it with the Ca II K line at 393.366 nm, which is relatively free from blends. The log(gf) of the ^7Be II doublet are −0.178 and −0.479, and that of Ca II K is +0.135. Following Spitzer (1998), we can write

$$\frac{N(^7\text{Be II})}{N(\text{Ca II})} = 2.164 \times \frac{W(^7\text{Be II}, \text{doublet})}{W(\text{Ca II}, K)}.$$ (1)

The Nova Mus 2018 spectrum in the regions of 7Be II and Ca II K line at day 45 is shown in Fig. 6. A major contaminant is Cr II, and the expected positions of the strongest lines of Table 3 are marked in the figure. The component at −820 km s$^{-1}$ of Ca II K line is identified. The same component of Cr II 313.206 is strong and has an EW of 96 mÅ. The components at −920 and −1150 km s$^{-1}$ should be present but blended with the 7Be II absorption. Also marked in the figure are the components of the Cr II 312.870 nm line. However, the −1150 km s$^{-1}$ component should be visible if present and, therefore, this line is very weak. The Cr II 312.498 nm and the Cr II 312.036 lines are seen in all the main velocity components.
By scaling with the relative strength, we estimate that the EWs of the Ca II components blended within the 7Be II absorption are of 160 mÅ from Ca II 313.206 and of ≈ 40 mÅ from Ca II 312.870 nm. The EW of the whole region spanned by the 7Be II components is of 1.8 ± 0.150 Å with blends taken into account. The main uncertainty comes from the continuum placement with a possible error of about 10 per cent. However, the Ca II 393.3 nm line is free of blends and the local continuum can also be determined with confidence. The EW of the Ca II 393.3 nm line is of 0.910 ± 0.030 Å providing a ratio of EW(7Be II)/EW(Ca II) = 1.98. Note that by using the component at velocity -1150 km s$^{-1}$ alone and the stronger of the 7Be II doublet, we would obtain a ratio of EW(7Be II)/EW(Ca II) = 1.22. This is equivalent to a ratio of 1.83 for the whole 7Be absorption and consistent with the ratio derived by using the integral of the whole absorption including all components. With equation (1), we obtain $N(7Be II)/N(Ca II) = 4.28$ (± 0.4). 7Be is unstable with a half life of 53.2 d. Thus, the abundance at explosion has been reduced by a factor of 1.6 after 35 d. Assuming a solar abundance of Ca II/H = 2.18 × 10$^{-6}$ (Lodders et al. 2009), we obtain in Nova Mus 2018 an abundance of 7Be/H = 1.5 × 10$^{-5}$. The calcium abundance is assumed to be solar in all cases considered here. Should Ca be higher than solar, the final 7Be/H would decrease accordingly.

The ASASSN-18fv UVES spectrum at day 98 is shown in Fig. 10. There are five discrete and narrow Ca II K components and all have the corresponding 7Be II 313.0583 nm and 313.1228 nm lines. At this epoch, the contaminants can also be seen and Cr II 321.8700 nm, Cr II 313.2053 nm and Cr II 313.6681 nm are identified in the figure. The ratio between the shadowed area of Be II and Ca II in Fig. 11 is EW(7Be II)/EW(Ca II) = 1.52. Similar ratios are measured also at day 63, 81 and 86. Thus, $N(7Be II)/N(Ca II) = 3.29$, by number. Considering the 7Be decay, the original abundance becomes a factor of 3.0 larger, i.e. $N(7Be II)/N(Ca II) = 9.9$. Assuming also here that all of Ca and 7Be are singly ionized and solar abundances for calcium, we obtain in ASASSN-18fv an abundance of $7Be/H = 2.15 x 10^{-5}$.

4 DISCUSSION

The present detection of 7Be in the outburst spectra of ASASSN-18fv and Nova Mus 2018 provides additional evidence that 7Be is freshly created in the thermonuclear runaway via the reaction $^3He(\alpha, \gamma)7Be$ and ejected during nova explosion. Nova Mus 2018 is a fast nova while ASASSN-18fv is moderately fast, according to the Gaposchkin (1957) classification, showing that the 7Be production is not related to the kind of nova. This is consistent with what is observed in the sample of novae studied so far with a mixture of different nova types and uncorrelated 7Be abundances.

