Local-Stochastic Volatility: The Dynamics of the Forward Smile

McGhee, William Alexander

Publication date: 2008

Citation for published version (APA):
Local-Stochastic Volatility
The Dynamics of the Forward Smile

William McGhee
Global Head, FX Quantitative Strategy Group

Modelling Volatility
8th-9th December 2008
London
Introduction
This talk is broken into two parts.

Part I We will motivate the audience how we expect the existence of the smile to affect pricing of derivatives contracts (due to the speaker’s bias, specifically those popular within the FX markets) and consider the two cornerstones of volatility modelling: the local volatility model and a stochastic volatility model. Motivated by macro market dynamics we shall consider a local stochastic volatility model.

- Local volatility model: calculating the local volatility surface and model implementation
- Stochastic volatility model: ADI scheme and model implementation
- Local-stochastic volatility model.

We can very much choose to leave things here and go forth and implement models for pricing and risk management.

Part II Pretty soon we need to address deeper questions in terms of how our model evolves through time and how it constructs prices - and be able to describe this in an intuitive manner. To that end we will explore our stochastic volatility model analytically and be able to investigate the forward smile.

- Review of the Hull-White approach for stochastic volatility
- Constructing the volatility distribution
- Constructing the forward spot-volatility density and generating the forward smile
- Using the forward smile to price hurdle options and forward vol agreements
Part I
Market, Models and Methods
Typical Market Volatility Surface

This is a typical FX volatility surface, in this case corresponding to EURUSD.

<table>
<thead>
<tr>
<th>EURUSD</th>
<th>BID</th>
<th>ASK</th>
<th>25RR</th>
<th>25FLY</th>
<th>10RR</th>
<th>10FLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W</td>
<td>22.41%</td>
<td>23.61%</td>
<td>-1.26%</td>
<td>0.67%</td>
<td>-2.16%</td>
<td>2.23%</td>
</tr>
<tr>
<td>2W</td>
<td>22.73%</td>
<td>23.55%</td>
<td>-1.34%</td>
<td>0.70%</td>
<td>-2.34%</td>
<td>2.27%</td>
</tr>
<tr>
<td>3W</td>
<td>22.68%</td>
<td>23.37%</td>
<td>-1.40%</td>
<td>0.79%</td>
<td>-2.44%</td>
<td>2.56%</td>
</tr>
<tr>
<td>1M</td>
<td>22.24%</td>
<td>22.59%</td>
<td>-1.45%</td>
<td>0.72%</td>
<td>-2.56%</td>
<td>2.66%</td>
</tr>
<tr>
<td>2M</td>
<td>22.00%</td>
<td>22.42%</td>
<td>-1.39%</td>
<td>0.75%</td>
<td>-2.51%</td>
<td>2.89%</td>
</tr>
<tr>
<td>3M</td>
<td>21.80%</td>
<td>22.15%</td>
<td>-1.36%</td>
<td>0.83%</td>
<td>-2.43%</td>
<td>3.17%</td>
</tr>
<tr>
<td>4M</td>
<td>20.96%</td>
<td>21.30%</td>
<td>-1.32%</td>
<td>0.85%</td>
<td>-2.39%</td>
<td>3.25%</td>
</tr>
<tr>
<td>6M</td>
<td>19.85%</td>
<td>20.18%</td>
<td>-1.27%</td>
<td>0.88%</td>
<td>-2.30%</td>
<td>3.39%</td>
</tr>
<tr>
<td>9M</td>
<td>18.88%</td>
<td>19.19%</td>
<td>-1.22%</td>
<td>0.91%</td>
<td>-2.24%</td>
<td>3.50%</td>
</tr>
<tr>
<td>1Y</td>
<td>18.24%</td>
<td>18.52%</td>
<td>-1.18%</td>
<td>0.94%</td>
<td>-2.16%</td>
<td>3.59%</td>
</tr>
<tr>
<td>1.5Y</td>
<td>17.82%</td>
<td>18.22%</td>
<td>-1.10%</td>
<td>1.00%</td>
<td>-2.03%</td>
<td>3.71%</td>
</tr>
<tr>
<td>2Y</td>
<td>17.54%</td>
<td>17.94%</td>
<td>-1.02%</td>
<td>0.87%</td>
<td>-1.93%</td>
<td>3.40%</td>
</tr>
<tr>
<td>5Y</td>
<td>14.27%</td>
<td>14.92%</td>
<td>-0.69%</td>
<td>0.63%</td>
<td>-1.37%</td>
<td>2.49%</td>
</tr>
<tr>
<td>10Y</td>
<td>11.24%</td>
<td>11.79%</td>
<td>-0.58%</td>
<td>0.41%</td>
<td>-1.57%</td>
<td>1.66%</td>
</tr>
</tbody>
</table>

The FX volatility surface is constructed as above to indicate the level of 'ATM' volatility (indicated by the Bid/Ask rates) the degree of curvature at the 25 delta and 10 delta region (indicated by the 25FLY and 10FLY rates respectively) and the degree of curvature at the 25 delta and 10 delta region (indicated by the 25RR and 10RR rates respectively).

There are many details that need be considered due to currency pair specific conventions which is outside the scope of this course.
Generating a simple smile
A smile can be generated from this very, very simple two state model. Suppose we toss a coin with outcomes: heads - volatility is \(\bar{\sigma} + \Delta \sigma \); tails - volatility is \(\bar{\sigma} - \Delta \sigma \).

We can write the value of a contract in this world as

\[
V(2 \text{ - state}) = \frac{1}{2} [V(\bar{\sigma} - \Delta \sigma) + V(\bar{\sigma} + \Delta \sigma)] = V(\bar{\sigma}) + \frac{1}{2} \frac{\partial^2 V}{\partial \sigma^2} (\Delta \sigma)^2
\]

So contracts with positive "volgamma" ie

\[
\frac{\partial^2 V}{\partial \sigma^2} > 0
\]

will trade at a premium to the value of the contract with volatility \(\bar{\sigma} \). Suppose \(\bar{\sigma} = 10\% \) and \(\Delta \sigma = 2\% \) then for a typical expiry the implied volatility across strike will be of the form
Effect on the underlying probability density function
The resulting density has two profound features 1) thicker tails 2) higher peak.
Introducing skew

A skew (risk reversal) can be induced by lowering the smile on one side and raising on the other. This will have the effect of thinning one tail in the implied pdf and fattening the other. However, the density must preserve the expected value of the underling (equal to the market forward) and so the peak of the distribution needs to move away from the thickening tail:

These qualitative features should be observable in real market smiles.
Smile and implied probability density function for USDCHF

<table>
<thead>
<tr>
<th>Pair</th>
<th>USDCHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenor</td>
<td>6M</td>
</tr>
<tr>
<td>10P</td>
<td>20.95%</td>
</tr>
<tr>
<td>25P</td>
<td>18.28%</td>
</tr>
<tr>
<td>ATM</td>
<td>16.47%</td>
</tr>
<tr>
<td>25C</td>
<td>16.69%</td>
</tr>
<tr>
<td>10C</td>
<td>18.17%</td>
</tr>
</tbody>
</table>
Smile and implied probability density function for USDARS

<table>
<thead>
<tr>
<th>Pair</th>
<th>USDARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenor</td>
<td>6M</td>
</tr>
<tr>
<td>10P</td>
<td>60.93%</td>
</tr>
<tr>
<td>25P</td>
<td>65.67%</td>
</tr>
<tr>
<td>ATM</td>
<td>72.56%</td>
</tr>
<tr>
<td>25C</td>
<td>91.98%</td>
</tr>
<tr>
<td>10C</td>
<td>89.45%</td>
</tr>
</tbody>
</table>
Smile and implied probability density function for USDJPY

<table>
<thead>
<tr>
<th>Pair</th>
<th>USDJPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenor</td>
<td>6M</td>
</tr>
</tbody>
</table>

- 10P: 32.22%
- 25P: 23.47%
- ATM: 17.52%
- 25C: 13.84%
- 10C: 12.79%
From the implied pdf we can gain some qualitative feel for where exotics will trade relative to Black-Scholes. In this case one touch options are considered (OT) - contracts which pay a fixed notional amount of spot ever trades beyond the OT level.
The smile effect on the price of double no touch options. Double no touch options pay a fixed notional amount provided spot remains between the upper and lower levels during the life of the contract. The grid below shows the smile adjustment across a range of upper and lower barrier levels.
The smile effect on the price of up-and-out put options. Up-and-out put options are FX vanilla put options which knockout is spot ever breaches the upper knockout level. The grid below shows the smile adjustment across a range of upper barrier levels and put strikes.

Given we have a qualitative feel for model pricing, it is now time to build a model
Fokker-Plank equation

Here we aim to describe the forward evolution of the probability density function. We express the value of the density at the future time in terms of it’s values at the previous time and the transitional densities as shown below:

\[
\begin{align*}
\phi(S + \delta S, t) & \quad \rightarrow \quad p^-(S + \delta S, t) \\
\phi(S, t) & \quad \rightarrow \quad \phi(S, t + \delta t) \\
\phi(S - \delta S, t) & \quad \rightarrow \quad p^+(S - \delta S, t)
\end{align*}
\]

Equating both sides

\[
\phi(S, t + \delta t) = \phi(S + \delta S, t) p^-(S + \delta S, t) + \phi(S, t) \left(1 - p^-(S, t) - p^+(S, t)\right) + \phi(S - \delta S, t) p^+(S - \delta S, t)
\]

and expanding to orders \(\delta t\) and \(\delta S^2\) then (ignoring higher order terms)

\[
\begin{align*}
\phi(S, t + \delta t) & \approx \phi(S, t) + \phi_t(S, t) \delta t \\
\phi(S \pm \delta S, t) & \approx \phi(S, t) \pm \phi_S(S, t) \delta S \pm \frac{1}{2} \phi_{SS}(S, t) \delta S^2 \\
p^\pm(S \mp \delta S, t) & \approx p^\pm(S, t) \mp p^\pm_S(S, t) \delta S \pm \frac{1}{2} p^\pm_{SS}(S, t) \delta S^2
\end{align*}
\]
then

\[\phi_t (S, t) \delta t = [\phi (S, t) (p^+ (S, t) \delta S - p^- (S, t) \delta S)]_S + \frac{1}{2} [\phi (S, t) (p^+ (S, t) \delta S^2 + p^- (S, t) \delta S^2)]_{SS} \]

which can be re-expressed

\[\phi_t (S, t) \delta t = [\phi (S, t) E[\delta S]]_S + \frac{1}{2} [\phi (S, t) E[\delta S^2]]_{SS} \]
Local Volatility

For the process

\[\frac{dS}{S} = \mu dt + \sigma (S, t) dW \]

then

\[\phi_t (S, t) = [\phi (S, t) \mu S]_S + \frac{1}{2} \left[\phi (S, t) \sigma (S, t)^2 S^2 \right]_S \]

From the price of a call option then differentiating with respect to \(t \)

\[C_t (K, t) = -r_d C + DF \int_K^\infty (S - K) \phi_t (S, t) dS \]

Substituting the Fokker-Plank equation and using the known strike derivatives of \(C \) results in

\[C_t (K, t) = -r_f C (K, t) + \mu K C_K (K, t) + \frac{1}{2} C_{KK} (K, t) \sigma (K, t)^2 K^2 \]

so rearranging

\[\sigma (K, t) = \sqrt{\frac{2 \left(C_t (K, t) + r_f C (K, t) - \mu K C_K (K, t) \right)}{C_{KK} (K, t) K^2}} \]

By construction local volatility will ensure that any pricing is consistent with the volatility surface and so it is necessary to solve the pricing problem

\[\frac{\partial V}{\partial t} + \sigma (S, t)^2 S^2 \frac{\partial^2 V}{\partial S^2} + \mu S \frac{\partial V}{\partial S} - r_d V = 0 \]

subject to the appropriate boundary conditions.
The Crank-Nicholson Scheme

There are a number of finite difference methods available to solve one factor problems such as pricing under local vol: explicit, implicit, Crank-Nicholson, Douglas, etc. Of interest to us is an equation of the form

\[\frac{\partial V}{\partial t} + a(S, t) \frac{\partial^2 V}{\partial S^2} + b(S, t) \frac{\partial V}{\partial S} + c(S, t)V = 0 \]