In ASASSN-17hx and possibly also in Nova Cir 2018, there is no clear evidence for the presence of 7Be in the outburst spectrum. These are the first novae where the 7Be isotope has not been detected since it has been searched for. This shows that the thermonuclear reaction chain taking place on the WD and the ejection phase could be quite complex. The 7Be produced in the thermonuclear runaway chain needs to be transported relatively quickly to the surface by convection. This is a sort of Cameron–Fowler mechanism invoked for Li-rich red giants (Cameron & Fowler 1971) and it may not always operate effectively. The turbulent turnover timescales are of the order of 100 s throughout the initial deflagration stage. Therefore, at the same time as the temperature is driving the convection, the mixing may be incomplete within the shell (Shore 2019). We note also that in the latest numerical simulations of Starrfield et al. (2019) the 7Be yields are very sensitive to the WD mass, decreasing by a factor of 30 from the most massive WD to the lighter WDs.

The extant 7Be/H measurements are summarized in Table 3. The abundances derived in Nova Mus 2018 and ADSASSN18xv are comparable with those derived in V339 Del (Tajitsu et al. 2015), V838 Her (Selvelli et al. 2018) and V2944 Oph (Tajitsu et al. 2016) but a factor of 3 lower than those obtained in V407 Lup (Izzo et al. 2018a) and a factor of 5 lower than in V5668 Sgr (Molaro et al. 2016).

We emphasize that 7Be/H remains larger by at least one order of magnitude than predicted by nova models (Starrfield et al. 1978; Hernanz et al. 1996; José & Hernanz 1998). We note, however, that the final amount of 7Be is sensitive to the amount of 3He in the donor star as a higher abundance of 3He is expected to result in a higher 7Be abundance. Boffin et al. (1993) and Hernanz et al. (1996) found a logarithmic dependence of the 7Be output to the initial 3He abundance. The non-linearity of 7Be yields results from $^3He(\alpha, \gamma)7Be$, whose rate increases as the square of the initial 3He mass, and its importance increases as the square of the initial 3He mass. Therefore, it produces a leaking effect on the available 3He for the reaction $^3He(\alpha, \gamma)7Be$, whose rate increases only linearly for the initial 3He abundance. For 3He enhancements up to 100 solar, Boffin et al. (1993) derive $\chi(7Be)/\chi(3He) = 1 + L^{0.5}\log(\chi(3He)/\chi(3He_0))$, where $\chi(3He_0)$ is the 3He final mass fraction obtained with a solar initial 3He mass fraction. From the theoretical point of view, it is believed that low-mass main-sequence stars synthesize 7He through the p–p chains with peak abundances of few 10$^{-3}$ by number (Iben 1967). As the star ascends, the red giant branch convection dredges up 7He-enriched material to the surface, which is later expelled into the interstellar medium by wind or during the planetary phase. 3He is a particularly difficult element to measure. It can be measured in H II regions by using...
Figure 10. Spectra of ASASSN-18fv at day 98. The blends identified in the 7Be II panel refer to the three main components with velocities of -390, -490 and -700 km s$^{-1}$, respectively.

Figure 11. Magnification of the spectrum of day 98 of ASASSN-18fv. The shadowed regions show the area used for the equivalent widths.

Table 3. The 7Be/H (number) for the novae with narrow absorption components. The original values from Tajitsu et al. (2015, 2016) are corrected here for the decay of 7Be. References are: (1) Tajitsu et al. (2015); (2) Molaro et al. (2016); (3) Izzo et al. (2018a); (4) Tajitsu et al. (2016); (5) Selvelli et al. (2018); (6) this paper.

<table>
<thead>
<tr>
<th>Nova</th>
<th>Type</th>
<th>Day</th>
<th>Comp</th>
<th>7Be/H</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V339 Del</td>
<td>CO</td>
<td>47</td>
<td>-1103</td>
<td>1.9×10^{-5}</td>
<td>1</td>
</tr>
<tr>
<td>V5668 Sgr</td>
<td>CO</td>
<td>47</td>
<td>-1268</td>
<td>3.2×10^{-5}</td>
<td>1</td>
</tr>
<tr>
<td>V2944 Oph</td>
<td>CO</td>
<td>82</td>
<td>-1500</td>
<td>1.3×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>V407 Lup</td>
<td>ONe</td>
<td>8</td>
<td>-2030</td>
<td>6.2×10^{-5}</td>
<td>3</td>
</tr>
<tr>
<td>V838 Her</td>
<td></td>
<td>35</td>
<td>All</td>
<td>2×10^{-5}</td>
<td>5</td>
</tr>
<tr>
<td>ASASSN-17hx</td>
<td></td>
<td></td>
<td>None</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Nova Mus</td>
<td></td>
<td>35</td>
<td>All</td>
<td>1.5×10^{-5}</td>
<td>6</td>
</tr>
<tr>
<td>Nova Cir</td>
<td></td>
<td></td>
<td>Uncert</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>ASASSN-18fv</td>
<td></td>
<td>80</td>
<td>All</td>
<td>2.2×10^{-5}</td>
<td>6</td>
</tr>
</tbody>
</table>