We construct a grid of \(N + 1 \) time points and \(M + 1 \) spot points. \(V_{j,k} \) corresponds to the \(j^{th} \) spot index (\(0 \leq j \leq M \)) and \(k^{th} \) time index (\(0 \leq k \leq N \)). The initial conditions are set by specifying \(V_{j,N} \) (\(0 \leq j \leq M \)) and there are a number of ways of defining the boundary conditions corresponding to \(j = 0, M \) for \(0 \leq k < N \) either as value conditions (Dirichlet), derivative (Von Neumann), zero curvature conditions, etc. Within the Crank-Nicholson scheme for interior points discretization is as follows

\[
\begin{align*}
\frac{\partial V}{\partial t} & \approx \frac{V_{j,k+1} - V_{j,k}}{\Delta T} \\
\frac{a(S, t)}{2} \frac{\partial^2 V}{\partial S^2} & \approx \frac{1}{2} \left[a_{j,k} \frac{\partial^2 V_{j,k}}{\partial S^2} + a_{j,k+1} \frac{\partial^2 V_{j,k+1}}{\partial S^2} \right] \\
\frac{b(S, t)}{2} \frac{\partial V}{\partial S} & \approx \frac{1}{2} \left[b_{j,k} \frac{\partial V_{j,k}}{\partial S} + b_{j,k+1} \frac{\partial V_{j,k+1}}{\partial S} \right] \\
c(S, t)V & \approx \frac{1}{2} [c_{j,k} V_{j,k} + c_{j,k+1} V_{j,k+1}]
\end{align*}
\]
Then rearranging the discretized equation

\[V_{j,k} - \frac{\Delta T}{2} \left[a_{j,k} \frac{\partial^2 V_{j,k}}{\partial S^2} + b_{j,k} \frac{\partial V_{j,k}}{\partial S} + c_{j,k} V_{j,k} \right] = V_{j,k+1} + \frac{\Delta T}{2} \left[a_{j,k+1} \frac{\partial^2 V_{j,k+1}}{\partial S^2} + b_{j,k+1} \frac{\partial V_{j,k+1}}{\partial S} + c_{j,k+1} V_{j,k+1} \right] \]

The derivatives as calculated as

\[
\begin{align*}
\frac{\partial V_{j,k}}{\partial S} &= \frac{V_{j+1,k} - V_{j-1,k}}{2\Delta S} \\
\frac{\partial^2 V_{j,k}}{\partial S^2} &= \frac{V_{j+1,k} + V_{j-1,k} - 2V_{j,k}}{\Delta S^2}
\end{align*}
\]

So

\[
\begin{align*}
V_{j,k} - \frac{\Delta T}{2} \left[a_{j,k} \frac{\partial^2 V_{j,k}}{\partial S^2} + b_{j,k} \frac{\partial V_{j,k}}{\partial S} + c_{j,k} V_{j,k} \right] \\
&= V_{j,k} - \frac{\Delta T}{2} \left[a_{j,k} \frac{V_{j+1,k} + V_{j-1,k} - 2V_{j,k}}{\Delta S^2} + b_{j,k} \frac{V_{j+1,k} - V_{j-1,k}}{2\Delta S} + c_{j,k} V_{j,k} \right] \\
&= \left(-\frac{1}{2} a_{j,k} \frac{\Delta T}{\Delta S^2} - \frac{1}{4} b_{j,k} \frac{\Delta T}{\Delta S} \right) V_{j+1,k} + \left(1 + \frac{\Delta T}{\Delta S^2} a_{j,k} - \frac{\Delta T}{2} c_{j,k} \right) V_{j,k} + \left(-\frac{1}{2} a_{j,k} \frac{\Delta T}{\Delta S^2} + \frac{1}{4} b_{j,k} \frac{\Delta T}{\Delta S} \right) V_{j+1,k}
\end{align*}
\]

The discretized equation can be written in matrix form

\[\mathbf{T} \mathbf{V}_k = \mathbf{V}_{k+1} \]

where \(\mathbf{T} \) is a tridiagonal matrix and \(\mathbf{V}^T_k = (V_{0,k}, V_{1,k}, \ldots, V_{M,k}) \), \(\mathbf{V}^T_{k+1} = (V_{0,k+1}, V_{1,k+1}, \ldots, V_{M,k+1}) \) are the solution vectors at slice \(k \) and \(k + 1 \) respectively. Crank-Nicholson is an \(O(\Delta T^2, \Delta S^2) \) method. See further reading for more details.
Local-Stochastic Volatility

It can be shown that for a process

\[dS = \mu S dt + \sigma_t S dW \]

where \(\sigma_t \) is the instantaneous volatility at time \(t \) that in order to reprice all options on today’s volatility surface then

\[E \left[\sigma_t^2 | S = K \right] = \sigma_{Local}^2 (K, T) \]

So, for example the local stochastic volatility model of the form

\[dS = \mu S dt + \lambda (S, t) \sigma_t dW_1 \]
\[dX = \alpha \left(\bar{X} - X \right) dt + \xi dW_2 \]

where \(X = \ln \sigma_t \) then if

\[\lambda (S, t) = \sqrt{\frac{\sigma_{Local}^2 (K, T)}{E \left[\sigma_t^2 | S = K \right]}} \]

then the model will reprice today’s volatility surface. When \(\xi = 0 \) the model collapses to that of local volatility. Once the scaling function \(\lambda (S, t) \) has been found then a two dimensional finite difference scheme can be used to evaluate contracts. The scaling function itself is found be evolving the joint spot - instantaneous volatility forward in time using the two dimensional Fokker-Plank equation and applying the conditional expectation above to determine \(\lambda (S, t) \).
The ADI scheme

Here we are trying to solve the differential equation of the form

\[\frac{\partial V}{\partial t} + a(X, Y, t) \frac{\partial^2 V}{\partial X^2} + b(X, Y, t) \frac{\partial V}{\partial X} + c(X, Y, t) \frac{\partial^2 V}{\partial Y^2} + d(X, Y, t) \frac{\partial V}{\partial Y} + e(X, Y, t) \frac{\partial^2 V}{\partial X \partial Y} + f(X, Y, t)V = 0 \]

As in the case of Crank-Nicholson

\[
\begin{align*}
\frac{\partial V}{\partial t} & \approx \frac{V_{i,j}^{k+1} - V_{i,j}^k}{\Delta T} \\
a(X, Y, t) \frac{\partial^2 V}{\partial X^2} & \approx \frac{1}{2} \left[a_{i,j}^k \frac{\partial^2 V_{i,j}^k}{\partial X^2} + a_{i,j}^{k+1} \frac{\partial^2 V_{i,j}^{k+1}}{\partial X^2} \right] \\
b(X, Y, t) \frac{\partial V}{\partial X} & \approx \frac{1}{2} \left[b_{i,j}^k \frac{\partial V_{i,j}^k}{\partial X} + b_{i,j}^{k+1} \frac{\partial V_{i,j}^{k+1}}{\partial X} \right] \\
c(X, Y, t) \frac{\partial^2 V}{\partial Y^2} & \approx \frac{1}{2} \left[c_{i,j}^k \frac{\partial^2 V_{i,j}^k}{\partial Y^2} + c_{i,j}^{k+1} \frac{\partial^2 V_{i,j}^{k+1}}{\partial Y^2} \right] \\
d(X, Y, t) \frac{\partial V}{\partial Y} & \approx \frac{1}{2} \left[d_{i,j}^k \frac{\partial V_{i,j}^k}{\partial Y} + d_{i,j}^{k+1} \frac{\partial V_{i,j}^{k+1}}{\partial Y} \right] \\
e(X, Y, t) \frac{\partial^2 V}{\partial X \partial Y} & \approx \frac{1}{2} \left[e_{i,j}^{k,1} \frac{\partial^2 V_{i,j}^{k+1}}{\partial X \partial Y} \right] \\
f(S, t)V & \approx \frac{1}{2} \left[f_{i,j}^k V_{i,j}^k + f_{i,j}^{k+1} V_{i,j}^{k+1} \right]
\end{align*}
\]
The entire system can then be written in the form

\[
(1 - \vartheta_X^k - \vartheta_Y^k) V_{i,j}^k = (1 + \vartheta_X^{k+1} + \vartheta_Y^{k+1}) V_{i,j}^{k+1} + e_{i,j}^{k+1} \frac{\partial^2 V_{i,j}^{k+1}}{\partial X \partial Y}
\]

where the operators ϑ_X and ϑ_Y contain the X and Y differential operators. The system is approximated as

\[
(1 - \vartheta_X^k)(1 - \vartheta_Y^k)V_{i,j}^k = (1 + \vartheta_X^{k+1})(1 + \vartheta_Y^{k+1}) V_{i,j}^{k+1} + e_{j,k+1} \frac{\partial^2 V_{i,j}^{k+1}}{\partial X \partial Y}
\]

which is split into

\[
(1 - \vartheta_X^k)\hat{V}_{i,j}^k = (1 + \vartheta_X^{k+1} + 2\vartheta_Y^{k+1}) V_{i,j}^{k+1} + e_{j,k+1} \frac{\partial^2 V_{i,j}^{k+1}}{\partial X \partial Y}
\]

\[
(1 - \vartheta_Y^k)\hat{V}_{i,j}^k = \hat{V}_{i,j}^k - \vartheta_Y^{k+1}V_{i,j}^{k+1}
\]

Typically a second sweep is performed to improve the accuracy in the presence of the cross term

\[
(1 - \vartheta_X^k)V_{i,j}^* = (1 + \vartheta_X^{k+1} + 2\vartheta_Y^{k+1}) V_{i,j}^{k+1} + \frac{1}{2} e_{j,k+1} \left(\frac{\partial^2 V_{i,j}^{k+1}}{\partial X \partial Y} + \frac{\partial^2 \hat{V}_{i,j}^{k+1}}{\partial X \partial Y} \right)
\]

\[
(1 - \vartheta_Y^k)V_{i,j}^* = V_{i,j}^* - \vartheta_Y^{k+1}V_{i,j}^{k+1}
\]
Effect of introducing stochastic volatility to the local volatility model. Remember, all these exotic prices are by construction consistent with today’s volatility surface.
Non-smile risk corresponding to a 6M 105 OT in USDJPY

<table>
<thead>
<tr>
<th>% change</th>
<th>Spot</th>
<th>PV</th>
<th>PnL</th>
<th>Theta</th>
<th>Delta</th>
<th>Gamma</th>
<th>Vega</th>
<th>Strangle</th>
<th>RiskRev</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00%</td>
<td>102.56</td>
<td>956.254</td>
<td>269.668</td>
<td>-232</td>
<td>6,083</td>
<td>6067</td>
<td>52.846</td>
<td>1,638</td>
<td>0</td>
</tr>
<tr>
<td>4.00%</td>
<td>101.58</td>
<td>898.100</td>
<td>231.504</td>
<td>-768</td>
<td>6,067</td>
<td>95.734</td>
<td>5,242</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.00%</td>
<td>100.61</td>
<td>839.697</td>
<td>173.101</td>
<td>-1,292</td>
<td>6,015</td>
<td>132.081</td>
<td>8.766</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.00%</td>
<td>99.63</td>
<td>781.406</td>
<td>114.810</td>
<td>-1,795</td>
<td>5,927</td>
<td>167.535</td>
<td>12.162</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.00%</td>
<td>98.66</td>
<td>723.596</td>
<td>56.990</td>
<td>-2,269</td>
<td>5,803</td>
<td>200.832</td>
<td>15.342</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.75%</td>
<td>98.41</td>
<td>709.246</td>
<td>42.651</td>
<td>-2,381</td>
<td>5,767</td>
<td>208.746</td>
<td>16.102</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.50%</td>
<td>98.16</td>
<td>694.965</td>
<td>28.369</td>
<td>-2,492</td>
<td>5,728</td>
<td>216.515</td>
<td>16.845</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.25%</td>
<td>97.92</td>
<td>680.746</td>
<td>14.150</td>
<td>-2,599</td>
<td>5,688</td>
<td>224.032</td>
<td>17.572</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.10%</td>
<td>97.77</td>
<td>672.247</td>
<td>5.651</td>
<td>-2,662</td>
<td>5,662</td>
<td>228.520</td>
<td>17.999</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.00%</td>
<td>97.67</td>
<td>666.596</td>
<td>0</td>
<td>-2,704</td>
<td>5,645</td>
<td>231.436</td>
<td>18.280</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.10%</td>
<td>97.58</td>
<td>660.956</td>
<td>-5.640</td>
<td>-2,745</td>
<td>5,627</td>
<td>234.348</td>
<td>18.568</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.25%</td>
<td>97.43</td>
<td>652.520</td>
<td>-14.076</td>
<td>-2,806</td>
<td>5,600</td>
<td>238.615</td>
<td>18.969</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.50%</td>
<td>97.19</td>
<td>638.523</td>
<td>-28.073</td>
<td>-2,905</td>
<td>5,554</td>
<td>245.586</td>
<td>19.638</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.75%</td>
<td>96.94</td>
<td>624.612</td>
<td>-41.984</td>
<td>-3,001</td>
<td>5,505</td>
<td>252.284</td>
<td>20.267</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1.00%</td>
<td>96.70</td>
<td>610.730</td>
<td>-55.806</td>
<td>-3,094</td>
<td>5,454</td>
<td>258.800</td>
<td>20.915</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2.00%</td>
<td>95.72</td>
<td>556.511</td>
<td>-110.085</td>
<td>-3,432</td>
<td>5,233</td>
<td>262.386</td>
<td>23.203</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-3.00%</td>
<td>94.74</td>
<td>504.079</td>
<td>-162.517</td>
<td>-3,712</td>
<td>4,986</td>
<td>301.728</td>
<td>25.108</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-4.00%</td>
<td>93.77</td>
<td>453.732</td>
<td>-212.804</td>
<td>-3,930</td>
<td>4,715</td>
<td>316.652</td>
<td>26.602</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-5.00%</td>
<td>92.79</td>
<td>405.914</td>
<td>-260.682</td>
<td>-4,085</td>
<td>4,426</td>
<td>326.758</td>
<td>27.670</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Smile adjustment risk corresponding to a 6M 105 OT in USDJPY