measurements at a frequency of 8.665 GHz (i.e. 3.46 cm), which is emitted naturally by ionized 3He (Bania, Rood & Balser 2010; Balser & Bania 2018) or in the stellar atmospheres of hot stars (Geier et al. 2012). Surprisingly, interstellar medium observations indicate that there is far less of this element in the Galaxy than the current.
models predict. In order not to overproduce 3He in the course of chemical evolution, it has become customary to assume that some unknown 3He-destruction mechanism is at work in low-mass giants (Dearborn, Steigman & Tosi 1996; Galli et al. 1997; Chiappini, Renda & Matteucci 2002; Romano & Matteucci 2003). For instance, Charbonnel & Zahn (2007) suggested a thermohaline mixing during the red giant branch phase of low-mass stars. However, in a few planetary nebulae, 3He/H is found to be high at the level of 10^{-3}, consistent with predictions from standard stellar models (Rood, Bania & Wilson 1992; Balser & Bania 2018).

Novae are semi-detached binary systems in which a Roche lobe filling secondary star transfers material to the WD primary. In the Roche geometry, there is a direct relation between the orbital period and the mass of the secondary star (Warner 1976; Knigge 2006), that in the case of novae, gives M2 values close to 0.3 M$_\odot$. Because stars with mass lower than 0.3 M$_\odot$ are fully convective, the 3He produced in the core by the incomplete pp1 chain is transported outward and transferred to the WD surface. If the donor star has 3He much greater than the solar value, this would almost reconcile the observations with the model predictions.

7Be decays via electron capture into 7Li with a half-life of 53.22 d. However, despite the temporal span of our observations, which in some cases extend up to more than 100 d, we do not detect the 7Li $\lambda\lambda 670.8$ nm absorption line at the corresponding positions of other neutral lines, such as Na I D doublet and Ca I $\lambda\lambda 422.7$ nm, which are observed. We do not detect any 7Li $\lambda\lambda 670.8$ nm absorption corresponding to the main components of Nova Mus 2018. A possible weak feature is detected in the very early spectrum of Nova ASASSN-18fv, as shown in Fig. 12. So far, the 7Li $\lambda 670.8$ nm line has been detected only in the early spectra of Nova Cen 2013 (Izzo et al. 2015). This shows that the physical conditions in the ejecta sometimes permit the survival of neutral 7Li at least in the very early stages. However, this cannot be the result of 7Be decay as it is close to the nova outburst. As argued by Molaro et al. (2016), the 7Be decays via capture of an internal K electron resulting in 7Li II, which has no lines in the optical spectral range and therefore is not observable. The non-detection of 7Li in the later outburst spectra implies that the ejected gas had been heated and that almost all Li remains ionized.

The typical atomic fraction 7Be/H of $\approx 2 \times 10^{-5}$ corresponds to a 7Li overabundance of four orders of magnitude with respect to the meteoritic value of 7Li/H $\approx 2 \times 10^{-9}$ (Lodders et al. 2009). With an ejecta of $\approx 10^{-5}$ M$_\odot$, a nova event is producing a 7Li mass of 1.4×10^{-5} M$_\odot$ and, with a nova rate of 50 nova yr$^{-1}$ over 1010 yr, a total 7Li mass of 700 M$_\odot$, which is a considerable fraction of the estimate of about 1000 M$_\odot$ for the Galaxy (Cescutti & Molaro 2019). The precise fraction contributed by novae is related to uncertainties in the nova rate and to the behaviour of the rate in the course of Galactic life. However, the primordial 7Li production is between ≈ 80 M$_\odot$, when taking the halo star abundance, and 250 M$_\odot$, when taking the predicted value of primordial nucleosynthesis with the baryon density of the deuterium abundance or cosmic microwave background. The contribution by galactic cosmic rays is between 1 M$_\odot$, which is negligible (Rukeya et al. 2017). The nova 7Li production has been considered by means of a detailed model of the chemical evolution of the Milky Way by Cescutti & Molaro (2019). They showed that novae could account for the observed increase of 7Li abundances with increasing of metallicity in the thin disc. The agreement of the model with the Li abundances is obtained for a delay time for the nova production of ≈ 1 Gyr and of 1.8\pm0.6) $\times 10^{-5}$ M$_\odot$ of 7Li as effective yields for a whole nova life, which is consistent with the mean 7Be observed. With $\approx 10^4$ nova events during a lifetime, this corresponds to 1.8 $\times 10^{-9}$ M$_\odot$ per event, which is consistent with what is obtained here. Despite all the uncertainties, novae appear as the dominant source and the only one able to account for the bulk of Galactic 7Li.