<table>
<thead>
<tr>
<th>% change</th>
<th>Spot</th>
<th>PV</th>
<th>PnL</th>
<th>Theta</th>
<th>Delta</th>
<th>Gamma</th>
<th>Vega</th>
<th>Strangle</th>
<th>RiskRev</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00%</td>
<td>102.56</td>
<td>14,177</td>
<td>-36,550</td>
<td>220</td>
<td>-3,161,193</td>
<td>-712,900</td>
<td>-1,231</td>
<td>116</td>
<td>-72</td>
</tr>
<tr>
<td>4.00%</td>
<td>101.58</td>
<td>40,954</td>
<td>-9,772</td>
<td>602</td>
<td>-2,403,389</td>
<td>-912,806</td>
<td>-3,406</td>
<td>264</td>
<td>-269</td>
</tr>
<tr>
<td>3.00%</td>
<td>100.61</td>
<td>59,743</td>
<td>9,016</td>
<td>807</td>
<td>-1,450,864</td>
<td>-1,093,591</td>
<td>-4,423</td>
<td>183</td>
<td>-467</td>
</tr>
<tr>
<td>2.00%</td>
<td>99.63</td>
<td>68,517</td>
<td>17,790</td>
<td>740</td>
<td>-320,972</td>
<td>-1,223,847</td>
<td>-3,744</td>
<td>-151</td>
<td>-606</td>
</tr>
<tr>
<td>1.00%</td>
<td>98.66</td>
<td>65,668</td>
<td>14,942</td>
<td>328</td>
<td>905,398</td>
<td>-1,232,309</td>
<td>-968</td>
<td>-635</td>
<td>-643</td>
</tr>
<tr>
<td>0.75%</td>
<td>98.41</td>
<td>63,049</td>
<td>12,322</td>
<td>172</td>
<td>1,209,987</td>
<td>-1,205,195</td>
<td>28</td>
<td>-754</td>
<td>-636</td>
</tr>
<tr>
<td>0.50%</td>
<td>98.16</td>
<td>59,673</td>
<td>8,946</td>
<td>-3</td>
<td>1,508,272</td>
<td>-1,163,365</td>
<td>1,163</td>
<td>-864</td>
<td>-624</td>
</tr>
<tr>
<td>0.25%</td>
<td>97.92</td>
<td>55,557</td>
<td>4,830</td>
<td>-194</td>
<td>1,796,598</td>
<td>-1,115,244</td>
<td>2,404</td>
<td>-961</td>
<td>-606</td>
</tr>
<tr>
<td>0.10%</td>
<td>97.77</td>
<td>52,743</td>
<td>2,016</td>
<td>-315</td>
<td>1,963,389</td>
<td>-1,073,899</td>
<td>3,194</td>
<td>-1,010</td>
<td>-594</td>
</tr>
<tr>
<td>0.00%</td>
<td>97.67</td>
<td>50,727</td>
<td>0</td>
<td>-398</td>
<td>2,071,556</td>
<td>-1,049,654</td>
<td>3,738</td>
<td>-1,039</td>
<td>-584</td>
</tr>
<tr>
<td>-0.10%</td>
<td>97.58</td>
<td>48,602</td>
<td>-2,125</td>
<td>-483</td>
<td>2,177,364</td>
<td>-1,021,781</td>
<td>4,294</td>
<td>-1,065</td>
<td>-575</td>
</tr>
<tr>
<td>-0.25%</td>
<td>97.43</td>
<td>45,215</td>
<td>-5,511</td>
<td>-613</td>
<td>2,330,514</td>
<td>-969,730</td>
<td>5,148</td>
<td>-1,096</td>
<td>-559</td>
</tr>
<tr>
<td>-0.50%</td>
<td>97.19</td>
<td>39,065</td>
<td>-11,662</td>
<td>-836</td>
<td>2,569,824</td>
<td>-885,773</td>
<td>6,616</td>
<td>-1,127</td>
<td>-530</td>
</tr>
<tr>
<td>-0.75%</td>
<td>96.94</td>
<td>32,324</td>
<td>-18,403</td>
<td>-1,061</td>
<td>2,786,508</td>
<td>-785,186</td>
<td>8,120</td>
<td>-1,129</td>
<td>-498</td>
</tr>
<tr>
<td>-1.00%</td>
<td>96.70</td>
<td>25,049</td>
<td>-25,677</td>
<td>-1,287</td>
<td>2,978,615</td>
<td>-674,800</td>
<td>9,638</td>
<td>-1,101</td>
<td>-463</td>
</tr>
<tr>
<td>-2.00%</td>
<td>95.72</td>
<td>-8,005</td>
<td>-58,732</td>
<td>-2,098</td>
<td>3,446,252</td>
<td>-159,624</td>
<td>15,342</td>
<td>-666</td>
<td>-290</td>
</tr>
<tr>
<td>-3.00%</td>
<td>94.74</td>
<td>-43,416</td>
<td>-94,142</td>
<td>-2,587</td>
<td>3,373,464</td>
<td>346,868</td>
<td>19,281</td>
<td>235</td>
<td>29</td>
</tr>
<tr>
<td>-4.00%</td>
<td>93.77</td>
<td>-76,042</td>
<td>-126,769</td>
<td>-2,671</td>
<td>2,869,182</td>
<td>653,890</td>
<td>20,796</td>
<td>1,465</td>
<td>368</td>
</tr>
<tr>
<td>-5.00%</td>
<td>92.79</td>
<td>-102,341</td>
<td>-153,068</td>
<td>-2,410</td>
<td>2,133,873</td>
<td>771,195</td>
<td>20,081</td>
<td>2,839</td>
<td>894</td>
</tr>
</tbody>
</table>
Part II
Understanding the forward smile
Stochastic Volatility - Hull-White

Let's start with the Hull-White approach. Suppose spot and volatility are uncorrelated. The total variance \(V \) is defined by

\[
V = \frac{1}{T} \int_0^T \sigma(t)^2 dt
\]

and so the option price is given by

\[
C(T, K) = \int_0^\infty C(V, T, K) \varphi(V) dV
\]

where \(\varphi(V) \) is the distribution of the total variance. Here Hull-White perform at Taylor expansion about \(\overline{V} = E[V] \) ie

\[
C(V, T, K) \equiv C(V) = C(\overline{V}) + \frac{\partial C}{\partial V} \bigg|_{\overline{V}} (V - \overline{V}) + \frac{1}{2} \frac{\partial^2 C}{\partial^2 V} \bigg|_{\overline{V}} (V - \overline{V})^2 + ...
\]

and use within the integral

\[
C(T, K) = \int_0^\infty \left(C(\overline{V}) + \frac{\partial C}{\partial V} \bigg|_{\overline{V}} (V - \overline{V}) + \frac{1}{2} \frac{\partial^2 C}{\partial^2 V} \bigg|_{\overline{V}} (V - \overline{V})^2 + ...
ight) \varphi(V) dV
\]

\[
= C(\overline{V}) + \frac{1}{2} \frac{\partial^2 C}{\partial^2 V} \bigg|_{\overline{V}} E \left[(V - \overline{V})^2 \right] + ...
\]

\[
= C(\overline{V}) + \frac{1}{2} \frac{\partial^2 C}{\partial^2 V} \bigg|_{\overline{V}} Var(V) + ...
\]
Here we need to calculate $E[V]$ and $E[V^2]$ where

$$
E[V] = E \left[\frac{1}{T} \int_0^T \sigma(t)^2 dt \right] = \frac{1}{T} \int_0^T E[\sigma(t)^2] dt
$$

$$
E[V^2] = E \left[\left(\frac{1}{T} \int_0^T \sigma(t)^2 dt \right)^2 \right] = \frac{1}{T^2} \int_0^T \int_0^T E[\sigma(t_1)^2 \sigma(t_2)^2] dt_1 dt_2
$$

The volatility process used by Hull-White is $d\sigma^2 = \kappa \sigma^2 dt + \xi \sigma^2 dW$ giving

$$
E[V] = \frac{e^{\kappa T} - 1}{\kappa T} V_0
$$

$$
E[V^2] = \left[\frac{2e^{(2\kappa+\xi^2)T}}{(\kappa + \xi^2)(2\kappa + \xi^2)T^2} + \frac{2}{\kappa T^2} \left(\frac{1}{2\kappa + \xi^2} - \frac{e^{\kappa T}}{\kappa + \xi^2} \right) \right] V_0^2
$$

For low ξ then the Hull-White approach provides a reasonable approximation, but for larger ξ values needed to calibrate to the market the accuracy deteriorates. We would like to modify the Hull-White process and tackle problem slightly differently, namely

- a mean reverting variance process to better match the shape of the market ATM structure
- In the integral

$$
C(T, K) = \int_0^\infty C(V, T, K) \varphi(V) dV
$$

work on not $C(V, T, K)$ but $\varphi(V)$ and integrate under our proposed distribution.
Stochastic Volatility - an alternative to Hull-White

Define $X = \ln \sigma^2$. The under Hull-White

$$dX = d\ln \sigma^2 = \frac{1}{\sigma^2}d\sigma^2 - \frac{1}{2\sigma^4} (d\sigma^2)^2 = \kappa dt + \xi dW - \frac{1}{2\sigma^4} \xi^2 \sigma^4 dt = \left(\kappa - \frac{1}{2} \xi^2 \right) dt + \xi dW$$

We would much prefer a mean-reverting volatility process so we propose

$$dX = \alpha (X^* - X) dt - \frac{1}{2} \xi^2 dt + \xi dW = \alpha \left(X^* - X \right) dt + \xi dW$$

where

$$X^* = X^* - \frac{1}{2\alpha} \xi^2$$

Further in the expression

$$C(T, K) = \int_0^\infty C(V, T, K) \varphi(V) dV$$

Hull-White choose to expand on $C(V, T, K)$. Here, instead, we focus attention on $\varphi(V)$ and approximate initially as a lognormal. In order to calculate $E[V]$ and $E[V^2]$ we write $Y = X e^{\alpha t}$ so

$$dY = e^{\alpha t} dX + \alpha X e^{\alpha t} dt$$

$$= \alpha e^{\alpha t} \left(X^* - X \right) dt + \xi e^{\alpha t} dW + \alpha X e^{\alpha t} dt$$

$$= \alpha e^{\alpha t} X^* dt + \xi e^{\alpha t} dW$$

so that
\[
\int_0^T dY = \int_0^T \alpha e^{\alpha t} \bar{X}^* dt + \int_0^T \xi e^{\alpha t} dW
\]

\[
Y(T) - Y(0) = (e^{\alpha T} - 1) \bar{X}^* + \int_0^T \xi e^{\alpha t} dW
\]

\[
X(T) = X(0) + \bar{X}^* (1 - e^{-\alpha T}) + \frac{\xi}{\sqrt{2\alpha T}} (1 - e^{-2\alpha T})^{1/2} W_T
\]

where \(W_T \) is normal with mean zero and variance \(T \).

Calculating \(E[V], E[V^2] \)

\[
E[V] = E\left[\frac{1}{T} \int_0^T \sigma(t)^2 dt \right]
\]

\[
= \frac{1}{T} \int_0^T E\left[\sigma(t)^2 \right] dt
\]

\[
= \frac{1}{T} \int_0^T \exp \left(X_0 e^{-\alpha t} + X^* (1 - e^{-\alpha t}) + \frac{1}{2} \frac{\xi^2}{2\alpha t} (1 - e^{-2\alpha t}) \right) dt
\]

and secondly

\[
E[V^2] = E\left[\frac{1}{T^2} \int_0^T dt_1 \int_0^T dt_2 \sigma(t_1)^2 \sigma(t_2)^2 \right] = \frac{1}{T^2} \int_0^T dt_1 \int_0^T dt_2 E \left[\sigma(t_1)^2 \sigma(t_2)^2 \right]
\]
It can be shown that

\[E \left[\sigma (t_1)^2 \sigma (t_2)^2 \right] = E \left[\sigma (t_1)^2 \right] E \left[\sigma (t_2)^2 \right] \exp \left(\frac{\xi^2}{2\alpha} \left(1 - e^{-2\alpha t_1} \right) e^{-\alpha(t_2-t_1)} \right) \]

allowing for \(E \left[V^2 \right] \) to be calculated at least numerically.