5 CONCLUSIONS

Following the recent detection of 7Be II in the outburst spectra of classical novae, we started a ToO project at the ESO with the high-resolution spectrograph UVES to search for the 7Be isotope in all bright novae. The nova brightness is required to study the resonance doublet lines 7Be II at $\lambda\lambda 313.0583, 313.1228$ nm where the atmospheric absorption is strong and optical elements of the spectrograph have low efficiency. We observed all four bright novae of the last two years. We summarize the main results here.

(i) The 7Be II doublet absorption lines are detected in two novae, Nova Mus 2018 and ASASSN-18fv, confirming the synthesis of 7Be in the nova thermonuclear runaway. The atomic fractions by number are estimated to be X(7Be)/X(H) $\approx 1.5 \times 10^{-5}$ and 2.2 $\times 10^{-5}$ in Nova Mus 2018 and ASASSN-18fv, respectively, when the 7Be decay is taken into account. There are seven novae where the 7Be abundance has been measured. Five of them have a 7Be/H abundance close to $\approx 2 \times 10^{-5}$ while two show higher values. The value of $\approx 2 \times 10^{-5}$ looks like a typical abundance, though the sample remains rather small.

![Figure 12. Spectrum of ASAS-SN 18fv at day 1 showing the presence of the absorption feature of 7Li $\lambda 670.8$ nm, observed at the same expanding velocity of $v = -290$ km s$^{-1}$ as the resonance line of Ca I $\lambda 422.7$ nm, though blended with Fe I $\lambda 422.74$ nm, and the Na I D2 absorption. On the top spectrum, the component at -290 km s$^{-1}$ of Ca I $\lambda 671.768$ nm is also marked. This further supports the presence of the neutral species in this component.](https://academic.oup.com/mnras/article/492/4/4975/5727881)
(ii) We do not detect 7Be in the spectra of ASASSN-17hx and possibly not in Nova Cir 2018 either. This shows that not all novae eject 7Be. Theoretically, it is expected that the 7Be yields decrease with the decrease of the WD mass. The yields decrease by a factor of 45 passing from 1.35 to $0.6 \ M_\odot$ for the WD (Starrfield et al. 2019). Moreover, very little 7Be is produced in the case of reduced mixing between the WD core products with the material of the donor star, and the absence of 7Be could reveal such an occurrence. The present fraction of novae showing no evidence of 7Be is of 22 per cent. Note that Mason et al. (2020) recently suggested that ASASSN-17hx could not be a classical nova or at least a very peculiar one. If this is the case, the absence of 7Be would have a very specific meaning.

(iii) The 7Be/6Be abundance of $\approx 2 \times 10^{-4}$ is higher by about one order of magnitude than the predictions of nova models. We argue that a higher than solar abundance of 3He in the donor star would result in higher 7Be yields. In fact, 3He/4H $\approx 10^{-5}$, one hundred times the solar abundance as observed in few planetary nebulae by Balser & Bania (2018), could be common in the small mass donor stars, thus producing a factor of 4 increase in the 7Be yields. This would reduce significantly the disagreement between the observations and the nova models.

(iv) A 7Be/6Be abundance of $\approx 2 \times 10^{-5}$ implies a 7Li/6Be overproduction of ≈ 4 dex above the meteoritic value. A simple estimation based on the mass ejecta and nova rate shows that they are likely the missing 7Li source required to account for 75--90 per cent of 7Li in the Milky Way.

ACKNOWLEDGEMENTS

We gratefully acknowledge Elena Mason and Gabriele Cescutti for helpful discussions on the interpretation of the data. We thank an anonymous referee for many useful comments. We also thank Gabriella Schiulaz for checking the English language. LI was an anonymous referee for many useful comments. We also thank Prof. Vincenzo Matarrese for his support and Prof. A. Prunet for useful suggestions.

REFERENCES

Aydi E., Buckley D. A. H., Mohamed S., White洛克 P. A., 2018, The Astronomer’s Telegram, 11287
Siegenthler S. C., Darnley M. J., 2017, The Astronomer’s Telegram, 10542
Stave K. Z. et al., 2018b, The Astronomer’s Telegram, 11454
Williams S. C., Darnley M. J., 2017, The Astronomer’s Telegram, 10542
Williams S. C., Darnley M. J., 2017, The Astronomer’s Telegram, 10542

This paper has been typeset from a TeX/\LaTeX file prepared by the author.