If \(V \) is lognormal then it has the form

\[\varphi (V) = \frac{1}{\sqrt{2\pi} \beta} \exp \left(-\frac{1}{2\beta} (\ln V - \alpha)^2 \right) \]

with

\[E [V] = \exp \left(\alpha + \frac{1}{2\beta} \right) \]
\[E [V^2] = E [V]^2 \exp (\beta) \]

So finally

\[C(T, K) = \frac{1}{\sqrt{2\pi} \beta} \int_0^\infty C (V, T, K) \exp \left(-\frac{1}{2\beta} (\ln V - \alpha)^2 \right) dV \]

In practice, the assumption of lognormality for the distribution \(\varphi (V) \) is a good one but can be improved by considering higher order moments \(E[V^3], E[V^4], \ldots \). There are a variety of ways in which to include higher order moments, for example the Gram-Charlier or Edgeworth series.
A Gram-Charlier series would take the form

$$\varphi (V) = \frac{1}{\sqrt{2\pi} \beta} \exp \left(-\frac{1}{2\beta} (\ln V - \alpha)^2 \right) \left[1 + \frac{\kappa_3}{3! \beta \sqrt{\beta}} H_3 \left(\frac{\ln V - \alpha}{\sqrt{\beta}} \right) + \frac{\kappa_4}{4! \beta^2} H_4 \left(\frac{\ln V - \alpha}{\sqrt{\beta}} \right) + \ldots \right]$$

where

$$H_3(x) = x^3 - 3x$$

$$H_4(x) = x^4 - 6x^2 + 3$$

and κ_3 and κ_4 allow us to incorporate skewness and kurtosis respectively.
Armed with a relatively simple method to calculate the value of vanilla options we can start to examine the effect of stochastic volatility on today's and more importantly, future volatility surfaces:

Example 1: $\alpha = 3$, $\sigma_0 = 10\%$, $\sigma_* = 15\%$, $\xi = 0\%$
Example 2: $\alpha = 6, \sigma_0 = 10\%, \sigma_* = 15\%, \xi = 0\%$
Example 3: $\alpha = 3$, $\sigma_0 = 10\%$, $\sigma_* = 15\%$, $\xi = 300\%$
Example 4: $\alpha = 6, \sigma_0 = 10\%, \sigma_* = 15\%, \xi = 300\%$
Many models can calibrate to today’s volatility surface - a stochastic volatility model can have the local volatility scalings applied to ensure this. However, whereas different models agree on today’s volatility surface they will price exotic contracts differently as they each assume a different realisation of the forward dynamics of the volatility surface.

For the local-stochastic volatility model defined as

\[dS = \mu S dt + \lambda(S, t) \sigma dW_1 \]
\[dX = \alpha \left(\overline{X} - X \right) dt + \xi dW_2 \]

Then when \(\lambda(S, t) = 1 \) the model is pure stochastic and when \(\xi = 0 \) the model is pure local.

At some future spot level \(S(t) \) there will be a distribution for forward smiles where stochastic volatility exists, collapsing to a unique forward smile when the model reduces to a local volatility model.

We start, once again, with the pure stochastic volatility case. Recalling the calculation of the call price

\[C(T, K) = \int_0^\infty C(V, T, K) \varphi(V) dV \]
\[= \int_0^\infty \int_0^\infty (S - K) \psi(S|V) \varphi(V) dS dV \]
\[= \int_0^\infty \int_0^\infty \int_0^\infty (S - K) \psi(S|V) \varphi(V|\sigma^2(T)) \vartheta(\sigma^2(T)) dS dV d\sigma^2(T) \]

\(\psi(S|V) \) is the distribution of spot conditional upon the total variance \(V \) and in this case is the standard lognormal density; \(\varphi(V|\sigma^2(T)) \) is the distribution of the total variance \(V \) conditional upon the instantaneous variance \(\sigma^2(T) \) at time \(T \); and finally, \(\vartheta(\sigma^2(T)) \) is the distribution of the instantaneous variance.
at time T. The density $\psi(S|V)$ is known and $\vartheta(\sigma^2(T))$ is obtained from

$$X(T) = X(0) + X^* (1 - e^{-\alpha T}) + \frac{\xi}{\sqrt{2\alpha T}} (1 - e^{-2\alpha T})^{1/2} W_T$$

However, $\varphi(V|\sigma^2(T))$ needs to be calculated. Once again we can initially assume $\varphi(V|\sigma^2(T))$ is lognormal and calculate

$$E[V|\sigma^2(T)] = E\left[\frac{1}{T} \int_0^\infty \sigma^2(t)\,dt \middle| \sigma^2(T)\right] = \frac{1}{T} \int_0^\infty E[\sigma^2(t)|\sigma^2(T)]\,dt$$

$$E[V^2|\sigma^2(T)] = E\left[\frac{1}{T^2} \int_0^\infty \int_0^\infty \sigma^2(t_1)\sigma^2(t_2)\,dt_1dt_2 \middle| \sigma^2(T)\right] = \frac{1}{T^2} \int_0^\infty \int_0^\infty E[\sigma^2(t_1)\sigma^2(t_2)|\sigma^2(T)]\,dt_1dt_2$$

Both $E[\sigma^2(t)|\sigma^2(T)]$ and $E[\sigma^2(t_1)\sigma^2(t_2)|\sigma^2(T)]$ can be calculated from Brownian bridge constructions.
Here we show different views of the joint distribution of the log(spot) and the instantaneous variance at some future date.
Here we show a different view of the joint distribution of the log(spot) and the instantaneous variance at some future date.
Here we show different views across $\log(\text{spot})$ the distribution of the instantaneous variance conditional upon spot at some future date.
Here we show different views across log(spot) the distribution of the instantaneous variance conditional upon spot at some future date.
Of importance is given a spot level in the future, what is the distribution of instantaneous volatility. For each instantaneous volatility there corresponds a volatility surface. So we are in a position to understand the distribution of forward volatility surfaces for each future spot level.

At a future spot level S and instantaneous volatility σ at time T if $\Pi (S, \sigma, T)$ is the associated implied volatility surface then we can define the implied volatility surface from the expected price at spot (S, T) as $\Theta (S, T) = \{ \theta (S, T, K, T_{\text{exp}}) : 0 < K < \infty, T_{\text{exp}} > T \}$ where

$$
C (S, T, K, T_{\text{exp}}, \theta (S, T, K, T_{\text{exp}})) = \int_{0}^{\infty} d\sigma \phi (\sigma | S) C (S, T, K, T_{\text{exp}}, \sigma_{\text{imp}} (\Pi (S, \sigma, T), K, T_{\text{exp}}))
$$
Here $C(S, T, K, T_{exp}, \sigma_{imp} (\Pi (S, \sigma, T), K, T_{exp}))$ is the model value of the underlying contract at (S, σ, T).

In the graph below for a future spot level the volatility distribution is subdivided into 10% sections and the implied volatility smile from the expected option prices are shown. The red line is the implied volatility smile for the entire distribution. The implied smile for the entire distribution has greater curvature (higher strangles) due to the presence of vol of vol.
We reduce the vol of vol on the LSVol model (blue lines) and see the forward smiles collapse onto the LVol (pink line) smile.
Hurdle Options
A hurdle option is defined as a contract which has a vanilla option payoff at time T_{exp} provided spot is not beyond the hurdle level H at the hurdle time T_{hurdle}. The hurdle level can be either upper or lower on an underlying call option. Consider here the case of a call option with strike K and a lower knockout hurdle level. Then the price of such an option can be represented

$$V_{\text{hurdle}} = DF \int_{H}^{\infty} dS \left(T_{\text{hurdle}} \right) C \left(S, T_{\text{hurdle}} ; K, T_{\text{exp}} \right) \varphi \left(S \right)$$

ie the integral across spot on the hurdle date of the value of the underlying option priced off the implied volatility surface $\Theta \left(S, t \right)$. So the value of a hurdle option is defined by today’s volatility surface (which will give the spot distribution on the hurdle date) and the future volatility surface implied from the expected option prices.
Forward Volatility and Forward Smile Agreements

The forward volatility contract that trades within the FX market has a couple of variants dependent upon the currency pair in question:

- the agreement to enter into a delta-neutral straddle on the forward volatility agreement date
- the agreement to enter into a forward straddle on the forward volatility agreement date

The first case means that the strike for a given level of spot is a function of the ATM volatility on the FVA date and so is a function of the level of the instantaneous volatility. That requires special handling that will not be discussed here. For the second case then for the option part the value is given by

\[
DF \int_0^\infty dSC \left(S, T_{FVA}, F \left(S(T_{FVA}), T_{exp} \right), \theta \left(S, T_{FVA}, F \left(S(T_{FVA}), T_{exp} \right), T_{exp} \right), T_{exp} \right) \varphi(S)
\]

\[+DF \int_0^\infty dSP \left(S, T_{FVA}, F \left(S(T_{FVA}), T_{exp} \right), \theta \left(S, T, F \left(S(T_{FVA}), T_{exp} \right), T_{exp} \right), T_{exp} \right) \varphi(S)\]

which as in the hurdle case is a function only of \(\Theta(S, t) \). More generally structures such as forward butterflies where the strike are defined relative to the future spot or forward rate (ie not in terms of delta which is volatility level dependent) can we calculated as above.
Note: An alternative definition of the forward smile
For the bulk of pricing problems then the forward smile defined previously - as the implied volatility surface from the future expected option prices - is appropriate. There is an alternative forward smile defined as $\overline{\Theta} (S, T) = \{ \overline{\theta} (S, T, K, T_{exp}) : 0 < K < \infty, T_{exp} > T \}$ where

$$\overline{\theta} (S, T, K, T_{exp}) = \int_{0}^{\infty} d\sigma \sigma_{imp} (\Pi (S, \sigma, T), K, T_{exp})$$

This is the direct expectation of the implied volatilities themselves across the distribution of volatility surfaces associated with each instantaneous volatility level. This is of use in the small category of products which have payoff a function of the implied volatility itself.
Concluding remarks

In this presentation we have reviewed local volatility, stochastic volatility and their combination in the local-stochastic volatility model framework. We have looked at numerical schemes - Crank-Nicholson and ADI - that allow the reader to implement these models. Further we have begun to investigate the forward smile within these models with a view to understanding intuitively how the models construct prices and allow us to consider building a model by construction of the forward smiles themselves.

Further topics for the Advanced Modelling Volatility course (I):

- the role of correlation on the forward smile and so on pricing
- the dynamics of the market smiles and their understanding via PCA / ICA techniques
- the effect of stochastic interest rates and the forward smile under more general models
- path dependency - construction of the appropriate forward smile for exotics and the relationship to how traders make prices.
Selected further reading

Please see the below and references therein for some background information to this presentation:

Disclosure This communication has been prepared by a member of the Sales and Trading Department of Citigroup which distributes this communication by or through its locally authorized affiliates (collectively, the “Firm”). Sales and Trading personnel are not research analysts and the information in this communication is not intended to constitute “research” as that term is defined by applicable regulations. Compensation of Sales and Trading personnel includes consideration of the performance of this Department's activities. The views expressed herein may change without notice and may differ from those views expressed by other Firm personnel.

You should assume the following: The Firm may be the issuer of, or may trade as principal in, the financial instruments referred to in this communication or other related financial instruments. The author of this communication may have discussed the information contained herein with others within the Firm and the author and such other Firm personnel may have already acted on the basis of this information (including by trading for the Firm's proprietary accounts or communicating the information contained herein to other customers of the Firm). The Firm performs or seeks to perform investment banking and other services for the issuer of any such financial instruments. The Firm, the Firm's personnel (including those with whom the author may have consulted in the preparation of this communication), and other customers of the Firm may be long or short the financial instruments referred to herein, may have acquired such positions at prices and market conditions that are no longer available, and may have interests different or adverse to your interests.

This communication is provided for information and discussion purposes only. It does not constitute an offer or solicitation to purchase or sell any financial instruments. The information contained in this communication is based on generally available information and, although obtained from sources believed by the Firm to be reliable, its accuracy and completeness is not guaranteed. Certain personnel or business areas of the Firm may have access to or have acquired material non-public information that may have an impact (positive or negative) on the information contained herein, but that is not available to or known by the author of this communication.

Financial instruments denominated in a foreign currency are subject to exchange rate fluctuations, which may have an adverse effect on the price or value of an investment in such products. Investments in financial instruments carry significant risk, including the possible loss of the principal amount invested. Investors should obtain advice from their own tax, financial, legal and other advisors, and only make investment decisions on the basis of the investor's own objectives, experience and resources. This communication is not intended to forecast or predict future events. Past performance is not a guarantee or indication of future results. Any prices provided herein (other than those that are identified as being historical) are indicative only and do not represent firm quotes as to either price or size. You should contact your local representative directly if you are interested in buying or selling any financial instrument, or pursuing any trading strategy, mentioned herein. No liability is accepted by the Firm for any loss (whether direct, indirect or consequential) that may arise from any use of the information contained herein or derived herefrom.

Although the Firm is affiliated with Citibank, N.A. (together with its subsidiaries and branches worldwide, “Citibank”), you should be aware that none of the other financial instruments mentioned in this communication (unless expressly stated otherwise) are (i) insured by the Federal Deposit Insurance Corporation or any other governmental authority, or (ii) deposits or other obligations of, or guaranteed by, Citibank or any other insured depository institution. This communication contains data compilations, writings and information that are proprietary to the Firm and protected under copyright and other intellectual property laws, and may not be redistributed or otherwise transmitted by you to any other person for any purpose.

Copyright © Citigroup 2007. All Rights Reserved.